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A synchronous Nyquist folding receiver (SNYFR) could intercept wideband signals in multi-Nyquist 
zones with two analog-to-digital converters. The instantaneous Nyquist zone (INZ) of the SNYFR may 
not exist or is not unique, and the dual local harmonics was presented to improve the stability of the 
SNYFR. It was found that the existence and unique conditions of the INZ determined that the frequency 
of the local oscillator signal (LOS) in one zone was constant. A symmetrical low-pass filter and dual 
harmonics LOSs were adopted to facilitate the detection of the INZ. Simulations showed that the 
proposed structure is valid for the interception of wideband radar signal. 
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INTRODUCTION 
 
The ideal electronic support measurement (ESM) 
receiver should be able to intercept the whole radar 
frequency range, namely, about 18 GHz or even 30 GHz. 
The ESM may find the location of the transmitter (Chen et 
al., 2008; Gui et al., 2011). However, the sampling rate of 
commercially available off-the-shelf analog-to-digital 
converter (ADC) is often less than or equal to 5 giga-
samples per second (GSPS). Therefore, it is difficult to 
directly sample the signals in such a wide frequency 
range according to the Nyquist-Shannon sampling 
theorem. Donoho (2006) shows that compressed sensing 
(CS) can reconstruct the signal from the received signal 
with a high probability using a low rate ADC by 
introducing a signal independent observation matrix and 
an optimal solution algorithm. Typical CS receivers, which 
could be used in ESM receiver, include the receiver using 
random demodulation (Laska et al., 2007) and the one 
with random filters (Tropp et al., 2006). However, how to 
quickly determine the sparse domains of the received 
signals in a non-cooperative case and the optimal 
solution still needs to be studied. 

A   Nyquist   folding   receiver   (NYFR)   modulates  the  
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received analog  signal  in  the  front- end of the receiver, 
and demodulates the signal in digital signal processor 
(DSP) (Fudge et al., 2008). By changing the modulation 
type and the number of zones, the whole interception 
frequency could be intercepted using single or dual ADCs 
without frequency sweeping. However, the NYFR is 
easily affected by noise when using zero crossing rising 
voltage time to control the radio frequency sample clock, 
and would lost the initial phase of the received signal. A 
synchronous NYFR (SNYFR) digitally compensates for 
these shortcomings of the NYFR (Zeng et al., 2011). 
Unfortunately, none of the NYFR or SNYFR has 
considered the existence and unique condition of 
instantaneous Nyquist zone (INZ). 

This paper takes the classical linear frequency 
modulated (LFM) signal as an example, and obtains the 
existence and unique conditions of the INZ. Moreover, an 
algorithm to the parameter estimation of a LFM signal 
under this condition is proposed. 
 
 
SNYFR 
 
Structure of SNYFR 
 
The structure of SNYFR is as shown in Figure 1. Assume 
the input analog signal has  been  preprocessed  into  I/Q  
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Figure 1. Structure of SNYFR. 

 
 
 
signals. Firstly, the input signal is filtered by a ultra 

wideband (UWB) filter ( 1LPF ) whose bandwidth is IB  to 

remove the out-of-band noise to get the complex signal 

( )x t . Secondly, ( )x t  is mixed by the UWB complex local 

oscillator signal (LOS) ( )p t  to obtain the modulated 

signal =( ) ( ) * ( )r t x t p t , where the mark ∗  stands for 

complex conjugation, then ( )r t  is filtered by the second 

complex low-pass filter ( 2LPF ) with the passband 

−[ / 2 / 2)s sf f  to get the signal ( )s t , where sf  is the 

sampling rate for digital signal processing. Finally, sample 

( )s t  at the rate sf  to obtain ( )s n . ( )p t  is generated by 

the digital analog converter (DAC) and direct digital 
synthesizer (DDS), where DDS is synthesized by the 

digital signal ( )p n . IB  could be 18 GHz or even 30 GHz. 

Then, this structure uses dual ADCs to cover the whole 
interception frequency range. 
 
 
Output of SNYFR for LFM 
 
We take the wideband LFM signal as an example, which 
is given by: 
 

π ϕ= + + +2

0 0 0( ) exp{j[2 ( / 2) ]} ( )x t A f t K t v t       (1) 

 

where A , 0f , 0K  and ϕ0  are amplitude, frequency, chirp 

rate and initial phase, respectively. ( )v t  is white 

Gaussian noise with zero mean and variance σ 2 .   

The thm  Nyquist zone covers frequency 

+[ ,( 1) )s smf m f , ∈ −[0, 1]m M , where M  is the number of 

zones. In the SNYFR, the LOS is: 
 

θ
−

=
= + +∑

1

0
( ) exp{j[2π / 2 [2π ( )]]}

M

s sm
p t f t m f t t

       
(2) 

 

where θ( )t is the instantaneous phase of the zone 1, and 

the spectrum of θ( )t  is almost symmetric about sf  (Zeng  

 
 
 
 

et al., 2011), =I sB Mf . Then, 

 

 π ϕ π θ ν ′= + − + − + +2

0 0 0( ) exp{ {2 ( 0.5 / 2) ( )[2 ( )]}} ( )s ss t A j f t K t f t m t f t t t   
                                                                               (3) 
 

where the variance of ′( )v t  is equal to σ 2 , while, the 

power spectrum density of ′( )v t  is M  times of ( )v t  

(Zeng et al., 2011). ( )m t is the INZ. 

 
 
Existence and unique condition 
 

In the SNYFR, let θ ′( )t  be the instantaneous frequency 

of the zone 1, then ∈ −( ) {0,1,..., 1}m t M , 

θ ′+ − − + ∈ −0 0 / 2 ( )[ ( )] [ / 2, / 2)s s s sf K t f m t f t f f .That is, 

 θ θ′ ′= + − + < ≤ + + =sub 0 0 0 0 up( ) ( ) / ( ( )) ( ) ( ) / ( ( )) ( )s s sm t f K t f f t m t f K t f t m t
, 

where up ( )m t  and sub ( )m t  are the upper and lower 

bounds of ( )m t , respectively. 

 
 
Theorem 1 
 
The existence and unique conditions of the INZ of the 
SNYFR determine that the frequency of LOS in one zone 
is constant. 
 

Proof: If ( )m t  does exist, then − ≥up sub( ) ( ) 1m t m t . If 

( )m t  is unique, then − ≤up sub( ) ( ) 1m t m t . Then, if ( )m t  

does exist and is unique, we have − ≡up sub( ) ( ) 1m t m t , 

and θ ′ =( ) 0t . Equation 3 is the same as the under-

sampling signal after sampling and lose the INZ 

information. To expand the interval between sub ( )m t  and 

up ( )m t , we widen the passband 2LPF  to 

− − +[ / 2 , / 2 )s sf a f b , where ≥ 0a  and ≥ 0b  are 

constants. Then, 
  

θ ′+ − − + ∈ − − +0 0 / 2 ( )[ ( )] [ / 2 , / 2 )
s s s s

f K t f m t f t f a f b ,  

 
and  
 

θ θ′ ′= + − + + < ≤ + + + =sub 0 0 0 0 up( ) [ ( )]/( ( )) ( ) ( )/( ( )) ( )s s sm t f Kt f b f t mt f K t a f t m t .  

 
Then, θ ′+ + + ≡( ) / [ ( )] 1s sa f b f t , that is θ ′ ≡ +( )t a b . Since 

a  and b  are constants, if θ ′( )t  varies along time, there 

would be no solution, that is, θ ′( )t  should be a constant. 

In conclusion, under the conditions of existence and 
uniqueness, the frequency of the LOS in one zone is 
constant. 

Let θ ′ = LOS( )t f , then = +LOSf a b . To facilitate the 

design of 2LPF , we assume  that  the  filter  is  symmetric 



 
 
 
 

about zero frequency, then = = LOS / 2a b f . The LOS 

should be:
−

=
= + +∑

1

LOS0
( ) exp{j{2π / 2 [2π ]}}

M

s sm
p t f t m f t f t , and 

 + − + + < ≤ + + +0 0 LOS LOS 0 0 LOS LOS[ ( / 2)] / ( ) ( ) ( / 2) / ( )s s sf K t f f f f m t f K t f f f , 
Then, 
 

= + + +  0 0 LOS LOS( ) ( / 2) / ( )sm t f K t f f f

    

(3) 

 

where     stands for rounding towards zero. 

In this condition, the LOS consists of harmonics and we 
define this as the dual local harmonics. 
 
 
Dual harmonics LOSs and parameter estimation 
 
If we just use a single channel, the detection of the INZ is 
a complex detection problem with unknown parameters, 
such as the initial frequency and chirp rate of the 
received signal. To simplify the following processing, we 
add one more channel to transform this to be a detection 
problem with known parameters. The signals before 

sampling the outputs of 2LPF  are: 

 

π ϕ π

π ϕ π

 = + − + − +


= + − + − +

2

1 0 0 0 1 LOS1

2

2 0 0 0 2 LOS2

( ) exp{ [2 ( 0.5 /2) 2 ( )( )]}

( ) exp{ [2 ( 0.5 /2) 2 ( )( )]}

s s

s s

s t A j f t K t f t m t f t f t

s t A j f t K t f t m t f t f t
        

(4) 

 

The signals after sampling the outputs of 2LPF  are: 

 

π ϕ

π ϕ

 = + − + −


= + − + −

2

1 0 0 0 1 LOS1

2

2 0 0 0 2 LOS2

( ) exp{ [2 ( 0.5 ( ) /2) ( ) ]}

( ) exp{ [2 ( 0.5 ( ) /2) ( ) ]}

s s s

s s s

s n A j f nT K nT n m nf nT

s n A j f nT K nT n m nf nT
    

(5)

 

 

 

where ≥LOS1 0f  and ≥LOS2 0f , and 

 

 = + + +   


= + + +   

1 0 0 LOS1 LOS1

2 0 0 LOS2 LOS2

( ) ( / 2) / ( )

( ) ( / 2) / ( )

s s

s s

m n f K nT f f f

m n f K nT f f f

       

(7)                                 

 

To eliminate the unknown parameters of the received 
signal, define 
 

 π∗= = −2

3 1 2 2 LOS2 1 LOS1( ) ( ) ( ) exp{ {2 [ ( ) ( ) ] }}ss n s n s n A j m n f m n f nT
                                                                                   (8)

 
 

3 ( )s n  has two INZs, namely 1( )m n  and 2( )m n . Let 

=LOS1 0f , then π= 2

3 2 LOS2( ) exp{ [2 ( ) ]}ss n A j m t f nT , and 

the detection of two INZs is reduced to the detection of 

one INZ. The estimation of 2( )m n  in 3 ( )s n  is a simple 

detection problem with known parameters. Meanwhile, 

the estimation of 2( )m n  is a demodulation problem of a 

frequency shift keying (FSK) signal. We need to design a 

filter bank for demodulation. Since  ∈ −2( ) {0,..., 1}m n M , 

the minimum and maximum frequencies in of Equation 8  
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are zero and − LOS2( 1)M f , respectively. The demodulation 

performance would increase with the increase of the 
frequency hop size, and then we could get the maximum 

hop size by =LOS2 sMf f . Therefore, We can define M  

filters, where the cutoff frequencies of the thm  bandpass 

filter ( )mh n  are − LOS2( 1/ 2)m f  and + LOS2( 1/ 2)m f , 

respectively. The estimation of the INZ is: 
 

( )= ⊗3
ˆ ( ) argmax ( ) ( )m

m

m n s n h n
                

(6) 

 
Since the filter is not ideal, the INZ nearby zone changes 
would be wrongly judged. Assuming the times of zone 

changes are 1 2[ , ,..., ]DI I I , we need to modify these 

changes by introducing a maximum modification factor 

L . The thd  modified change is: 

 

 ( )π′ = + ∈ − +∑ LOS22 ( )

3argmax ( ) , [ , ]dl sj m n f nT

d d d dn
l

I I s n e n I L I L

 
                                                              

(7) 
 

where ( )dlm n  is the new INZ series with time change 

+dI l , ∈ [1, ]d D , ≤l L . 

After estimating ′
dI  for all the changes, we could get the 

modified INZ ′ˆ ( )m n . When =LOS1 0f , 1( )s n  is equivalent 

to a under-sampled LFM signal. After estimating ′ˆ ( )m n , 

we have ′=2
ˆ ˆ( ) ( )m n m n , then we could demodulate 2 ( )s n  

using 2
ˆ ( )m n . Moreover, 1( )s n  and 2 ( )s n  could be 

averaged to increase 3 dB signal to noise ratio (SNR). 
The parameter estimation algorithm for LFM is detailed in 
Liu (1999) work. 
 
 
SIMULATION RESULTS 
 
Simulations have been done to verify the performances 

of the proposed structure and method; = 1GHzsf , 

= 18M , = 1A , =0 1.2GHzf , =0 1.5GHz/1.024µsK  and 

ϕ π=0 / 6 . The pulse width was 1.024 µs. We run 2000 

simulations for each condition. 
 
 
Probability of correct decision (PCD) of INZ 
 
PCD is defined as: 
 

=PCD D

A

N

N
                                                 (8) 

 

where DN  and AN  are the number of correct decision 

samples of the INZ and the total number of samples, 
respectively.
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Figure 2. PCD VS SNR. 

 
 

 

  
 
Figure 3. Parameter estimation performance: (a) initial frequency, (b) Chirp rate, (c) amplitude 
and (d) initial phase. 

 
 
 

Figure 2 shows the comparison between the original 
and modified PCD of the INZ, respectively. When the 
SNR was greater than 3 dB, the PCD of the original one 
was greater than 99%, and could not be converged to 
100% with the increase of SNR. When the SNR was 
greater than 2 and 5 dB, the PCDs of the modified INZs were 
greater than 99% and equal to 100%, respectively. In 
conclusion, the performance of the modified one was 

better than the original one. 
 
 
Parameter estimation performance 
 
After zone detection, we estimated the parameters using 
the algorithm of Liu (1999). Figure 3 shows the norm-
alized mean squared error (NMSE) of all  the  parameters 



 
 
 
 
of LFM. When the SNR was greater than 2 dB, the 
estimation performance of the initial frequency was close 
to the Cramer-Rao lower bound (CRLB) (Peleg and 
Porat, 1991), where the CRLB of two channels was about 
3 dB lower than the one of single channel. The other 
parameters were all close to the CRLBs in the testing 
SNRs. The reason why the performance of chirp rate was 
better than the one of the initial frequency was that the 
chirp rate was independent of the INZ. Moreover, the 
estimation performance of dual LOSs was better than the 
one of single LOS. 

When the signal does not belong to LFM, that is, the 
signal may be monopulse or phase shift keying, then the 
bandwidth may be less than the one of LFM, and the 
possibility of locating in multi-INZ is much less than the 
one of LFM. The dual local harmonics should also be 
useful for these kinds of signals. 
 
 
Conclusion 
 
The proposed SNYFR using dual local harmonics 
ensured the existence and uniqueness of the INZ, and 
we transformed the detection of the INZ into the 
demodulation of FSK. We used dual channels to simplify 
the detection of the INZ and improved the performance of 
single LOS. The performance was close to CRLB when 
SNR was greater than 2 dB. 

The further work is to detect the INZs in a multi-signal 
environment. Moreover, how to extrapolate the INZ in the 
wideband LOS is also interesting. 
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