
 

International Journal of the Physical Sciences Vol. 6(3), pp. 495-499, 4 February, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS10.514 
ISSN 1992 - 1950 ©2011 Academic Journals 
 
 
 

Full Length Research Paper 
 

Alternative approach for production lot size problem 
with scrap and cost reduction distribution policy 

 

Fan-Yun Pai1 and Chia-Kuan Ting2* 
 

1
Department of Business Administration, National Changhua University of Education, Changhua 500, Taiwan. 

2
Department of Industrial Engineering and Management, Chaoyang University of Technology 

Wufong, Taichung 413, Taiwan. 
 

Accepted 10 January, 2011 
 

Conventional approach for solving replenishment lot size problem is by using the differential calculus 
with the need of applying the first-order and second-order differentiations to the long-run average 
production-inventory cost. A recent published paper used conventional method to determine optimal lot 
size for an integrated production-delivery system with scrap and cost lessening distribution policy. This 
paper uses an alternative algebraic approach to reexamine the aforementioned problem without 
referring to derivatives. As a result, optimal lot size and a simpler expression for the long-run average 
cost are derived, and they are identical to what were obtained by using the conventional method. 
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INTRODUCTION 
 
Taft (1918) first introduced the concept and computation 
of the most economical production lot (also known as 
economic production quantity (EPQ) model) several 
decades ago, to assist manufacturer firm in minimizing 
total production-inventory costs. EPQ model implicitly 
assumes that all items manufactured are of perfect quality. 
However, in real life production environments, due to 
many factors, generation of defective items is inevitable. 
Hence, during past decades many studies have been 
carried out to address the imperfect productions and their 
related issues (Rosenblatt and Lee, 1986; Henig and 
Gerchak, 1990; Tersine, 1994; Cheung and Hausman, 
1997; Salameh and Jaber, 2000; Chiu, 2003; Chiu and 
Chiu, 2006; Chiu et al., 2006; Inderfurth et al., 2007; Chiu 
et al., 2008; Baten and Kamil, 2009; Chiu et al., 2010a; 
Wazed et al., 2010a; Chiu et al., 2010b; Wazed  et  al., 
2010b). Continuous inventory issuing policy is another 
unpractical assumption of the classic EPQ model. In an 
integrated production-shipment system, multiple or 
periodic deliveries policy is commonly used. 

Goyal (1977) studied an integrated inventory-shipment 
model for the single supplier-single customer problem. He 
proposed a method that is typically applicable  to  those 
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inventory problems where a product is procured by a 
single customer from a single supplier. Example with 
analysis was provided to illustrate his method. Many 
studies have since been carried out to address issue of 
various aspects of supply chain optimization (Schwarz et 
al., 1985; Banerjee, 1986; Goyal and Gupta, 1989; Kohli 
and Park, 1994; Hill, 1996; Viswanathan and Piplani, 2001; 
Diponegoro and Sarker, 2006; Yao and Chiou, 2004; 
Ertogral et al., 2007; Chiu et al., 2009; Abolhasanpour et 
al., 2009; Chen et al., 2010a; Chiu et al., 2010c). Chen et 
al. (2010b) combined a cost reduction inventory 
distribution policy into a production system with random 
scrap rate with the purpose of lessening producer’s 
inventory holding cost in Chiu et al. (2009). 

They used mathematical modeling and differential 
calculus to derive the optimal replenishment lot size for an 
imperfect EPQ model under (n+1) delivery policy. 

Grubbström and Erdem (1999) recently presented an 
algebraic approach to solve the economic order quantity 
(EOQ) model with backlogging, without reference to the 
use of derivatives. For studies that used the same or 
similar method according to Chiu et al. (2007), Lin et al. 
(2008), and Chiu et al. (2010d). This paper applies the 
same alternative approach to a specific EPQ model 
examined by Chen et al. (2010b). We show that the 
optimal lot size and the long-run average cost can both be 
derived without using differential calculus. 
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Figure 1. On-hand inventory of perfect quality items in EPQ model with random scrap rate and (n+1) delivery policy (Chen et al., 2010b). 

 
 
 
METHODS 

 
An algebraic approach is adopted in this paper to reexamine Chen 
et al.’s (2010b) model, as stated earlier. Description of this 
production system is as follows. Consider during the regular 
production uptime, it is assumed that there is an x portion of 
defective items produced randomly at a rate d. All nonconforming 
items produced are considered to be scrap items and are discarded 
at the end of each production. The constant production rate P is 
assumed to be larger than the sum of demand rate λ and production 
rate of defective items d. That is, 
(P-d-λ)>0, 

 
where d=Px. 

 
Furthermore, a cost reduction (n+1) product distribution policy is 
used at the end of uptime. Under such a policy, an initial installment 
of finished items is delivered to customer for satisfying the product 
demand during the producer’s production uptime. Fixed quantity n 
installments of finished items are then shipped to customer at a fixed 
interval of time during the downtime t2. For the purpose of easing 
readability, this paper adopted the same notation and basic formulas 
as were used in Chen et al. (2010b) as follows: 

 
H = the level of on-hand inventory in units for satisfying product 
demand during manufacturer’s regular production time t1, 
H1 = maximum level of on-hand inventory in units when regular 
production ends, 
n = number of fixed quantity installments of the rest of finished batch 
to be delivered to customer during t2, 
t = the production time needed for producing enough perfect items 
for satisfying product demand during the production uptime t1, 

t1 = the production uptime for the proposed EPQ model, 
t2 = time required for delivering the remaining perfect quality finished 
products, 
tn = a fixed interval of time between each installment of products 
delivered during t2, 
T = cycle length, 
Q = production lot size to be determined for each cycle, 
I(t) = on-hand inventory of perfect quality items at time t, 
K = setup cost per production run, 
C = unit production cost, 
h = unit holding cost, 
K1 = fixed delivery cost per shipment, 
CT = delivery cost per item shipped to customers, 
TC(Q) = total production-inventory-delivery costs per cycle for the 
proposed model, 
E[TCU(Q)] = the long-run average costs per unit time for the 
proposed model. 
 

The on-hand inventory of perfect quality items of the proposed 
model is illustrated in Figure 1 (Chen et al., 2010b). Total 
production-inventory-distribution costs per cycle TC(Q) consists of 
the variable manufacturing cost, setup cost, disposal cost for scrap 
items, (n+1) fixed distribution costs and variable delivery cost, 
holding cost for perfect quality items during production uptime t1, 
holding cost for defective items during t1, and holding cost for 
finished goods during the delivery time t2 where n fixed-quantity 
installments of the finished batch are delivered at a fixed interval of 
time. 
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With further derivations, one has TC(Q) as (Chen et al., 2010b). 
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The defective rate x is assumed to be a random variable with a 
known probability density function, taking into account of the 
randomness, one can use the expected values of x in cost analysis 
and obtains E[TCU(Q)] as follows (Equation (11) in Chen et al., 
2010b). 
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Production lot sizing using an algebraic derivations 
 
Algebraic approach is employed in this section for deriving the 
optimal replenishment lot size solution. First let u0, u1, u2 and u3 
denote the following: 
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Then Equation (3) can be expressed as: 
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With further rearrangement of Equation (8), one obtains: 
 

( ) 0 1 2 3
2

( )E TCU Q Q Qu u u u−
⋅ = + + +    

             (9) 

 
or 
 

( ) ( ) ( ) ( )( ) ( ) ( )3 2 3 2 30 1 2

2 2
1 1 1

( ) 2 2E TCU Q Q Q Q Qu u u u u u u u− − −
⋅ ⋅ ⋅

 = + + + − +     
 (10) 

 
Therefore, one obtains: 
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E[TCU(Q)] is minimized, if the square term in Equation (11) equals 
zero. That is, 
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Substituting Equations (4) and (5) in Equation (13), with further 
derivations, one has the optimal lot size as: 
 

 

( )

( )

( )
( )

1

3 2

3 2

2

*
2 1

1 22 1 1
1

1

2 11 1
1 1

+ +  
=

 −      − + −    
−    

 
 −       

+ − − +               

n K K
Q

E x
E

x n PP P
h

E x
E x

n n P

λ

λλ λ

λ

 

(14) 

 
One notes that Equation (14) is identical to the optimal 
replenishment lot size Q* given in Equation (17) of Chen et al. 
(2010b), which is derived by the use of the conventional differential 
calculus method. 

It follows that if the optimal lot size Q* is used, then equation (11) 
the long-run average cost E[TCU(Q*)] will be simplified as: 
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or 
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Numerical example and verification 
 
Research results obtained from previous section are 
verified here using the same numerical example as in 
Chen et al. (2010b). Consider a manufactured item that 
can be produced at an annual rate of 60,000 units and this 
item has experienced a flat annual demand rate of 3,400 
units. There is a defective rate x, which follows a uniform 
distribution over the range (0 and 0.3) during the 
production  process.  All  nonconforming  items   are 
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considered to be scrap. Additional parameters include the 
set up cost K = $20,000; unit manufacturing cost C = $100; 
CS = $20 per scrap item; unit holding cost h = $20 per 
year; the fixed delivery cost K1 = $4,400 per shipment; 
and unit delivery cost CT = $0.1. To verify the research 
results derived by the proposed algebraic approach, the 
following two scenarios are considered respectively 
(Chen et al., 2010b): 
 
Scenario 1: Total number of deliveries (n+1) = 4 and the 
lot-size solution Q = 4,768. By applying Equation (3) one 
obtains the long-run average cost function E[TCU(4,768)] 
= $470,263. 
Scenario 2: Suppose that total number of deliveries (n+1) 
is 4. By applying Equations (14) and (16), one obtains Q* 
= 5,214 and E[TCU(5214)] = $470,032, respectively. It is 
noted that the resulting numbers from both scenarios are 
the same as that in Chen et al. (2010b). 
 
 
CONCLUSIONS 
 
Chen et al. (2010b) used the mathematical modeling and 
differential calculus to derive the optimal lot size for a 
production lot size problem with scrap and cost lessening 
distribution policy. This paper reexamines their model by 
using an alternative algebraic approach in lieu of their 
differential calculus. As a result, the optimal replenishment 
lot size Q* as well as the long-run average 
production-inventory- delivery cost E[TCU(Q*)] can be 
derived without derivatives, respectively. The proposed 
alternative method is a straightforward algebraic approach; 
it allows those students or practitioners who lack for 
sufficient knowledge of calculus to learn or deal with such 
a specific EPQ model with ease. 
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