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The work analyzes the compatibility between the classical freedom, the local relativistic causality and 
the non-local behavior of quantum mechanics in the frame of the stochastic approach of the quantum 
hydrodynamic analogy (SQHA). The work describes the role of the quantum potential in generating the 
quantum non-local dynamics in a fluctuating environment. The analysis shows that it is possible to 
maintain the concept of classical freedom between far away weakly bounded systems (moderate non-
locality) as well as to make compatible the uncertainty principle with the relativistic postulate of 
invariance of light speed. The work shows that the paradox of instantaneous quantum non local 
behavior at infinite distances of the standard formalism is an artifact due to the non-relativistic non-
stochastic ambit of such theory where the light speed is infinite and the non-local interaction owns an 
infinite range of action. The work envisages that the SQHA can possibly lead to a fully theoretically self-
standing quantum mechanics where the wave function collapse, during a measurement process, can be 
described by the theory itself without empirical postulates. Under this light the paper discusses the 
need of searching for (both local and non-local) hidden variables quantum mechanics as well as the 
need of superluminal communications in quantum experiments. The analysis shows that all these 
hypotheses are attempts of interpreting the outputs of quantum measurements that cannot be fully 
explained by the semi-empirical formalism of quantum mechanics, based on the statistical postulates of 
the measuring process as well as the existence of a classical observer. A two photon experiment is 
discussed to the light of the SQHA approach. 
 
Key words: Quantum non-locality, superluminal transmission of quantum information, classical freedom, local 
relativistic causality,  Einstein, Podolsky, and Rosen (EPR) paradox, macroscopic quantum decoherence, Bell’s 
inequalities, quantum hydrodynamic analogy. 

 
 
INTRODUCTION 
 
The conflict between the quantum non-locality and the 
local character of the classical macroscopic experience is 
one of the most intriguing problems of the modern 
physics (Schrödinger, 1935; Einstein et al., 1935; Bell, 
1964; Greenberger et al., 1990).  

This fact has lead to many logical paradoxes that contrast 
with our sense of reality (Schrödinger, 1935; Einstein et 
al., 1935; Bell, 1964). The most known quantitative 
tentative to investigate the problem is given by Bell 
(1964) in response to the so called EPR paradox (Einstein 
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et al., 1935) a critical analysis of the quantum non-locality 
respect to the notion of macroscopic classical freedom 
and local relativistic causality.  

The central point of the problem is the leaking of the 
theoretical connection between the quantum mechanics 
and the classical one that would explain how the laws of 
physics pass from the quantum behavior to the classical 
one. The disconnection between the two theories leaves 
open the question about the hierarchy between them. 
The quantum mechanics, on the base of its semi-
empirical statistical approach, needs the classical 
mechanics (that is, the classical observer) to be defined, 
while the quantum one seems to be the basic one from 
which the classical mechanics can stem out in the 

macroscopic limit where   tends to zero (Bialyniki-Birula 
et al., 1992).  

One current of thought is represented by the 
“deterministic” approach to quantum mechanics that 
analyzes how the quantum equations are the 
generalization of the classical one (Bialyniki-Birula et al., 
1992; Bohm, 1952; Madelung, 1926; Jánossy, 1962; 
Jánossy, 1962; Wyatt, 2005; Nelson, 1967, 1985; Guerra 
and Ruggero, 1973; Parisi and Wu, 1981) where the non-
locality is introduced in various ways, the Madelung 
quantum potential (Bialyniki-Birula et al., 1992; 
Madelung, 1926; Jánossy, 1962), the Nelson’s osmotic 
potential, the Bohm-Hylei quantum potential or the Paris 
and Wu fifth-time parameter.  

A great help in explaining the origin of the non-locality 
of quantum mechanics comes from the QHA equations 
(Bialyniki-Birula et al., 1992; Madelung, 1926; Jánossy, 
1962) that shows how the non-local restrictions come in 
the playing from the quantization of vortexes (Bialyniki-
Birula et al., 1992) and by the elastic-like energy arising 
by the quantum pseudo-potential. On the contrary, the 
Schrödinger equation is a differential equation where the 
non-local character of evolution is determined by the 
initial and boundary conditions that must be defined for 
describing a physical problem and that are apart from the 
equation.  

In the case of charged particles, the non-local 
properties of the Schrödinger equation come also from 
the presence of the electromagnetic (EM) potentials that 
depend by the intensities of EM fields in a non-local way 
(e.g., Aharonov –Bohm effect) (Wyatt, 2005). In the 
corresponding hydrodynamic equations (Bialyniki-Birula 
et al., 1992) the EM potentials do not appear but only in 
local way through the strength of the EM fields. The 
mathematically more clear origin of the quantum 
restrictions in the QHA make it suitable for the 
achievement   of    the    connection   between    quantum 

 
 
 
 
concepts (probabilities) and classical ones (e.g., 
trajectories) (Wyatt, 2005) helping in overcoming the 
contrast between the quantum non-local behavior and 
our classical sense of reality. 

The deterministic approach of the QHA and similar 
theories gains interest in the physics community due to 
the fact that it helps in explaining quantum phenomena 
that cannot be easily described by the usual formalism. 
They are multiple tunneling (Jona et al., 1981), critical 
phenomena at zero temperature (Ruggiero and Zannetti, 
1981), mesoscopic physics (Ruggiero and Zannetti, 
1983a, b; Chiarelli, 2013a), numerical solution of the 
time-dependent Schrödinger equation (Weiner and 
Askar, 1971; Weiner and Forman, 1974; Terlecki et al., 
1982), quantum dispersive phenomena in 
semiconductors (Gardner, 1994), quantum field 
theoretical regularization procedure (Breit et al., 1984) 
and the quantization of Gauge fields, without gauge fixing 
and without ensuing the Faddeev-Popov ghost 
(Zwanziger, 1984).  

On the theoretical point of view, one of the most 
promising aspect of this model is helping in investigating 
the quantum mechanical problems using efficient 
mathematical technique such as the stochastic calculus, 
the numerical approach and the supersymmetry.  

A more recent and sophisticated approach is given by 
t’Hooft (1988, 1996, 1999). He proposes the obtaining of 
the quantum mechanics through a process of loss of 
information by using outputs coming from the black-hole 
thermodynamics and by the so called holographic 
principle (Susskind et al., 1993; Bousso, 2002). 

A parallel current of thought, investigates the 
possibility of obtaining the classical state through the 
loss of quantum coherence in classically chaotic 
systems due to the presence of stochastic fluctuations 
(Cerruti et al., 2000; Calzetta and Hu, 1995; Wang et al., 
2008; Lombardo and Villar, 2005; Mariano et al., 2001). 
In this case, most of the results are obtained by 
numerical and semi-empirical approaches, leaking of 
global theoretical view. 

The present paper investigates the non-local property 
of quantum mechanics and its decoherence as a 
consequence of fluctuations by using the QHA (Madelung, 
1926; Jánossy, 1962; Wyatt, 2005) implemented with the 
stochastic calculus. This strategy is supported by the 
advantage of the QHA in managing the non-local 
quantum dynamics in system larger than a single atom 
when fluctuations becomes important (Bousquet et al., 
2001; Morato and Ugolini, 2011; Chiarelli, 2013b) and by 
its completeness respect to the Bohmian mechanics 
(Chiarelli, 2012; Bohm and Vigier, 1954).  
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Stochastic generalization of the quantum 
hydrodynamic analogy 
 
The QHA-equations are based on the fact that the 
Schrödinger equation, applied to a wave function 

]S
i

[exp|| (q,t)(q,t)(q,t)


  , is equivalent to the motion 

of a particle density (q,t)(q,t) || 2n   with velocity 
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S
q

)t,q(
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
 (Bialyniki-Birula et al., 1992). In presence 

of stochastic noise )T,t,q( , that for the sufficiently 

general case, to be of practical interest, can be assumed 
Gaussian with null correlation time, the stochastic partial 

differential conservation equation for (q,t)n  reads 
(Chiarelli, 2013b): 
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where T is the noise amplitude parameter (e.g., the 
temperature of an ideal gas thermostat put in equilibrium 

with the system (Chiarelli, 2013b) and )(G   is the 

shape of the spatial correlation function of  .  
The noise spatial correlation function (7), is a direct 

consequence of the derivatives present into the quantum 
potential that give rise to an elastic-like contribution to the 
system energy that reads (Weiner, 1983): 
  










  dq)
m

(dqVH //
)t,q()t,q()t,q(qu)t,q(qu

2121 n
2

n n 
2   (8) 

 

where a large “curvature” of  t)(q,n   leads  to  high  quantum  
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potential energy. This can be easily checked by calculating 

the quantum potential of the wave function qcos

 2

  

that reads: 
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Showing that the energy increases as the inverse 

squared of the distance   between two adjacent peaks 
(that is, the wave length). In the stochastic case, given 

Gaussian fluctuations with correlation distance  , (9) 
represents the energy of the frequency mode associated 
to the closest independent fluctuations. 

Therefore, independent fluctuations of particle density (PD) 

very close each other (that is, 0 ), generating very high 

curvature on the density t)(q,n , can lead to a whatever large 
quantum potential energy even in the case of vanishing 

fluctuations amplitude (that is, 0T ).  
In this case, fluctuations with infinitesimal amplitude (that is, 

0T ) and diverging energy content, can lead to a finite 
quantum potential energy contribution even in the limit of T=0 
forbidding the convergence of equations (1-7) to the 
deterministic limit (Bialyniki-Birula et al., 1992) (that is, the 
standard quantum mechanics).  

Therefore, in order to eliminating these unphysical 
solutions, the additional conditions (7) come into the set of the 
equations leading to physically coherent stochastic 
generalization of quantum mechanics (Chiarelli, 2013b).  

If we require that quH (following the criterion that 

higher is the energy lower is the probability to reach the 
corresponding state (that is, state with infinite energy have 
zero probability to realize itself) it follows that independent 

fluctuations of the density t)(q,n  on shorter and shorter 

distance are progressively suppressed (that is, have lower 
and lower probability of happening). This physical effect due 
to the quantum potential (that confers to the particle density 
function the elastic behavior like a membrane, very rigid 
against short range curvature) imposes a finite correlation 
length to the possible physical fluctuations.  

In the small noise limit (Chiarelli, 2013b) the suppression 
of PD fluctuations on very short distance, due to the finite 
energy requirement, brings to a restriction on the correlation 

length of the noise itself c  in (7) (Chiarelli, 2013b) that 
reads: 
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leading to explicit form of the variance (2) (Chiarelli, 
2013b). 
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Where   is a constant with the dimension of a migration 
coefficient.  
Furthermore, in the case of very small noise amplitude, 
due to the constraints (11), the action (6), can be re-cast 
in the form (Chiarelli, 2013b): 
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Where S  is a vanishing small fluctuating quantity 
(Chiarelli, 2013b). 
 
 
Non-local property of quantum potential in presence 
of noise 
 
The quantized action depends by the values of the 
quantum potential related to the corresponding 
eigenstates (that is, stationary states). On the other hand, 
the eigen values are determined by the quantum potential 
that has to neutralize the force deriving by the 
Hamiltonian potential (Appendix A). Since this condition 
must happen in all points of the space the dynamics of a 
generic quantum state is clearly non-local.  

If we consider a bi-dimensional space, the quantum 
potential makes the particle density function acting like an 
elastic membrane that becomes quite rigid against ripples 
with very short wave length.  

Given that the force of the quantum potential in a point 
depends by the state of the system around it, it 
introduces the non-local character into the motion 
equations. For this reason, the quantum non-local 
properties can be very well identified and studied by 
means of the analytical mathematical investigations of 
the property of the quantum potential in Equation (5). 

In order to analytically detail what happens in the 
macroscopic case, mathematically speaking, we observe 
that the quantum force (equal to minus the gradient of the 
quantum potential) cannot be taken out by the 
deterministic limit of Equation (1) as intuitively proposed 
by many authors (Bialyniki-Birula et al., 1992; Weiner, 
1983) because this operation will wipe out the quantum 
stationary states (that is, quantum eigenstates) deeply 
changing the structure of such equation.  

The presence of the QP is needed for the realization of 
the quantum eigenstates that happen when the force of 
the QP  exactly  balances  the  Hamiltonian  one.  On  the  

 
 
 
 
contrary, in the stochastic case, when we deal with large-
scale systems with physical length cL  submitted to 
fluctuations, in weakly interacting systems we can have a 
vanishing small quantum force at large distances 
(Appendix B) (Chiarelli, 2013a, b) that, becoming much 
smaller than fluctuations, can be correctly neglected in 
the motion equations. 

It must be underlined that not all types of interactions 
lead to a vanishing small quantum force at large distance 
(a straightforward example is given by linear systems 
where the quantum potential owns a quadratic form 
(Appendix B, sections B.1-B.2) (Chiarelli, 2013a, b, c, d).  

Nevertheless, there exists a large number of non-linear 
long-range weak potentials (e.g., Lennard Jones types) 
where the quantum potential tends to zero (Appendix B) 
at infinity and can be neglected (Chiarelli, 2013c). In this 
case a rarefied gas of such particles having the mean 
particle distance much larger that the quantum potential 
range of interaction (Chiarelli, 2013a, b) behaves as a 
classical phase.  

Following we analyze the large scale form of the SPDE 
(1) for asymptotically vanishing quantum potential with 

finite range of interaction q  (24, B.5).  
In order to investigate this point, let’s consider a system 

whose Hamiltonian which reads: 
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in this case the QHA equations (Bialyniki-Birula et al., 
1992;) (that is, the deterministic limit of (17)) can be 
derived by the following phase-space equation: 
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in the quantum mechanics limit and the correspondence 
rule: 
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between the quantum hydrodynamic model and the 
Schrödinger equation (Bialyniki-Birula et al., 1992; 
Weiner, 1983).  
When a spatially distributed random noise is present, 
Equation (17) has the corresponding phase space SPDE 
that reads  
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whose zero noise limit is the deterministic PDE (14). Near 
the deterministic limit, in the case of Gaussian noise (2), 
it is possible to re-cast (20) as: 
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Thanks to conditions (7, 10) (Chiarelli, 2013b), closer 
and closer we get to the deterministic limit (that is, 


L
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, whereL  is the physical length of the system) 

, smaller and smaller is the amplitude of the random term 
on the right side of (21):  
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When 
L

c the standard quantum mechanics is 

achieved and the quantum potential cannot be 
disregarded from the hydrodynamic quantum motion 
equations.  
 
 
Large-scale classical behavior in non-linear 
asymptotically weakly-bonded systems 
 

On  the  contrary,  when  Lc ,  in  weakly  bounded  
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system when the force steaming from the quantum 
potential at large distance tends to zero it is possible to 
coherently define a measure of the quantum potential 

range of interaction q  that reads (Chiarelli, 2013b): 
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When  kq  the quantum potential becomes 

much smaller than its fluctuations at large distance ad it 
can correctly be disregarded by the equation of motion. 
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For sake of completeness, we observe that close to the 
deterministic limit (that is, to the quantum mechanics) 

when cL  the quantum potential cannot be 
disregarded even if it is vanishing small, therefore the 

quantum potential range of interaction q  is physically 
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quantum potential range of interaction must be retained 

equal to c . 

Introducing (25) into equation (21), for cq  L , 

it follows that: 
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equal to the proton mass cT  can be as low as 3°K) in 

weakly bounded with system cq   ( Chiarelli, 2013a) 
the stochastic phase space PDE (26) reads: 
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where )t,q(X is a stochastic (sufficiently small quantity) 
giving rise to classically fluctuating dynamics that do not 
own eigenstates.  

Physically speaking, the central point in weakly 
quantum entangled systems, whose characteristic length 
L  is much bigger than the quantum potential range of 

interaction q , is that the stochastic sequence of 
fluctuations of the quantum potential does not allow the 
coherent reconstruction of the superposition of state 
since they are much bigger than the quantum potential 
itself. In this case (especially in classically chaotic 
systems) the effect of the quantum potential with 
fluctuations on the dynamics of the system is not equal to 
the effect of its average (even in the unlikely case of 
fluctuations have a null time mean). 

If the quantum potential can be disregarded in the large 
scale description, the action (12) reads: 
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and hence, the momentum of the solutions given by the 
-function in Equation (18) (that is,   )SSp( cl    
approaches the classical value (plus a fluctuation) and 
reads: 
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Even if the condition qqc    is usually satisfied 
for macroscopic objects constituted by Lennard-Jones 
interacting particles, there also exists (at laboratory 
condition) the possibility to have qq  and, hence, to 
detect quantum phenomena.  

The most direct and immediate example is given by 
observables depending by molecular properties of solid 
crystals that, due to the linearity of the particles 
interaction, can own a very large quantum potential range 
of action q (that may result of order of ten times of the 
atomic distances (Chiarelli, 2013a).  

Another possibility is to refrigerate a fluid below its 
critical density (if it does not undergo solidification) in 
order to obtain that the mean molecular distance 
becomes smaller than p or/and c  (Chiarelli, 2013b).  

Even if the linear systems are the most studied and 
known ones, those characterized by non-linear weak 
interactions, to which equation (28) can apply, are more 
wide-spread in nature.  

For instance, equation (28) can apply to the case of a 
rarefied gas phase of Lennard-Jones potential interacting 

particles where the mean inter-particle distance d  is 
much bigger than q  and c  (for instance for the helium 

at room temperature it results cmx.qc
81060    

and cmxd 7106  ). In this case, the quantum 
superposition of states of molecules (or group of them) 
does not exist so that the macroscopic gas system 
behaves classically. 

A deeper analysis (Chiarelli, 2013a), shows that the 
classical behavior of molecules of a real gas is 
maintained down to the density of liquids. On the 
contrary, due to the linearity of intermolecular forces in 
solid crystals, q  becomes bigger than the mean inter-

particle distance (Chiarelli, 2013a) and the quantum 
behavior of groups of atoms is maintained. Nevertheless, 
since the linear interaction of solids ends over a certain 
distance, the quantum behavior survives just in 
phenomena depending by the molecular scale (e.g., 
Bragg’s diffraction). 

The quantum macroscopic state of a body made of 
weakly interacting particles like ordinary molecules does 
not have any physical existence in a noisy environment. 
 
 
COMPATIBILITY BETWEEN THE LOCAL 
RELATIVISTIC CAUSALITY AND THE (NON-LOCAL) 
QUANTUM UNCERTAINTY RELATIONS IN THE 
FRAME OF THE SQHA 
 
If in  the  classical  macroscopic  reality  we  try  to  detect  



 

 
 
 
 
microscopic variables, below a certain point the wave-
particle dual properties of bodies emerge thanks to the 
quantum potential effect. In the classical approach the 
particle concept owns the characteristic that position and 
velocity are perceived as independent. On the other 
hand, on microscopic scale the wave property of the 
matter (e.g., the impossibility to interact just with a part of 
the system without entirely perturbing it) leads to the 
coupling between conjugated variables such as position 
and velocity (Oppenheim and Wehner, 2007). If we 
increase of spatial confinement of the wave function, an 
increase of the quantum potential energy (due to the 

overall increase of derivatives of n1/2 ) is produced. This 
fact leads to possible higher particle momentum values in 
the following measurements. 

The scale-dependence of the quantum potential 
interaction leads the classical perception of the reality 

until the resolution size q  is at least larger than the 

quantum coherence length c .  
Moreover, we observe that higher is the amplitude of 

the noise T , smaller is the length c and, hence, higher 
is the attainable degree of spatial precision within the 
classical scale. On the other hand, higher is the 
amplitude of noise, higher are the fluctuations of 
observables such as the velocity and/or energy. In the 
frame of the SQHA, it is straightforward to show that 
these mutual opposite effects on conjugated variables 
are the basis of the Heisenberg principle of uncertainty. 
In fact, by using the quantum stochastic hydrodynamic 
model, it is possible to derive the relation between the 

time interval t  of a measurement and the related 
variance of the energy on a particle of mass m. 

If on distances smaller than c any system behave in 
quantum mode (as a wave) so that any its sub-parts 
cannot be perturbed without disturbing all the entire 
system, it follows that the independence between the 
measuring apparatus and the measured system 
(classical freedom) requires that they must be far apart, 

at least, more than
2
c

and hence for the finite speed of 

propagation of interactions and information (local 
relativistic causality (LRC)) the measure process must 

last longer than the time 
c
c  . 

Moreover, given that the noise )T,t,q(  in (13) in the 

small noise limit (that is, T  sufficiently small) leads to 
Gaussian energy fluctuations (Chiarelli, 2013b), it follows 
that the mean value of the energy fluctuation for each 

degree of freedom of a particle is kTE )T( 2

1
  

(Ozawa, 2003)  and  thence,  in  the   non-relativistic  limit  
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( kTmc 2 ) for a particle of mass m, the energy 

variance E  reads: 
 

212212

212222212222

22

2

//
)T(

/
)T(

/
)T(

)kTmc()Emc(

))mc(E)mc(())mc()Emc((E





         

  (31) 

 
from which it follows that (Chiarelli, 2013b; Ozawa, 2003) 
 


c

)kTmc(
EtE c

/

2

2 212 
 .                  (32) 

 

It is worth noting that the product E  is constant 
since the growing of the energy variance with the square 

root of the temperature 
2122 /)kTmc(E  is exactly 

compensated by the decrease of the minimum time of 
measurement: 
 

2122 /)kTmc(


                                     (33) 

 
furnishing an elegant physical explanation why the 
Heisenberg relations exist in term of a physical constant.  

The same result is achieved if we derive the uncertainty 
relation between the position and the momentum of a 
particle of mass m.  

If we measure the spatial position of a particle with a 

precision of cL 2  so that we do not perturb its 
quantum wave function (that, due to environmental 
fluctuations, is spontaneously localized on a spatial 

domain of order of c ) the variance p of the modulus 

of its relativistic momentum mc)pp( / 21



 due to 

the vacuum fluctuations reads: 
 

2121

21222122
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)mkT()Em(

))mc(Em)mc(())mc()
c

E
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




         

 (34) 

 
leading to the uncertainty relationship 
 

 212
22

/cc )mkT(ppL
           (35) 

 
If we impose measuring the spatial position with a 

precision cL 2 , we have to localize the quantum 
state of the particle more than what is spontaneously is.  

Since quantum potential realizes the particle-wave 
equivalence, the wave-function localization and 
momentum variance are submitted to the properties of 
the Fourier transform relationships (holding for any wave 
system): The uncertainty relations remain satisfied 
anyway we try  to  localize  the  wave  function  (either  by  
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environmental fluctuations or by physical means (that is, 
external potentials).  
 
 
Connections between the uncertainty relations and 
local relativistic causality 
 
In the frame of the SQHA, particles are necessarily 
correlated each other until they are separated by a 

distance smaller than c , the distance over which the 
wave function is governed by quantum law (they still may 
present quantum correlations (stochastic influenced) until 

they are separated by a distance up to q , but in this 

case we do not have quantum entanglement as 
described by the standard (deterministic) quantum 
mechanics).  

If two particles are quantum entangled, when the 
measurement on one of the two is performed (so that the 
global wave-function collapses to an eigenstate) in the 
context of the SQHA model, we are in presence of a 
kinetic (irreversible) evolution toward a stationary state 
(eigenstate) (SQE) with its characteristic (not null) time 

c .  
If we assume the Copenhagen interpretation of 

quantum mechanics, so that the measurement process 
ends when the wave function is collapsed to the 

eigenstate, the “quantum relaxation” interval of time c  
represents the minimum time of measurement. In this 
case, the compatibility of the SQHA (that is, of the 
quantum mechanics) with the local relativistic causality 

implies that it must be
c
c

c


   (or at least 
c
c

c 2


   if 

the wave function decoherence starts from the center 
toward the border).  

From experimental point of view, in order to 
demonstrate that the local relativistic causality (LRC) 
breaks down in quantum processes, it needs to 

demonstrated that the decoherence time c  is so short 
that the wave function collapse to the eigenstate is faster 

than the light to travel the radius 
2
c over which the 

quantum entangled state extends itself and hence, it is 

sufficient to demonstrate that 
c
c

c 2


   . 

Given that, by introducing (10) in (31) in presence of 
environmental energy fluctuations it holds: 
 

E

c
c 


2                (36) 

 

and hence  cE , it follows that, in the SQHA model  

 
 
 
 
(that is, low speed limit), the violation of the Heisenberg 
uncertainty principle necessarily involves the LRC 
breaking and (for microscopic systems with characteristic 

length cL ) vice versa. 
The same conclusion is achieved if, by using external 

means, we confine the wave function in a region of length 

cL  . 
 
 
RELATIVISTIC APPROACH 
 
The SQHA approach is the classical limit of the 
corresponding relativistic model. In such low velocity limit 
model, the light speed goes to infinity and hence the 
compatibility with the RLC can be checked just showing 
that the uncertainty relations are compatible with the 
requirement of finite speed of interactions.  

Even if the stochastic generalization of the quantum 
relativistic hydrodynamic approach is still not available, 
from the hydrodynamic representation of the Dirac 
equation (Chiarelli, 2014a) we can inspect the Lorentz 
invariance of the relativistic quantum potential that can 
enforce the hypothesis of compatibility between the LRC 
and the quantum non-locality. The relativistic quantum 
potential allows verifying if the non-local interactions that 
it introduces into the quantum equation of motion 
propagate themselves compatibly with the postulate of 
the relativity about the invariance of light speed as the 
fastest way to which signals and interactions can be 
transmitted. 

Since the invariance of light speed is the generating 
property of the Lorentz transformations, the co-variant 
form (that is, invariant 4-scalar product) of quantum 
potential that reads (Chiarelli, 2014b): 
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where i  are the components of the bispinor 4-
dimensional wave function  
 

 4321  ,,, , 
 

and where 
 are the 4x4  matrices  derived  by  the  2x2  



 

 
 
 
 
Pauli matrices (Bialyniki-Birula et al., 1992), united to the 
property of the 4-dimensional wave function  that 
changes accordingly with the Lorentz transformation, 
allows affirming that the quantum non-local behavior 
(deriving by the quantum potential) is compatible with 
such a postulate of the relativity. 

In fact, whatever inertial system we choose moving with 
velocity v < c, the quantum potential expression (37) 
describes the quantum dynamics as realize themselves 
in such new reference system (where the light speed is 
always c and hence not attainable). This fact forbids that 
in any inertial system the time difference between the 
initial conditions (e.g., starting of measurement (that is, 
cause)) and the final one (wave collapse (that is, effect)) 
is null (or negative) so that the quantum-potential action 
on the whole wave function cannot realize itself in a null 
time. 

This result enforces the hypothesis that any 
measurable quantum non-local process (even involving a 
large distance) is compatible with the postulate of 
invariance of light speed as the fastest way to which 
signals and interactions can be transmitted. 

The paradox of instantaneous non local quantum action 
at infinite distances is, hence, an artifact that appears in 
the non-relativistic non-stochastic theories of quantum 
mechanics due to the fact that the light speed tends to 
infinity and the non-local interaction own an infinite range 
of action.  
 
 
COMMENTS ABOUT THE SQHA MODEL 
 
In the frame of the stochastic QHA the achievement of 
the classical characteristics of physical reality (Einstein et 
al., 1935) such as the classical freedom and local 
relativistic causality is realized as a large-scale effect in 
systems of asymptotically weakly bounded particles.  

As far as the resolution limit of the classical description 
is much larger than the length over which the wave 
(quantum) properties of the matter can be detected, the 
classical concepts are not contradicted. When we deal 
with observables of microscopic systems, the quantum 
properties arise since the quantum potential (that is, the 
wave property of the matter) comes into effect.  

The SQHA shows that the classical freedom principle 
(independence between systems) and the local 
relativistic causality are compatible with the quantum 
mechanics in the frame of a unique theory.  

The possibility of classical freedom comes from the fact 
that, in fluctuating environment asymptotically weakly 
bounded systems can disentangle themselves at large 

distance (beyond the quantum coherence lengths c and 

quantum potential range of action q ).  

It also noteworthy that in the frame of the SQHA model, 
linear  system  (or  more  tightly  bounded  ones)  do   not  
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disentangle themselves even at large distance forbidding 
the realization of the large-scale classical behavior (so 
that the classical universe as we know is a direct 
consequence of the electrical and gravitational forces that 
goes to zero at infinity). 

The recovering of the quantum mechanics as the 
deterministic limit of a stochastic theory (that is, the 
SQHA) fulfills the philosophical need of determinism 
(Schrödinger, 1935; Einstein et al., 1935; Bell, 1964). In 
the SQHA model the quantum mechanics represent the 
deterministic limit of a stochastic theory. In this picture, 
the deterministic quantum distribution functions can be 
thought as a sort of “mechanical-like” distributions (not 
statistical) whose evolution is determined and well 
defined once the initial distributions and boundary 
conditions are defined.  

The statistical variability and hence the indeterminism 
of the system evolution is introduced by the 
environmental fluctuations.  

In the context of the SQHA model, the large-scale 
classical freedom allows the realization of statistical 
measurements so that, in principle, the description of the 
measurement process (as the interaction with a classical 
observer system) can find its description inside the theory 
itself. 

In the SQHA, the wave-function collapse to an 
eigenstate (due to the interaction with a large scale 
apparatus in a classical fluctuating environment) can 
descend by the irreversible dynamics of the stochastic 
motion equations as a kinetic process to a stationary 
state (eigenstate).  

This fact leads to a quantum theory with the conceptual 
property of a complete theory (that does not need 
additional postulates) able to describe the quantum 
evolution even during irreversible quantum processes 
such as the measurements.  

In the frame of the SQHA model, a non-local based 
theory with the property of large scale local freedom 
compatible with the relativistic postulate of maximum 
speed of light and information transmission (local 
relativistic causality) has no necessity to postulate 
superluminal transmission of information to explain the 
result of quantum experiments obtained at large distance.  

To this end, in the final part of this work we want to 
examine the logical consequences of assuming the 
existence of superluminal transmission of information in 
quantum experiments. 
 
 
ARE SUPERLUMINAL INFORMATION EXCHANGED 
DURING QUANTUM EXPERIMENTS? 
 
The attempts of solving the problem of quantum 
correlations between experiments at large distance (that 
dates back to the foundation of the quantum physics) 
have followed various ways: The local treatment of 
quantum  mechanics  possibly  with  the  help  of   hidden  



 

298          Int. J. Phys. Sci. 
 
 
 
(local) variables. This possibility has been shown to be 
not realizable by the violation of Bell’s inequalities (Bell, 
1964).  

The establishing of non-local theory compatible with the 
classical physics: The completion of quantum mechanics 
by using non-local hidden variables. This hypothesis 
argues that the fully quantum evolution is determined by 
information that cannot be obtained by the observer (von 
Neumann, 1932/1955). The Bohmian mechanics 
furnishes an example of this completion where the hidden 
variables are non local (Maudlin, 1994). 

The assumption that there is a sort of quantum kinetic 
synchronization among quantum entangled particles that 
is maintained along irreversible processes (such as the 
measurement ones) happening in presence of 
fluctuations and involving large-scale classical objects. 
This point of view basically hypothesizes that exists a 
more general quantum theory able to comprehend the 
classical, relativistic and irreversible phenomena. 
Superluminal information are exchanged during quantum 
measurements.  

The cases 2A and 2B even similar, differ each other: 
the first one considers that the quantum mechanics is a 
complete theory for describing the system evolution but it 
has a leaking of information about additional (non-local) 
variables that the classical observer cannot achieve; the 
second one is based upon the assumption that the 
theoretical quantum equations themselves do not allow 
the complete description of the evolution. 

The latter hypothesis can be justified by fact that the 
standard quantum mechanics is a semi-empirical theory 
(needing additional empirical postulates) that is not able 
to describe the quantum irreversible evolution of the 
wave function collapse to an eigenstate during a measure.  

On the other hand, if the decay to an eigenstate cannot 
be determined by the quantum motion equation, but only 
in a probabilistic way, generally speaking, this means that 
we do not have all the complete “machinery” to describe 
the quantum evolution of a system. 

About the existence of superluminal communications in 
quantum experiments, Clauser Horne, Shimony and Holt 
(CHSH) (Clauser et al., 1969) have shown that in 
quantum mechanics experiments the Tirelson’s limit of 

the correlation coefficient SCHSH = 22 cannot be 
overcame, while Popescu and Rohrlich (Popescu and 
Rohrlich, 1994) showed that superluminal communication 
is not necessary for correlated experiments with SCHSH 

< 4 and hence, in principle, they may be not needed in 
quantum mechanics.  

In order to analyze the problem under the light of the 
SQHA model, we discuss below the output of a two 
entangled photons experiment traveling in opposite 
direction in the state: 
 

 V,V|eH,H|| i
2

1            (40) 

 
 
 
 
that cross polarizers oriented in the same direction 
following the scheme in Figure 1. 

The assumption that the state of the photon is defined 
only after the measurement has taken place leads to 
accept that the photon superposition state interacts with 
the polarizer, but it is still not fully collapsed neither to 

H|  nor to V| until it is adsorbed by the polarizer or by 
the photon counter.  

Given that in the SQHA approach the wave function 
collapse is not instantaneous (but takes a time interval 

that we name 1t and 2t  for the two photons, 

respectively), the measurement time m  starts at the 
arrival of the first entangled photon at its polarizer-photon 

counter system (at the time 1t ) and ends when the other 
entangled one is detected at the second polarizer-photon 

counter system (at the time mtt  12 ) (the 
contemporary detection of the photons at the two photon-
counters systems when placed at the same distance from 
the source for instance, does not imply that the duration 
of the measurement process is null). 

The better way to perform the experiment is to increase 
as much as possible the distance between the two 
polarizer-photon counter systems L . The best possibility 
is to have such a distance that spans over a cosmological 
length. To comply with this condition, we can think to 
have the source on the Earth, one polarizer-photon 
counter system on the Moon and the other on Mars. We 
can also suppose that the Moon, the Earth and the Mars 
are aligned each others. In this case , it follows that the 
distance between the two polarizer-photon counter 

systems ma-emo-e DDL   and that 
c

t mo-eD1 , 

mc
t  mo-eD
2 , where mx, 810843mo-eD  and 

ma-eD are the Earth-Moon and the Earth-Mars distances 
respectively.  

If we assume that the quantum potential (QP) 
propagates itself at the speed of light for bringing the 
information about the first photon detection to the second 
one, it follows that the measurement time lasts longer 
than 

c
ttm

L
 21 . 

Thence, the time delay t  between the arrival of the 
second photon to mars and its detection must result: 
 

212 2 tt
cccc

tt m  mo-ema-emo-ema-e DDDD
   (41) 

 

Thence if 212 tt
c

t  mo-eD or better, 

s.
c

t 5522  mo-eD  (and, hence, 
cm
L

 ) the photon  



 

 
 
 
 
wave function collapse on mars has happened before the 
arrival of the quantum potential signal coming from the 
first photon detection on the Moon. In this case there is 
no possibility of transferring quantum information 
between the two photons without violating the RLC. 
Therefore two alternative possibilities remain:  
 
1. Superluminal transmission of information during the 
experiment, and  
2. Intrinsic dynamical synchronization fully describeable 
via a complete relativistic quantum stochastic theory. 
 
The two possibilities exclude themselves each other: if 
we own the complete quantum model we would be able 
to describe any physical event without additional 
hypotheses. On the other hand if we do not have it, we 
need a surrogate hypothesis, to fill the gap that in this 
case consists in hypothesizing the superluminal 
transmission of information. In this case, we have to 
define the kind and the characteristics of such an 
interaction and its “mechanics” since it is not contained in 
the quantum one. 
 
 
Conclusion 
 
The work analyzes the non-local property of quantum 
mechanics in the frame of the stochastic QHA model and 
shows that it can have a finite range of action, allowing in 
weakly bounded systems the realization of the classical 
mechanics on large scale limit. 

The analysis shows that it is possible to maintain the 
concept of freedom of the classical reality between far 
away systems beyond the range of interaction of 
quantum potential as well as to make compatible the 
local relativistic causality with the uncertainty principle, 
one of the most relevant manifestations of the non-local 
behavior of the quantum mechanics. 

The moderate non-locality of the SQHA approach can 
be compatible with the assumption that the speed of light 
is the maximum velocity of transmission of information 
and interactions. This is confirmed by the relativistic QHA 
approach that shows that the quantum potential 
propagates the non-local quantum interaction accordingly 
with the relativistic postulate of light speed invariance as 
the maximum velocity of transmission.  

The model shows that the paradox of instantaneous 
quantum action at infinite distances is an artifact that 
appears in the non-relativistic non-stochastic limit of 
quantum mechanics where the light speed goes to infinity 
and non-locality becomes a global property. 

The SQHA model shows that is possible to have a 
theory where moderate non-locality, classical freedom 
and relativistic causality can cohabit together showing 
that there is no need for searching a local quantum 
mechanics (giving a theoretical support to the Bell’s 
inequality violations).  
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On the base of a simple two photon experiment, the 
paper shows that the intellectual necessity of postulating 
that superluminal information are exchanged during non-
local quantum experiments may be due to the leaking of 
theoretical completeness of the standard quantum 
formalism.  
 
 
REFERENCES 
 
Bell JS (1964). On the Einstain-Podolsky-Rosen paradox”. Physics. 

1:195-200. 
Bialyniki-Birula I, Cieplak M, Kaminski J (1992). “Theory of Quanta”. 

Oxford University press, Ny. 87-111, 369-381. 
Bohm D (1952). A suggested interpretation of quantum theory in terms 

of “hidden” variables. Phys Rev. 85:166,180.  
Bohm D, Vigier JP (1954). Model of the causal interpretation of 

quantum theory in terms of a fluid with irregular fluctuations. Phys. 
Rev. 96:208-216. 

Bousquet D, Hughes KH, Micha DA, Burghardt I (2001). Extended 
hydrodynamic approach to quantum-classical nonequilibrium 
evolution I. Theory. J. Chem. Phys. P. 134. 

Bousso R (2002). The holographic principle. Rev. Mod Phys. 74:825.  
Breit JD, Gupta S, Zaks A (1984). Stochastic quantization and 

regularization. Nucl. Phys. B. 233:61.  
Calzetta E, Hu BL (1995). Quantum Fluctuations, Decoherence of the 

Mean Field, and Structure Formation in the Early Universe. Phys. 
Rev. D. 52:6770-6788.  

Cerruti NR, Lakshminarayan A, Lefebvre TH, Tomsovic S (2000). 
Exploring phase space localization of chaotic eigenstates via 
parametric variation. Phys. Rev. E 63:016208. 

Chiarelli P (2012). Is the quantum hydrodynamic analogy more general 
than the Schrödinger approach? Intell. Arch. 1(2):21.  

Chiarelli P (2013a). The classical mechanics from the quantum 
equation. Phys. Rew. Res. Int. 3(1):1-9.  

Chiarelli P (2013b). The uncertainty principle derived by the finite 
transmission speed of light and information. J. Adv. Phys. 2013; 
3:257-266. 

Chiarelli P (2013c). Quantum to classical transition in the stochastic 
hydrodynamic analogy: The explanation of the Lindemann relation 
and the analogies between the maximum of density at lambda point 
and that at the water-ice phase transition. Phys. Rev. Res. Int. 3(4): 
348-366.  

Chiarelli P (2013d). Can fluctuating quantum states acquire the classical 
behavior on large scale? J. Adv. Phys. 2:139-163.  

Chiarelli P (2014a) .The quantum hydrodynamic formulation of Dirac 
equation and its generalized stochastic and non-linear analogs, 
accepted for publication to Phys. In Press.  

Chiarelli P (2014b). The quantum potential: the missing interaction in 
the density maximum of He4 at the lambda point? Am. J. Phys. 
Chem. 2(6):122-131.  

Clauser JF, Horne MA, Shimony A, Holt RA (1969). Proposed 
experiment to test local hidden-variable theories". Phys. Rev. Lett. 
23(15):880–884. 

Einstein A, Podolsky B, Rosen N (1935). Can quantum-mechanical 
description of physical reality be considered complete? Phys. Rev. 
4:777-780 .  

Gardner CL (1994). The quantum hydrodynamic model for 
semiconductor devices. SIAM. J. Appl. Math. 54:409.  

Greenberger DM, Horne MA, Shimony A, Zeilinger A (1990). Bell’s 
theorem without inequalities. Am. J. Phys. 58(12):1131-43.  

Guerra F, Ruggero P (1973). New interpretation of the euclidean-
Marcov field in the framework of physical Minkowski space-time. 
Phys rev. Lett. 31:1022 .  

Jánossy L (1962). Zum hydrodynamischen Modell der 
Quantenmechanik. Z. Phys. 169(79):8.  

Jona G, Martinelli F, Scoppola E (1981). New approach to the 
semiclassical limit of quantum mechanics. Comm. Math. Phys. 
80:233.   



 

300          Int. J. Phys. Sci. 
 
 
 
Lombardo FC, Villar PI (2005). Decoherence induced by zero-point 

fluctuations in quantum Brownian motion. Phys. Lett. A. 336:16–24. 
Madelung E (1926). Quanten theorie in hydrodynamische form 

(Quantum theory in the hydrodynamic form). Z. Phys. 40: 322-326.  
Mariano A, Facchi P, Pascazio S (2001). Decoherence and Fluctuations 

in Quantum Interference Experiments, Fortschr. Phys. 49(10-
11):1033–1039.  

Maudlin T (1994). Quantum Non-Locality and Relativity: Metaphysical 
Intimations of Modern Physics, Cambridge, Massachusetts: 
Blackwell. 

Morato LM, Ugolini S (2011). Stochastic description of a Bose–Einstein 
Condensate. Annales Henri Poincaré. 12(8):1601-1612.  

Nelson E (1985). Quantum Fluctuations (Princeton University Press, 
New York. 

Nelson E (1967). Dynamical Theory of Brownian Motion (Princeton 
University Press, London. 

Oppenheim J, Wehner S (2007). The uncertainty principle determines 
the non-locality of quantum mechanics. Phys. Rev. Lett.103:1072-
1074. 

Ozawa M (2003). Universally valid reformulation of the Heisenberg 
uncertainty principle on noise and disturbance in measurement, 
Phys. Rev. A; 67:042105 (6).  

Parisi G, Wu YS (1981). Perturbation Theory Without Gauge Fixing. Sci. 
Sin. P. 24.  

Popescu S, Rohrlich D (1994). Nonlocality as an axiom". Foundation of 
Phys. 24(3):379–385. 

Ruggiero P, Zannetti M (1981). Critical Phenomena at T=0 and 
Stochastic Quantization. Phys. Rev. Lett. 47: 1231.  

Ruggiero P, Zannetti M (1983a). Microscopic derivation of the 
stochastic process for the quantum Brownian oscillator. Phys. Rev. A 
(28):987. 

Ruggiero P, Zannetti M (1983b). Quantum-classical crossover in critical 
dynamics. Phys. Rev. B(27):3001.  

Schrödinger E (1935). Die gegenwärtige Situation in der 
Quantenmechanik. Die Naturwissenschaften. 23:807–812, 823–828, 
844–849. Hawking S, www.hawking.org.uk/does-god-play-dice.html. 

Susskind L, Thorlacius L, Uglum J (1993). The stretched horizon and 
black hole complementarity. Phys. Rev. D. 48:3743.  

t’Hooft G (1988). Equivalence relations between deterministic and 
quantum mechanical systems. J. Statistical Phys. 53: 323.  

t’Hooft G (1996). Quantization of point particles in (2+l)-dimensional 
gravity and spacetime discreteness, Class. Quant. Grav. 13:1023.  

t’Hooft G (1999). Quantum gravity as a dissipative deterministic system. 
Class. Quant. Grav. 16:3263.  

Terlecki G, Grun N, Scheid W (1982). Solution of the time-dependent 
Schrödinger equation with a trajectory method and application to H+-
H scattering. Phys. Lett. 88(A):33. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
von Neumann J (1932/1955). In Mathematische Grundlagen der 

Quantenmechanik, Springer, Berlin, translated into English by Beyer, 
R.T., Princeton University Press, Princeton, cited by Baggott, J. 
(2004). Beyond Measure: Modern physics, philosophy, and the 
meaning of quantum theory, Oxford University Press, Oxford, ISBN 
0-19-852927-9, pp.144-145. 

Wang C, Bonifacio P, Bingham R, Mendonca JT (2008). Detection of 
quantum decoherence due to spacetime fluctuations, 37th COSPAR 
Scientific Assembly. 13-20 July Montréal, Canada. P. 3390. 

Weiner JH (1983). Statistical Mechanics of Elasticity. John Wiley & 
Sons, New York, pp. 315-317. 

Weiner JH, Askar A (1971). Particle method for the numerical solution 
of the time-dependent Schrödinger Equation. J. Chem. Phys. 
54:3534. 

Weiner JH, Forman R (1974). Rate theory for solids. V. Quantum 
Brownian-motion model. Phys. Rev. B. 10:325.  

Wyatt RE (2005). Quantum dynamics with trajectories: Introduction to 
quantum hydrodynamics, Springer, Heidelberg; P. 9.  

Zwanziger D (1984). Covariant quantization of gauge fields without 
Gribov ambiguity. Nucl. Phys. B. 192:259.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
APPENDIX A 
 
In the QHA the eigenstates can be identified by the their 
stationarity that happens due the fact that the force 
generated by the quantum potential exactly 
counterbalance that one due to the Hamiltonian potential 

(with the initial condition 0  

q ).  

Since the quantum potential changes with the state of 
the system, more than one stationary state (each one 

with its own 
n

quV ) is possible and more than one 

quantized eigenvalues of the energy may exist with the 
corresponding action values: 
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The above statements can be straightforwardly checked 
in the case of a linear system. For a harmonic oscillator 

described by the Hamiltonian 2
22
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q

m
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p
H
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 , 

whose generic n-th eigenstate reads: 
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Figure 1. Schematic drawing of the experimental apparatus.  

 
 
 

(where (x)Hn represents the n-th Hermite polynomial) the 

density (q, t)n  and the action (q,t)S  respectively read: 
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Figure 2. The repulsive quantum potential for the firsts five 
eigenstates of a harmonic oscillator. 

 
 

(t)(q,t) SS  ,                                  (A.3) 

 
leading to the quantum potential of the n-th eigenstate 
(Figure 2)  
 














)n(q
m

)n(
m

nq
m

)
m

(V

n

nn

n
qu

2

1

2
             

2

1

H

H12H

2
           

nn
2

2
2

21
2

2

1/21/2
2






































 








      (A.4) 

 
where it has been used the recurrence formula of the 
Hermite polynomials  
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that gives the following energy eigenvalues  
 












 )n(

|H|E

)n()qq(
m

)qq(
m

(q, t)

|)q(S|
m

n
quV)qq(

m
(q, t)

|q|
mn

quV)qq(
m

(q, t)nnn

2

1
                                   

                                  

 

-
2

12
2

2
2

2

2
n

-

2
2

12
2

2
n

-

2
2

2
2

2
n


































































  

(A.6) 



 

302          Int. J. Phys. Sci. 
 
 
 
as well as:  
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APPENDIX B 
 
Large-distance quantum force 
 
To obtain the macro-scale form of equations (47) we 
need to evaluate the large-scale limit of the quantum 

force quqqu Vx 


in it. The behavior of 21n /  

determines the quantum potential (QP) in (5). For sake of 
simplicity, we discuss the one-dimensional case of 

localized state with 21n / that at large distance goes like: 
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where )q(
kP is a polynomial of degree equal to k, 

qzq
1  is the macroscopic variable (where 

q


q
 , 

where q is the macro-scale resolution) and q is the 
range of the QP interaction. By using (B.1), the QP (5) at 
large scale reads: 
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where k23 .  

Thence, for 
2

3
k (that is, 0 )  0qz finite , the 

quantum force quqV  at large scale (that is, 

 qzq,     ) reads: 
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Moreover, since the integral: 
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converges for 0 , (B.4) tells us if the QP force is 
negligible on large scale as given by (B.3). Therefore, 
finite values of the mean weighted distance: 

  

)q(
qu

c

qu

q

c
|

q

V
|

dq|
q

V
q|






















 

 

2
1

0

1

,                    (B.5) 

 
warrants the vanishing of QP at large distance and, 
hence, it can be assumed as an evaluation of the 
quantum potential range of interaction.  

It is worth mentioning that condition (B.4) is not 
satisfied by linear systems whose eigenstates have 

1  (22), so that q  and they cannot admit the 
classical limit. 

It is also worth noting that condition (B.4), obtained for 
21n /  owing the form (B.1), also holds in the case of 

oscillating wave functions whose modulus is of type: 
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where )q(
p

nA  are polynomials of degree equal to p. In 

this case, in addition to the requisite
2

3
0  k , the 

conditions m and p  1 are required to warrant 
(B.4) (38).  

For instance, the Lennard-Jones-type potentials 
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finite. 

In the multidimensional case, q  depends by the path 

of integration  and (B.5) reads: 
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where |q|r   and id  is the incremental vector tangent 

to  . 

Since, the physical meaning of q must be independent 

by the path of integration (we know that 
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qu
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integrable but do we do not know nothing about the 

integrability of |
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1 ) in order to well define q  

the fixation of the integral path is needed. If we choose 
the integration path irm where im is a generic versor, 

q reads: 
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Moreover, since in order to evaluate at what distance the 
quantum force becomes negligible whatever is the 

direction of the versor im , among the values of (B.8) we 

must consider the maximum one so, finally, q reads: 
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B.1: QUANTUM potential characteristics 
 
In order to elucidate the interplay between the 
Hamiltonian potential and the quantum potential, that 
together define the quantum evolution of the particle, we 
observe that the quantum potential is primarily defined by 
the PD.  

Fixed the PD at the initial time, then the Hamiltonian 
potential and the quantum one determine the evolution of 
the PD in the following instants that on its turn modifies 
the quantum potential. 

A Gaussian PD has a parabolic repulsive quantum 
potential, if the Hamiltonian potential is parabolic too (the 
free case is included), when the PD wideness adjusts 
itself to produce a quantum potential that exactly 
compensates the force of the Hamiltonian one, the 
Gaussian states becomes stationary (eigenstates). In the 
free case, the stationary state is the flat Gaussian (with 
an infinite variance) so that any free Gaussian PD 
expands itself following the ballistic dynamics of quantum  
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mechanics since the Hamiltonian potential is null and the 
quantum one is a quadratic repulsive one.  

From the general point of view, we can say that if the 
Hamiltonian potential grows faster than a harmonic one, 
the wave equation of a self-state is more localized than a 
Gaussian one and this leads to a stronger-than a 
quadratic quantum potential.  

On the contrary, a Hamiltonian potential that grows 
slower than a harmonic one will produce a less localized 
PD that decreases slower than the Gaussian one, so that 
the quantum potential is weaker than the quadratic one 
and it may lead to a finite quantum non-locality length 
(B.5).  

More precisely, as shown above, the large distances 
exponential-decay of the PD given by (B.1) with k<3/2 is 
a sufficient condition to have a finite quantum non-locality 
length (20).  

In absence of noise, we can identify three typologies of 
quantum potential interactions (in the uni-dimensional 
case): k> 2 strong quantum potential that leads to 

quantum force that grows faster than linearly and q is 

infinite (super-ballistic expansion for the free particle PD) 
and reads: 
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k = 2 that leads to quantum force that grows linearly  
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and q is infinite (ballistic expansion for the free particle 

PD); 2 > k   3/2 “middle quantum potential”; the 
integrand of (B.4) will result: 
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The quantum force remains finite or even becomes 

vanishing at large distance but q may be still infinite 

(under-ballistic expansion for the free particle PD). 
k < 3/2 “week quantum potential” interaction leading to 

quantum force that becomes vanishing at large distance 
following the asymptotic behavior: 
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V
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with a finite q for T  0 (asymptotically vanishing 

expansion for the free particle PD). 
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B.2 Pseudo-Gaussian particle 
 
Gaussian particles generate a quadratic quantum 
potential that is not vanishing at large distance and hence 
cannot lead to macroscopic local dynamics. 
Nevertheless, imperceptible deviation by the perfect 
Gaussian PD may possibly lead to finite quantum non-
locality length. Particles that are inappreciably less 
localized than the Gaussian ones (let’s name them as 

pseudo-Gaussian) own 
q

Vqu




that can sensibly deviate 

by the linearity so that the quantum non-locality length 
may be finite. 
We have seen above that for k < 3/2 (when the PD 
decreases slower than a Gaussian) a finite range of 

interaction of the quantum potential q  is possible.  
The Gaussian shape is a physically good description of 

particle localization, but irrelevant deviations from it, at 
large distance, are decisive to determine the quantum 
non-locality length.  

For instance, let’s consider the pseudo-Gaussian wave-
function type: 
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where )qq(f  is an opportune regular function obeying 
to the condition: 
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For small distance it holds 
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and the localization given by the PD is physically 
indistinguishable from a Gaussian one, while for large 
distance we obtain the behavior: 
 

]
q

)qq(f
exp[lim |qq| 2

2

0nn



 .       (B.17) 

 
For instance, we may consider the following examples 
 
a) 
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(b) 
 

)qq(f  = 1+ |q - q|                     (B.20) 
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(c) 
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(d) 
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All cases (a-d) lead to a finite quantum non-locality length 

q . 

In the case (d) the quantum potential for 

 |qq| reads: 
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leading, for 0< g <2, to the quantum force: 
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that for g < 3/2 gives 0 quq|qq| Vlim . It is 
interesting to note that for g =2 (linear case): 
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the quantum potential is quadratic 
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and the quantum force is linear (repulsive) and reads 
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The linear form of the force exerted by the quantum potential 
leads to the ballistic expansion (variance that grows linearly 
with time) of the free Gaussian quantum states. 


