
 

International Journal of the Physical Sciences Vol. 6(11), pp. 2681-2696, 4 June, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS11.493 
ISSN 1992 - 1950 ©2011 Academic Journals 

 
 
 
 

Full Length Research Paper 
 

Vibration and stability of multi-cracked beams under 

compressive axial loading 
 

Murat Kisa 
 

Department of Mechanical Engineering, Faculty of Engineering, Harran University, Sanliurfa-Turkey. E-mail: 
mkisa@harran.edu.tr Tel: +905334524865. Fax: +904143183799. 

 

Accepted 18 May, 2011 

 

In this study, a novel technique for the vibration and stability analyses of axially loaded beams with 

multi-cracks was offered. In the model which combines the finite element and component mode 

synthesis methods, the cracks were modelled as massless springs. Initially, stability analysis was 

completed and then three numerical cases were given to explore the effects of axial load levels, crack 

locations and ratios on the natural frequencies and mode shapes of the beams. Very good conformities 

between outcomes of the current study and those in literature, gave the confidence that the proposed 

method which could be used to predict crack positions, crack sizes and critical buckling load of 

defected structures by using the modal data, was reliable and effective. 
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INTRODUCTION 
 
Any changes in the mass and stiffness of a member 
result in alterations in its dynamic and static behaviours. 
Cracks in a structural element modify its stiffness and 
damping properties. In view of that, the modal data of the 
structure contain information relating to the position and 
size of the deficit. Structural defects are source of local 
flexibilities and cause deficiencies in structural 
resistance. Structures quite often are operated under 
axial loading. For that reason, in addition to crack ratios 
and locations, influence of applied load on the dynamical 
characteristics should also be searched. Working 
conditions, environment, mechanical vibrations, long-
term service or applied cyclic loads may result in the 
initiation of structural defects such as cracks in the 
structures. Accordingly, the determination of the effects 
of these deficiencies on the vibration safety and stability 
of the structures forms an important aspect of 
investigation. The effects of the cracks on the dynamical 
behaviour of the structures have been investigated by 
many researchers in the past (Cawley and Adams, 1979; 
Gounaris and Dimarogonas, 1988; Shen and Chu, 1992; 
Krawczuk and Ostachowicz, 1993; Ruotolo et al., 1996; 
Kisa et al., 1998; Shifrin and Ruotolo, 1999; Kisa and 
Brandon, 2000a, b; Viola et al., 2001; Krawczuk, 2002; 
Patil and Maiti, 2003; Kisa, 2004).  

Relatively few researchers have studied the effects of 
axial load on the vibration and stability behaviour of 
cracked beams. Takahashi (1998) analysed the vibration 
and stability of a non-uniform cracked shaft subjected to 
a tangential follower force by using the transfer matrix 
method. Li (2001) investigated buckling of multi-step 
cracked columns with shear deformation. He presented 
an approach that combines the exact buckling solution of 
a one-step column and the transfer matrix method for 
solving the entire and partial buckling of a multi-step 
column with various end conditions, with or without 
cracks and shear deformation, subjected to concentrated 
axial loads. Li (2003) presented the exact solutions for 
buckling of multi-step non-uniform columns with cracks 
subjected to concentrated and distributed axial loads. A 
model of massless rotational spring was adopted to 
describe the local flexibility induced by cracks in the 
column. Lee et al. (2002) explored the free vibration 
analysis of axially compressed laminated composite 
beam-columns with multiple delaminations. They 
obtained the characteristic equation of multi-delaminated 
beam-column by dividing the global multi-delaminated 
beam-columns into segments and by imposing 
recurrence relation from the continuity conditions on 
each sub-beam-column. 



 

2682          Int. J. Phys. Sci. 
 
 
 
Zheng and Fan (2003) studied the vibration and stability 
of cracked hollow-sectional beams. Wang (2004) 
presented a comprehensive analysis of the stability of a 
cracked beam subjected to a follower compressive load 
and obtained buckling load of the cracked beam through 
dynamic analysis of the beam. Hsu (2005), by using the 
differential quadrature method (DQM), numerically 
formulated the eigenvalue problems of clamped-free and 
hinged-hinged Bernoulli-Euler cracked beams on elastic 
foundation with axial force. Binici (2005) investigated the 
vibration of beams with multiple open cracks subjected to 
axial force. His method uses one set of end conditions as 
initial parameters for determining the mode shape 
functions. Mei et al. (2006) presented wave vibration 
analysis of an axially loaded cracked beam considering 
the effects of shear deformation and rotary inertia. Gurel 
(2007) studied the buckling of slender prismatic circular 
cross-sectional columns with multiple non-propagating 
edge cracks. Arbodela-Monsalve et al. (2007) 
investigated the stability and free vibration analyses of a 
Timoshenko beam-column with generalised end 
conditions subjected to constant axial load and 
weakened by a cracked section along its span. They 
included the detrimental effects of a single weakened 
section and the beneficial effects of a lateral bracing 
located at the discontinuity. Viola et al. (2007) studied the 
free vibration of axially loaded cracked Timoshenko 
beam structures. They introduced a new procedure 
based on the coupling of dynamic stiffness matrix and 
line-spring element to model the cracked beam. 
Aristizabal-Ochoa (2007) offered a model to analyse the 
static and dynamic stability of uniform shear beam-
columns under generalised boundary conditions. This 
model includes the combined effects of shear 
deformations, an axially applied load linearly distributed 
along beam span, the translational and rotational inertias 
of the member’s mass and of the rotational and 
translational lumped masses located at the ends of the 
member. Yang et al. (2008), by employing the modal 
series expansion technique, presented an analytical 
method to investigate the free and forced vibration of 
cracked inhomogeneous Euler-Bernoulli beams under an 
axial force and a moving load. A simple and proficient 
analytical approach to determine the vibratory 
characteristics of axially loaded Timoshenko and Euler-
Bernoulli beams with arbitrary number of cracks is 
proposed by Aydin (2007, 2008). In the study, the local 
compliance induced by a crack was described by a 
massless rotational spring and a set of boundary 
conditions were used as initial parameters to define the 
mode shapes of the segment of the beam before the first 
crack. Kukla (2009) investigated the free vibration and 
stability of stepped columns with cracks. The cracks in 
the column were modelled by massless rotational springs 
and the frequency equation was obtained by using the 
Green’s functions. Caddemi and Calio (2009) presented 
the closed-form expressions for  the  vibration  modes  of 

 
 
 
 
the Euler–Bernoulli beam in the presence of multiple 
concentrated cracks modelled as a sequence of Dirac’s 
delta generalised functions in the flexural stiffness. They 
conducted a parametric analysis for different boundary 
conditions in order to investigate the influence of the 
number, position, and intensity of the cracks on the 
dynamical properties of the Euler–Bernoulli beam. 
Recently, Bilgehan (2011) presented an adaptive neuro-
fuzzy inference system (ANFIS) and artificial neural 
network (ANN) model and successfully applied for the 
buckling analysis of slender prismatic columns with a 
single non-propagating open edge crack subjected to 
axial loads. 

Hurty (1965) proposed a method known as component 
mode synthesis or substructure technique which enabled 
the problem to be broken up into separate elements and 
thus considerably reduced its complexity. In the present 
study, vibration and stability analyses of multi-cracked 
beams subjected to axial loads are explored utilising the 
component mode and finite element methods. Offered 
method detaches a non-linear problem into linear 
components from the crack sections. Consequently, the 
initial non-linear system with local discontinuities in 
stiffness at the crack sections is now composed of a 
number of linear segments. Substructures are connected 
by artificial and massless springs whose stiffness 
coefficients are functions of the compliance coefficients. 
The offered method in the current study is believed to be 
applied for the first time to the axially loaded beams with 
multi-cracks. 

 

 
MATHEMATICAL FORMULATION OF THE MODEL 

 
The model  studied  in  the  current  study  is  an  axially 
loaded beam with uniform cross section of A and multiple 
open edge cracks of depths ri at variable locations Li 
(Figure 1). The beam has m-1 cracks; therefore it is 
separated into m components from the crack sections 
which lead to a substructure formula. In view of that, as 
aforementioned, the global non-linear system with local 
stiffness discontinuities is separated into m linear 
subsystems. Every component is also broken up into 
finite elements zi with two nodes and three degrees of 
freedom at the each node as displayed in Figure 2. 

 

 
Evaluation of flexibility matrix induced by a crack 

 
Deficiencies such as cracks in structures are sources of 
local flexibilities which affect the dynamic and static 
behaviours of the structures. Flexibility coefficients can 
be expressed by stress intensity factors derived through 
Castigliano’s theorem in the linear elastic range. The 
strain energy release rate, J, represents the elastic 
energy in relation to a unit  increase  in  length  ahead  of
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Figure 1. An axially loaded multi-cracked cantilever beam. 
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Figure 2. Finite element model of multi-cracked beam. 

 
 
 
the crack front. For plane strain, J can be given as (Irwin, 
1960) 
 

2 2
2 2 21 1 1

I II IIIJ K K K
E E E

    
                  (1) 

 

Where; KI, KII, KIII,  and E are the stress intensity factors 
for the modes I, II, III deformation types, Poisson’s ratio 
and modulus of elasticity, respectively. Let U be the 
strain energy of a cracked structure with a crack area A 
under the nodal loads Pi (P1 = F, P2=Q, P3 = M) then the 
relation between J and U is 
 

( , )iU P A
J

A




                         (2) 

In accordance with the Castigliano’s theorem, the 
additional displacement caused by the crack in the 
direction of Pi can be given as: 
 

i

i
i

P

APU
u






),(
                        (3) 

 
Substituting Equation 2 into 3 gives the final expression 
between displacement and strain energy release rate J 
as: 
 







A
i

i
i dAAPJ

P
u ),(                       (4) 

 
Now the flexibility coefficients which are the  functions  of 
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the crack shape and stress intensity factors can be 
introduced as follows: 
 












A
i

jij

i
ij dAAPJ

PPP

u
c ),(

2

                   (5) 

 
The flexibility coefficients cij are found from the fracture 
mechanics method proposed by Dimarogonas and 
Paipetis (1983). Dimensionless flexibility coefficients are 
calculated numerically. Since the shear force does not 
contribute to the opening mode of the crack, the 

flexibility matrix, in relation to displacements (u, v, ), 
can be written as: 
 

)33(3331

22

1311

0

00

0

x
cc

c

cc

C
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
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                 (6) 

 
Using the flexibility matrix, the stiffness matrix generated 
by a crack is given as: 
 

)66(
11

11

x

cr
CC

CC
K


















-

-                                               (7) 

 
 
Component mode analysis 
 
Consider an axially loaded component i, whose equation 
of motion in matrix notation can be given as follows: 
 

( )i i i i i i Gi i iM q D q K q P K q f t                                      (8) 

 
Where; P, qi, fi(t), Mi, Di, Ki and KGi are the applied 
compressive load, generalised displacement vector, 
external force vector, mass, damping, stiffness and 
geometric stiffness matrices, respectively, for the 
component i. Mass and stiffness matrices are taken from 
the work of Friedman and Kosmatka (1993). For an 
element i with the length of L, geometric stiffness matrix 
can be given as follows: 
 

 

2
2

2
2
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0 0
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2
0 0
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L L

L L L
L
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 
 
  
 

  
 
 

   
 
 

   

                (9) 

 
For undamped free vibration analysis, Equation 8 
rewritten as: 

 
 
 
  

( ) 0i i i Gi iM q K P K q                      (10) 

 
Assuming that 
 

..
2{ } { }sin( ), { } { }sin( )i iq t q t                      (11) 

 
and substituting them into Equation 10, the standard free 
vibration equation for the component i is obtained as, 
 

2 ( )i i GiM K P K              (12) 

 

which gives eigenvalues 2 2

1, ...,i in  and modal matrix i  

for the component i. qi can be defined as principal 
coordinate vector pi by using the following relation 
 

i i iq p                                                     (13) 

 

Premultiplying Equation 13 by T

i  and substituting it into 

Equation 10 gives the following equation. 
 

( ) ( ( ) ) 0T T

i i i i i i Gi i iM p K P K p           (14) 

 
where  
 

[ ]

( ) [ ]

T

i i i m

T

i i Gi i m

M m

K P K k



 

 

 
                   (15) 

 

Where: [ ]mm and [ ]mk are the modal mass and stiffness 

matrices, respectively. If the modal matrix is normalised 

by the mass, mass normalised mode vector ij can be 

given as: 
 

ij

ij

jjm


               (16) 

 
qi can be defined as principal coordinate vector si by 
using the following transformation 
 

i i iq s               (17) 

 

Premultiplying Equation 17 by T

i  and substituting it into 

Equation 10 results in 
 

( ) ( ( ) ) 0T T

i i i i i i Gi i iM s K P K s           (18)  

 
Where:  
 

2

( )

( ( ) )

T

i i i

T

i i Gi i i

M I

K P K



 

 
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              (19) 
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Figure 3. Joining of components with springs. 

 
 
 
Using Equation 19, Equation 18 becomes 
 

2 0i i iI s s                (20) 

 

Where: 2

i  is a diagonal matrix comprising the 

eigenvalues of component i. 
 
 
Combination process of the components 
 

Consider components i (i = 1, 2,..., m) which are 
undamped and supposed to be linked together by means 
of springs capable of carrying axial, shearing and 
bending effects, as illustrated in Figure 3. Kinetic (T) and 
strain (U) energies of components, in terms of principal 
modal coordinates, can be given as: 
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Where:  
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The strain energy of the connectors, in terms of principal 
modal coordinates, is 
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Where: KC is the connection matrix comprising the 
cracked nodal elements’ stiffness matrices and can be 
given as: 
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The total strain energy of the system is 
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Using Lagrange's equation with Equations 21 to 25, the 
eigenvalue equation can be given as: 
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Utilising the Equation 26, modal data of the multi- 
cracked beam can be determined. The displacements for 
each component are then calculated by Equation 17. 
 
 
Buckling analysis 
 
For the free vibration analysis of the axially loaded 
cracked beams, a compressive axial load is applied to 
the cracked beam. The magnitude of the applied axial 
load should not exceed the critical buckling load and as a 
consequence before the free vibration analysis, initially a 
buckling analysis of the cracked beam is carried out to 
obtain the critical buckling loads. As previously given, the 
equation of motion for the free vibration of an axially 
loaded cracked beam can be given, in matrix notation as: 
 

( ) 0C GM q K K PK q                          (27) 
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Figure 4. A fixed-free axially loaded cracked beam. 

 
 
 
In the static case ( 0q  ) Equation 27 gives the typical 

buckling equation  
 

( ) 0C GK K P K q                                       (28) 

 
For a non-trivial solution, one can write 
 

G( ) 0K Kc K                                       (29) 

 
This is a well known eigenvalue problem and the 
smallest value of λ gives the primary critical buckling 
load (Pcr) for the cracked beam. 
 
 
CASE STUDIES 

 

Axially loaded fixed-free beam with a crack  
 
First sample is chosen as a fixed-free beam with a crack 
under compressive axial load (Figure 4) to confirm the 
reliability and correctness of the offered procedure. The 
geometrical and material properties of the beam are 
chosen as; length L = 3 m, height h = 0.2 m, width d = 
0.2 m and Young’s modulus E = 216x10

9 
N m

-2
, 

Poisson’s ratio  = 0.33, material density  = 7.85x10
3
 

kgm
-3

, respectively. Previous to vibration investigation, a 
buckling analysis is done to find the critical buckling 
loads.  
 
 
Buckling analysis of fixed-free beam with a crack 
 
Euler formula gives the fundamental critical buckling 
load of the fixed-free intact beam as: 
 

2

24
e

EI
P

L


                                                                (30) 

 
Using Equation 29 the principal critical buckling load of 
cracked beam is determined. Throughout this  study  only 

elastic buckling is considered. The variations of the first 
non-dimensional buckling load (Pcr/Pe) of cracked beam 
with respect to different crack locations and ratios have 
been demonstrated in Figure 5. Pcr and Pe represent the 
principal buckling load of the cracked and intact beams, 
respectively. Cracks result in decreases in the critical 
buckling loads. Crack ratios and locations affect the 
buckling behaviour of the beam. A crack located in the 
section of maximum bending moments of the 
corresponding intact beam results in highest energy 
losses and consequently the largest reduction in the 
buckling loads. As expected, larger cracks situated near 
the fixed end of the beam produce higher drops in the 
buckling load, for instance, a relatively big crack (r/h = 
0.8) near the fixed end (LC/L = 0.1) reduces the 
fundamental buckling load about 80%. On the contrary, 
even it is comparatively big (r/h = 0.6), when a crack 
approaches to the free end it has little effects on the 
buckling load of the beam. 
 
 

Vibration of axially loaded fixed-free beam with a 

crack 
 

As previously presented, crack and applied compressive 
axial load decrease the overall stiffness of the beam, as 
a consequence the dynamical characteristics of the 
beam are modified. Free vibration of axially loaded 
cracked beam is completed by using equation 26. The 
results of the current study and those of Binici’s (2005) 
are compared and as can be seen from Figure 6, very 
good conformities have been found between them. In the 
analysis, the crack ratio is taken to be r/h = 0.5. It is also 
apparent from Figure 6 that if the applied axial 
compressive load ratio gets higher, the frequency 
reductions also increase. Validation of the offered 
procedure gives the applicability of the method with 
confidence. 
 
 
Axially loaded fixed-free beam with three cracks 
 

Second sample is chosen as  a  fixed-free  multi-cracked
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Figure 5. First non-dimensional buckling load of cracked beam with respect to different 

crack locations (Lc/L) and ratios (r/h).  
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Figure 6. Literature comparison of first non-dimensional natural frequencies of 

axially loaded fixed-free cracked beam. 

 
 
 
beam subjected to axial loading (Figure 7). The 
geometric and  material  properties  of  the  beam  in  the 

current and subsequent cases are chosen as the same 
as they were in the previous case. It is clear that the load
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Figure 7. A fixed-free axially loaded beam with three cracks. 
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Figure 8. First non-dimensional buckling loads of multi cracked beam with 

respect to different crack locations and ratios. 

 

 

 
applied to cracked beam should be less than the first 
critical buckling load, therefore similar to first case, as a 
first step a buckling analysis is carried out. 
 
 
Buckling analysis of fixed-free beam with three 

cracks 
 
The fundamental critical buckling loads of the fixed-free 
cracked and intact beams are found by using equations 
29 and 30, respectively. Figure 8 illustrates the variation 
of the first non-dimensional buckling load (Pcr/Pe) of 
cracked and intact beam with respect to different crack 
locations and ratios. Cracks near the fixed end (L1/L = 
0.1, L2/L = 0.2, L3/L = 0.3), at the middle (L1/L = 0.4, L2/L 
= 0.5, L3/L = 0.6) and near the free end (L1/L = 0.7, L2/L = 
0.8, L3/L = 0.9) with a crack ratio of r/h = 0.7 result in 83, 
74   and   44%   reduction   in   the   first   buckling  load, 

respectively. 
 
 
Vibration analysis of fixed-free beam with three 

cracks 

 
Vibration analysis of fixed-free beam with three cracks 
under compressive axial loads P (P/Pcr = 0.05, P/Pcr = 
0.15, P/Pcr = 0.25) is carried out by using Equation 26. 
The variation of the first, second and third non-
dimensional natural frequencies (ωcr/ω) of axially loaded 
fixed-free multi-cracked beam with respect to different 
applied axial loads (P/Pcr), crack locations (Li/L) and 
crack ratios (r/h) have been given in Figure 9. It is 
observed from the figure that, crack locations, crack 
ratios and applied axial load levels strongly affect the 
natural frequencies of the beam. While the cracks near 
the fixed end cause more reductions in the  first  vnatural
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Figure 9. First, second and third non-dimensional natural frequencies of fixed-free multi cracked beam with respect to different 

applied axial loads, crack locations and crack ratios. 

 
 
 
frequencies, second and third natural frequencies are 
most affected if the cracks are at the middle and near the 
free end, respectively. Figure shows that applied axial 
loads with the ratios of 5, 15 and 25% (P/Pcr = 0.05, 0.15 
and 0.25) decrease the first natural frequencies of the 
fixed-free beam by 40, 48 and 58% compared to 
unloaded beam, respectively for crack locations L1/L = 
0.1, L2/L = 0.2 and L3/L = 0.3 with a crack ratio of r/h = 
0.5. The same cracks result in reductions about 13, 14, 
15% and 16, 17, 18% in the second and third natural 
frequencies for the applied axial load ratios of 5, 15 and 
25% (P/Pcr = 0.05, 0.15 and 0.25), respectively. 

The effects of cracks at different locations can be 
demonstrated from the figure. For a beam with three 
cracks (L1/L = 0.4, L2/L = 0.5, L3/L = 0.6, r/h = 0.5), axial 
loads with the ratios of 5, 15 and 25% (P/Pcr = 0.05, 0.15 
and 0.25) decrease the first natural frequencies about 
17.5, 25 and 33.5%. Same cracks cause drops about  28, 

29.5, 31% and 16.5, 17, 17.5% in the second and third 
natural frequencies for the applied axial loads of 5, 15 
and 25% (P/Pcr = 0.05, 0.15 and 0.25), respectively. For 
the fixed-free beam, cracks (L1/L = 0.7, L2/L = 0.8, L3/L = 
0.9, r/h = 0.5) cause decreasing about 3.5, 9, 15%; 15, 
16.5, 18% and 23.5, 24 and 24.5% in the first, second 
and third natural frequencies for the applied axial load 
ratios of 5, 15 and 25% (P/Pcr = 0.05, 0.15 and 0.25), 
respectively. 

Deviation of the first, second and third mode shapes of 
the fixed-free beam with respect to different crack 
locations (L1/L = 0.1, L2/L = 0.2, L3/L = 0.3; L1/L = 0.4, 
L2/L = 0.5, L3/L = 0.6; L1/L = 0.7, L2/L = 0.8, L3/L = 0.9), 
applied axial load ratios (P/Pcr = 0.05, 0.15, 0.25) and 
crack ratio r/h = 0.5 for the intact and loaded cracked 
beams are illustrated in Figures 10 to 12. From these 
figures it can be clearly seen that applied axial load 
ratios, crack locations and ratios  play  important  role  on
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Figure 10. First mode shapes of fixed-free multi-cracked beam with respect to various applied axial loads, crack locations with the crack ratio 

of r/h = 0.5 for the intact and loaded cracked beams. 

 
 
 
the variation of mode shapes. While the cracks located 
at certain locations have little effects in a particular mode 
shape and cannot be recognised, it is apparent from 
these figures that same cracks may have bigger effects 
on the other mode shapes and can be detected easily. As 
a consequence, all mode shapes should be checked for 
the crack detection process. This outcome is significant 
from the point of damage detection by means of mode 
shapes. 

Axially loaded fixed-pinned double cracked beam 

 
Buckling analysis of fixed-pinned double cracked 
beam 
 
The third sample is a fixed-pinned double cracked beam 
subjected to axial loading (Figure 13). The fundamental 
critical buckling load of the fixed-pinned intact beam can 
be found by using the Euler Formula as: 
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Figure 11. Second mode shapes of fixed-free multi-cracked beam with respect to various applied axial loads, crack locations with the crack 

ratio of r/h = 0.5 for the intact and loaded cracked beams. 
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                                                          (31) 

 

Figure 14 illustrates the deviation of the first non-
dimensional buckling load (Pcr/Pe) of cracked and intact 
beams with respect to different crack locations and 
ratios. If the cracks positioned near the 70 and 80% of 
the beam length (L1/L = 0.7, L2/L = 0.8) with a crack ratio 
of r/h = 0.7, 75% reduction in the first buckling load is 
observed. Quite the opposite, if the cracks are located 

near the inflection points (moment zero points of the 
corresponding intact beams) L1/L = 0.2, L2/L = 0.3 and 
quite big (r/h = 0.7) they have relatively little effect on the 
buckling load of the beam. 
 
 
Vibration of axially loaded fixed-pinned double 

cracked beam 
 

Using Equation 26 the vibration analysis of a fixed-
pinned   double   cracked   beam  under  axial  loading  is
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Figure 12. Third mode shapes of fixed-free multi-cracked beam with respect to various applied axial loads, crack locations with the crack ratio 

of r/h = 0.5 for the intact and loaded cracked beams. 
 

 

 

completed. Figure 15 illustrates the deviation of the first, 
second and third non-dimensional natural frequencies of 
axially loaded fixed-pinned cracked beam with respect to 
different applied axial loads, crack locations and ratios. 
The cracks situated near the inflexion points (L1/L = 0.2, 
L2/L = 0.3) cause less effects on the first natural 
frequencies and relatively big changes in the second 
natural frequencies. On the other hand, cracks positioned 
by the middle of the beam (L1/L = 0.5, L2/L = 0.6) result 
in large reductions in the first and third natural 
frequencies. The figure shows that applied axial loads 
with the ratios of 5, 15 and 25%  (P/Pcr =  0.05,  0.15  and 

0.25) decrease the first natural frequencies of the fixed-
pinned double cracked beam by 5, 11 and 17% 
compared to unloaded beam, respectively for crack 
locations L1/L = 0.2, L2/L = 0.3 and crack ratio r/h = 0.5. 
For different axial load ratios (P/Pcr = 0.05, 0.15 and 
0.25), same cracks result in falls about 11, 13, 15% and 
10, 11, 12% in the second and third natural frequencies, 
respectively. 

The cracks at L1/L = 0.5, L2/L = 0.6 with the crack ratio 
of r/h = 0.5 cause the decrease of about 19, 26, 33%; 6, 
8, 10% and 12, 13, 14% in the first, second and third 
natural frequencies for the applied axial load ratios  of  5,
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Figure 13. A fixed-pinned axially loaded beam with two cracks. 
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Figure 14. First non-dimensional buckling loads of double cracked beam with respect to 

different crack locations and ratios. 
 
 
 
15 and 25% (P/Pcr = 0.05, 0.15 and 0.25), respectively. 
First, second and third mode shapes of the fixed-pinned 
double cracked beam with respect to crack locations L1/L 
= 0.1, L2/L = 0.2; L1/L = 0.5, L2/L = 0.5; L1/L = 0.8, L2/L = 
0.9, applied axial load ratios (P/Pcr = 0.05, 0.15, 0.25) 
and crack ratio r/h = 0.5 for the intact and loaded cracked 
beams are shown in Figure 16. The positions of the 
cracks can be recognised from the mode shapes and this 
is more clearly perceived when the applied axial load 
ratio gets higher. 
 
 
CONCLUSIONS 
 

Vibration and stability analyses of multi-cracked beams 
under     compressive     axial    load    were   numerically 

investigated by a new and efficient method utilising the 
component mode synthesis technique accompanied by 
the finite element method. The presented technique 
detaches a non-linear problem into linear components 
from the crack sections. The components were 
connected together by means of springs capable of 
carrying axial, shearing and bending effects. Ahead of 
the vibration analysis a buckling analysis was completed 
and critical buckling loads were found. Throughout the 
study only elastic buckling was considered and 
application of the current work is limited to the vibration 
and stability analyses of beams with non-propagating 
open edge cracks. 

It was shown that crack ratios and locations affect the 
buckling behaviour of the beam. Big cracks have 
produced   higher   reductions   in  the  buckling  load,  as
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Figure 15. First, second and third non-dimensional natural frequencies of fixed-pinned double cracked beam with respect to different applied 

axial loads, crack locations and crack ratios. 

 
 
 
expected. Applied compressive axial load levels, crack 
locations and ratios played important role on the 
variation of natural frequencies and mode shapes. 
Cracks and applied load decreased the overall stiffness 
of the beam and as a consequence, the dynamical 
characteristics of the beam were modified. Higher 
applied axial load ratios have produced more reductions 
in the natural frequencies and more changes in the mode 
shapes. 

It was shown that the knowledge of modal data of 
cracked beams formed an important characteristic in 
assessing the structural failure. To reveal the efficiency 
of the procedure, results of the studied cases in the 
current work have been compared with earlier studies 
available in the literature leading to confidence in the 
validity of this approach. Presented numerical cases 
confirmed that the proposed method is effective for the 
vibration analysis of axially loaded multi  cracked  beams
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Figure 16. First, second and third mode shapes of fixed-pinned double cracked beam with respect to various applied axial loads, crack locations 

with the crack ratio of r/h = 0.5 for the intact and loaded cracked beams. 
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with any kind of end conditions. 
 
 
Nomenclature: A, Crack area; cij, flexibility coefficients; C, 

flexibility matrix; d, thickness of beam; Di, damping matrix for 

component i; E, Young’s modulus of elasticity; fi(t), external 

force vector for component i; h, height of beam; J, strain 

energy release rate; Ki, stiffness matrix for component i; KC, 

connection matrix; Kcr, stiffness matrix induced by crack; KGi, 

geometric stiffness matrix for component i; KI, stress intensity 

factor for mode I; KII, stress intensity factor for mode II; KIII,  

stress intensity factor for mode III; L, length of beam; Li/L, 

crack positions; Mi, mass matrix for component i; zi, element 

numbers for component i; P, applied compressive axial load; p, 

s, principal coordinate vectors; Pcr, critical buckling load of 

cracked beam; Pe, critical buckling load of intact beam; q, 

generalised displacement; ri, crack length; r/h, crack depth 

ratio; T, kinetic energy; U, strain energy; u, v, displacements 

with respect to x and y axes; , rotation about z axis; , mass 

normalised modal matrix; , material density; , modal matrix; 

, Poisson’s ratio; , natural frequency; cr, natural frequency 
of cracked beam. 
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