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The aim of this letter is to investigate an axisymmetric squeezing flow of an incompressible fluid 
generated by two large parallel plates, including fluid inertial effects. The governing equations have 
been transformed into a nonlinear ordinary differential equation using integribility condition. Solution to 
the problem is obtained by using an optimal homotopy asymptotic method (OHAM). The results reveal 
that the new method is very effective and simple. 
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INTRODUCTION 
 
The study of squeezing flows has been published in a 
wide variety of journals spanning a century or more due 
to its practical applications in chemical engineering and 
food industry. The basic research in this field was carried 
out by Stefan (1874). Of more recent origin is the interest 
in squeezing flows spurred by problems encountered in 
lubrications and dusty fluids (Chatraei et al., 1981; Thien 
and Tanner, 1984; Debnath and Ghosh, 1988; Hamdan 
and Baron, 1992; Kompani and Venerus, 2000). Also, the 
analytical and experimental study of these flows together 
with the inertial term between the rotating cylinders and 
parallel plates has resulted in increasing interest due to 
its importance in thin film of lubricants (Debbaut, 2001; 
Wang and Watson, 1979; Denn and Marrucci, 1999; 
Hoffner et al., 2001; Lee et al., 1984). The mathematical 
studies of these flows are concerned primarily with the 
non linear partial differential equations which arise from 
the Navier-Stokes equations. These equations have no 
general solutions and only a few of number of exact 
solutions have been attained (He, 2006). To solve 
practical problems, different perturbation and analytical 
techniques have been widely used in fluid mechanics and 
engineering (Ali et al., 2010). 

Our purpose in this contribution is to study 
axisymmetric fluid flow between  two  large parallel plates 
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with slip boundary conditions, taking into account the 
inertia effects. The optimal homotopy asymptotic method 
is applied to solve the title problem (Herisanu et al., 2008; 
Idrees et al., 2010a, b; Islam et al., 2010; Marinca and 
Herisanu, 2010a,b; Marinca et al., 2008, 2009; 
Hesameddini and Latifzadeh, 2009; Shah et al., 2010). 

Navier assumed that the velocity xu , at a solid surface is 

pro-portional to the shear rate at the surface

yuu xx ∂∂= β , where β  is the slip length Navier (1823). 

If 0=β , we will get the general no-slip boundary 

condition. If β  is finite, fluid slip occurs at the wall, but its 

effect depends upon the length scale of the flow. Estelle 
and Lanos (2007), Tretheway and Meinhart (2002), Laun 
et al. (1999) and Zhu and Granick (2001) have studied 
this fact in more detail. 
 
 
BASIC EQUATION 
 
Here, we determine the basic equations which are used 
in the rest of this paper. In the absence of body forces, 
the basic equations governing the flow in vorticity form 
are given by: 
 

0r r z
u u u
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                                              (1) 
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Figure 1. A steady squeezing axisymmetric fluid flow between two large parallel 

plates. 

 
 
 

                      (2) 
 

where ( ) ( )( ), , ,0, , ,r zu u r z t u r z t=%  is the velocity 

vector, ρ is the density of the fluid, p is the pressure, 

uω = ∇×% % is the vorticity vector and µ is the dynamic 

viscosity of the fluid. 
 
We consider viscous incompressible fluid, squeezed 
between two large planar and parallel plates, separated 
by a distance 2d. The plates are moving towards each 
other with velocity U, as shown in the Figure 1. The 
surfaces of both plates are covered by special material 

with slip length (slip coefficient) β . For small values of U, 

the gap distance 2d between the plates varies slowly with 
the time t, so that it can be taken as constant and the flow 
as quasi-steady (Zhu and Granick, 2001; Papanastasiou, 
2000; Siddiqui et al., 2007; Idrees et al., 2010; Ran et al., 

2009). The velocity field u%  is given as follows. 

 

( ) ( )( ), , ,0, , ,
r z

u u r z t u r z t=%                                (3) 

 

It is easily shown that the stream function ( ),r zψ , 

defined by 
1 1

,
r z

u u
r z r z

ψ ψ∂ ∂
= − =

∂ ∂
satisfies the 

continuity equation identically. Substituting ru  and zu  

into the z- and r-components of the Navier-Stokes 
equation, and eliminating the pressure lead to the 
following equation 
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with the slip boundary conditions 
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where the differential operator 
2

E is defined by 
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Equation (4) admits a solution of the form (Stefan, 1874): 
 

( ) ( )2
,r z r F zψ = .                                                      (6) 

 
By virtue of Equation (6), the compatibility Equation (4) 
and boundary conditions (5) becomes  
 

4 3

4 3
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d F d F
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ρ
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+ =                                                 (7) 

 
subjecting to the boundary conditions 
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2
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To deal  with  the  problem,  we  introduce  dimensionless 
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parameters given by 
 

* , * ,
/ 2

F z
F z

U d d

β
γ= = = , d U

R
ρ

µ
= , 

 

and dropping ‘*’ for simplicity, the boundary value 
problem (7) becomes, 
 

4 3

4 3
2 0,

d F d F
F

dz dz

ρ

µ
+ =                                                 (9) 

 

which satisfies the boundary conditions  
 

( ) ( ) ( ) ( ) ( )0 0 0 0 1 1 1 1F , F , F , F Fγ′′ ′ ′′= = = = .  (10) 

 
 
SOLUTION BY OPTIMAL HOMOTOPY ASYMPTOTIC METHOD 
 

Here we apply the basic idea of OHAM (Idrees et al., 2010) to 
Equations (9) and 10). Defining linear and non linear operators 
respectively as: 
 

( )( )
( )4

4

,
,

z p
L z p

z

φ
φ

∂
=

∂
’                           (11) 

                       

( )( ) ( )
( )2

2

,
, ,

z p
N z p R z p

z

φ
φ φ

∂
=

∂
,                         (12) 

 

( ) 0g z = .                                                         (13)  

 
Equating the coefficients of like powers of p, we get the following 
problems of different orders. 
 
 
Zeroth order problem 
 

4

0
0

( )
F = , 

( ) ( ) ( ) ( ) ( )0 0 0 0 0
0 0 0 0 1 1 1 1F , F ,F , F Fγ′ ′ ″= = = =       (14)  

 
 

First order problem 
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1
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Second order problem 
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Now we solve the problems (14) to (16) in succession and obtain 
the series solutions with unknown constants. 

 
 
Zeroth order solution 
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Second order solution 
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Thus the optimal solution up to second order is given by: 
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Here we used the method of least squares for finding the values of

1 2
C and C . Thus for = 1   a n d   R = 1γ , we have

1 2C =-0.9453415636834306, C =0.003973197981442457  

   In view of the values of 
1 2

C and C , the simplified form of our 

solution is; 
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Figure 2. This plot represents the comparison between OHAM and numerical solutions. 

 
 
 

 
 
Figure 3. Plot shows zeroth order, first order and second order OHAM solution. 

 
 
 
RESULTS AND DISCUSSION 
 
Figure 2 shows the excellent agreement between OHAM 
and numerical. Figure 3 shows the fast convergence of 
OHAM through zeroth order, first order and second order 
OHAM solution. Figure 4 represents error analysis by 
residual curve. The solution curve is very smooth and is 
amenable for any investigation and interpretation. In 
Table 1, we compare the OHAM solution (21) to the 
numerical method solution based on approximants. 

Conclusion 
 
In this letter, the optimal homotopy asymptotic method 
(OHAM) is directly applied to derive approximate 
solutions of the title problem with slip boundary conditions 
illustrate our method. As a result: 
1. We obtain the approximate solutions of the title 
problem with good accuracy. 
2. This approach is simple in applicability, as it does not 
require discretization like other numerical and approximate
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Figure 4. Plot shows error analysis by residual curve. 

 
 
 

Table 1. Comparison of OHAM with numerical solutions. 
 

x Numerical OHAM 

0.0 0.0 0.0 

0.1 0.0721879 0.0721919 

0.2 0.146122 0.146129 

0.3 0.223535 0.223544 

0.4 0.306136 0.306146 

0.5 0.395594 0.395603 

0.6 0.493531 0.493538 

0.7 0.601502 0.601507 

0.8 0.720989 0.720993 

0.9 0.853389 0.853391 

1.0 1.0 1.0 

 
 
 

methods. 
3. Moreover, this technique is fast converging to the 
exact solution and requires less computational work. 
4. This confirms our credence that the efficiency of the 
OHAM gives much wider applicability. 
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