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An active vibration absorber for suppressing the vibration of the nonlinear system when subjected to 
external and parametric excitations forces will be studied. The aim of this paper is to study the effect of 
the nonlinear controller on the vibrating system. The approximate solutions up to the second order are 
derived using the method  of multiple scale perturbation technique near the primary, principal 
parametric and internal resonance case. The stability of the solution is investigated using both phase 
plane methods and frequency response equations. The effects of different parameters on the vibration 
of the system are investigated. The reported results are compared to the available published work.  
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INTRODUCTION 
 
In weakly non-linear systems, internal resonances may 
occur if the linear natural frequencies are commensurate 
or nearly commensurate, and internal resonances 
provide coupling and energy exchange among the 
vibration modes (Nayfeh and Mook, 1979; Pai and 
Nayfeh, 1991). In the domain of mechanical vibration 
research, dynamic absorbers have extensive application 
in reducing vibrations of machinery. Nayfeh and Mook 
(1979) studied the saturation phenomenon when the 
natural frequencies of the system and controller are in the 
ratio 2:1. When the system is excited at a frequency near 
the high natural frequency, the structure responds at the 
frequency of the excitation and the amplitude of the 
response increases with the excitation amplitude 
(Golnaraghi, 1991). However, when the high-frequency 
model amplitude reaches a critical value, this mode 
saturates and all additional energy added to the system 
via increasing the excitation amplitude overflows into the 
low-frequency mode. Recently the use of internal 
resonance and saturation phenomenon in non-linear 
control  has been extensively demonstrated by Park et al.  
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(1993) and Oueini and Nayfeh (1996a). They used a 
second-order controller coupled to a linear vibrating 
system via quadratic or cubic terms. Oueini and 
Gonaraghi (1996) and Oueini et al. (1997) used the 
saturation phenomenon to successfully control the motion 
of a d. c. motor with a rigid beam attached. Pai et al. 
(2000) presented the study of controlling steady-state 
vibrations of a cantilever skewed plate using saturation 
phenomenon due to higher-order internal resonance. 
PZT patches were used as control actuators and 
sensors. Linear second order controllers were designed 
to couple with the plate via different orders of non-linear 
terms to establish energy bridges between the plate and 
controllers. Each linear second-order controller was 
designed to have 1:2 or 1:3 or 1:2:4 internal resonances 
with one of the plates vibration modes and hence was 
able to exchange energy with the plate around the 
specific modal frequency. Ashour and Nayfeh (2002) 
studied non-linear adaptive control of flexible structures 
using the saturation phenomenon. This phenomenon was 
utilized to suppress high-amplitude bending and torsional 
vibration modes of rectangular cantilever plates. A 2:1 
internal resonance condition was maintained between the 
plant and the controller. Energy was transferred 
completely from one part to the other. When the plant 
was forced at resonance, this energy-transfer mechanism 
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limited the response of the plant. Sayam et al. (2005) 
studied a numerical simulation of the response of a 
uniform, cantilever beam subjected to base excitation. A 
saturation absorber was implemented to control the beam 
properties that were introduced when piezoelectric 
actuators were bonded to the uniform beam. The 
resulting coupling between uniform, cantilever beam 
modes was fully included in the analytical model. It was 
shown that this model coupling had a significant effect on 
the beam response, which was not present when modal 
coupling was neglected. Maccari (2006) applied a new 
vibration control method for time delay non-linear 
oscillators to the principle resonance of a parametrically 
excited Lienard system under state feedback control with 
a time delay. Vibration control can be successfully 
performed. He demonstrated that the time delay and the 
feedback gains can enhance the control performance, 
reduce the amplitude peak and suppress the quasi-
periodic motion. Awrejcewicz and Pyryev (2006e) studied 
a mathematical model of a two-degree-of-freedom 
system. A novel thermodynamic model of frictional self-
excited strike-slip vibrations is proposed. A mathematical 
system consisting of two masses which are coupled by 
an elastic spring and moving vertically between two walls 
is considered. The applied friction force depends on the 
relative velocity of the sliding bodies. Stability of 
stationary solutions is considered. Ji and Hansen (2006) 
investigated the effect of time delay involved in a non-
linear feedback control on the stability of the trivial 
equilibrium of a vander Pol-Duffing oscillator. They have 
been discussed using linear stability analysis, center 
manifold technique, normal forms as well as a 
perturbation method. El-Bassiony (2006) used a non-
linear elastromeric damper or absorber to control the 
torsional vibrations of the crank shaft in internal 
combustion engines when subjected to both external and 
parametric excitation torque. He deduced that the 
damping coefficients of the crankshaft greatly affects 
system behavior. The smaller or more negative damping 
factor, the worst behavior of the system, as it leads to 
larger steady-state amplitudes and dynamic chaos or 
instability for both crankshaft and absorber. Larger 
magnitudes of absorber non-linearities reduce the 
absorber effectiveness. Jun et al. (2007), introduced the 
nonlinear saturation-based control strategy for the 
suppression of the self-excited vibration of a van der Pol 
oscillator. It is demonstrated that the saturation-based 
control method is effective in reducing the vibration 
response of the self-excited plant when the absorber’s 
frequency is exactly tuned to one-half the natural 
frequency of the plant. Eissa and Sayed (2006a, b; 
2008), studied the effects of different active controllers on 
simple and spring pendulum at the primary resonance via 
negative velocity feedback or its square or cubic. Eissa et 
al. (2005a, b), studied mathematically the vibrations of a 
cantilever beam or the aircraft wing and investigated the 
saturation      phenomena      that      suppresses     these 

 
 
 
 
vibrations at one of the extracted resonance cases. Also, 
Eissa et al. (2005c; 2006a, d), have studied both passive 
and active controllers of the vibrating systems of an 
aircraft wing. Furthermore, active control method has 
been applied to suppress steady state vibrations of 
different dynamical systems at the primary and different 
internal resonance ratios (Eissa et al., 2006; El-Serafi et 
al., 2006c). Sayed and Kamel (2011a) investigated the 
effect of linear absorber on the vibrating system and the 
saturation control of a linear absorber to reduce 
vibrations due to rotor blade flapping motion. The stability 
of the obtained numerical solution is investigated using 
both phase plane methods and frequency response 
equations. Variation of some parameters leads to the 
bending of the frequency response curves and hence to 
the jump phenomenon occurrence. Sayed and Hamed 
(2011b) investigated the response of a two-degree-of-
freedom system with quadratic coupling under parametric 
and harmonic excitations. The method of multiple scale 
perturbation method is applied to obtain approximate 
solutions up to and including the second-order 
approximations. Sayed and Kamel (2012) applied active 
control for suppressing the vibration of the non-linear 
plant when subjected to external and parametric 
excitations in the presence of 1:2 and 1:3 internal 
resonance. The method of multiple scale perturbation 
technique is applied to determine four first-order non-
linear ordinary differential equations that govern the 
modulation of the amplitudes and phases in the presence 
of internal resonance of the two systems with quadratic 
and cubic order of control. These equations were used to 
determine the steady state solutions and their stability. 
The stability study of non-linear periodic solution for the 
two considered resonance cases and the stability of the 
obtained numerical solution are investigated using 
frequency, force–response curves and phase-plane 
method. 

In this paper we added an active non-linear vibration 
controller to the system with internal resonances case 
using quadratic and cubic terms. The multiple time scale 
perturbation technique is applied throughout. An 
approximate solution is derived. The stability of the 
system is investigated applying both frequency response 
functions (FRFs) and phase-plane methods. The effects 
of the controller on the system behavior are studied 
numerically. Optimum working conditions of the system 
are obtained when applying active control method. 
 
 
MATHEMATICAL ANALYSIS 

 
The considered equation is the modified non-linear differential 
equation describing the vibration of an air craft wing which is given 
by: 
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where 
1X denotes the response of a second-order controller, 

1  

is the natural frequency of the controller, 
1  is the damping 

coefficient of the controller, 2X  represents one of the modal co-

ordinates of the wing, 2  is the modal frequency, 
2  is the 

damping ratio, 
1  and 2 are positive gains constants, F ,

1F  

are the amplitudes of the external excitation force,   and 
1 are 

the external excitation frequencies, 
1  and 2 are quadratic and 

cubic non-linear parameters respectively, and t  is the time. We 

seek a second-order approximate solution of Equation (1) applying 
multiple time scales method in the form 
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where 
n

nT t we have (0,1,2)n   where 0T  is the fast time 

scale and 1 2,T T  are the slow time scales respectively. The 

derivatives will be in the form 
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where , 0,1,2n

n

D n
T


 


. Substituting Equations (2) and 

(3) into Equation (1) and equating the coefficients of similar powers 

of , one obtain the following set of ordinary differential equations: 
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The general solution of Equations (4) and (5) are given in the form 
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where A1 and A2 are a complex function in 
1T  and cc represents 

the complex conjugate. Substituting Equation (8) into Equations (6) 
and (7), yields  
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For a bounded solution of Equations (9) and (10), the coefficients of 
the secular terms should be eliminated, and then the non-
homogeneous solutions are given by: 
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From the derived solutions (11 and 12), the resonance cases are 
reported: 
 

1. Primary resonance case: 2  , 1 2  . 

2. Sub-harmonic resonance case: 
1 2 1 2 1 22 , 3 , 4 ,         

2 22 , 3    .  

3. Internal resonance case: 2 1  , 2 13  , 

1 22  , 2 13  , 2 12  . 

4. Simultaneous resonance case: Any combination of the above 
resonance cases is considered as simultaneous or incident 
resonance case. 
 
 
STABILITY OF THE SYSTEM 
  
After studying numerically the different resonance cases, one of the 
worst  cases  has  been  chosen  to  study  the system stability. The  
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selected resonance case is primary case where 

2  , 1 22   and internal resonance 2 13  . In this 

case we introduce detuning parameters 1 and 2 such that  

 

2 1 13    , 
2 2     and 

1 2 22 2             (13) 

                                                                                                      
Eliminating the secular terms of Equations (9) and (10), leads to the 
solvability conditions for the first order approximation as follows 
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where na and  n  are the steady state amplitudes and the phases 

of the motions respectively. Substituting Equation (16) into 
Equations (14) and (15) and equating the real and imaginary parts 
we obtained: 
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where 1 1 1 1 23     T  and 2 2 1 2   T . 

 
 
STEADY STATE SOLUTIONS 

 
The periodic motions are obtained when 0.n na     Hence, the 

fixed points of Equations (17) to (20) are given by 
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In Equations (21) to (24) two cases ( 1 20, 0 a a ) were used, 

the frequency response equation was obtained in the following 
form; 
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NUMERICAL SOLUTION 
 
The Runge-Kutta of fourth order method was applied to 
determine the numerical solution of the given system of 
(1). Figure 1 shows that the steady state response 

without controller at primary resonance 2   is about 

9 times of the maximum amplitude F , the system is 
stable with limit cycle. 
 
 
Effects of the controller  
 
Figure 2 illustrates the results when the controller is 

effective, when 2 1 2, 2     and 2 13  . The 

effectiveness of the controller is Ea (Ea = steady state 
amplitude of the main system without controller / steady 
state amplitude of the main system with controller) is 
about 6. The oscillation of the system becomes tuned 
with multi limit cycle and the oscillation of the controller 
becomes stable with limit cycle. 

 
 
Frequency response curve 
 
In this section, the steady state response of the given 
system at various parameters near the simultaneous 
primary, parametric and internal resonance case is 
investigated and studied. Results are presented in 
graphical forms as steady state amplitudes against 
detuning parameters for both the system and the 
controller. 

For the case, 
 

2 10& 0 a a
and 

 
2 10& 0 a a

, Figure 3 shows that 
the steady state amplitude of the main system against the 

detuning parameter 2 as a basic case. Figure 4 shows 
that the steady state amplitude is monotonic decreasing 

function in damping coefficient 2  and the curve bent to 

the right leading to the occurrence of the jump 
phenomena.  The  steady  state  amplitude  of   the  main  
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Figure 1. System behavior without controller at simultaneous primary and principle parametric resonance 2 1 2, 2    . 

 
 
 

   

    

Figure 2. System behavior with controller at simultaneous primary, parametric and internal resonance 2 1 2 2 1, 2 , 3       . 

 
 
 

system is monotonic decreasing function in 2 , also for 

the decreasing natural frequency 2 , the curve bent to 

the right leading to the occurrence of the jump 
phenomena  as  shown  in  Figure  5. For the positive and 

negative values of 2 , produce either hard or soft spring 

respectively as the curve is either bent to the right or the 
left, leading to the appearance of the jump phenomena 
as in Figure 6. Figures 7(a) and (b) show that the steady 
state  amplitude  of  the  main   system  is    a   monotonic  
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Figure 3. Effects of the detuning parameter 2 . 
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Figure 4. Effects of the damping coefficient 2 .  
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Figure 5. Effects of the natural frequency 2 .  
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Figure 6. Effects of the non-linear parameter 2   

 
 
  
increasing function in the excitation amplitudes f and f1. 

 
 
Conclusions 

 
The main system of non-linear differential equation a 
single-degree-of-freedom system subjected to parametric 
and external excitations is considered with controller 

2 1: 3:1    and solved using multiple time scale 

perturbation method. The numerical solution is derived up 
to the third order approximation. The stability is obtained 
and studied applying both FRF and phase-plane 
methods. From this study the following may be 
concluded. 
 
1. The steady state amplitude is a monotonic decreasing 

function in the damping coefficients 1  and the natural 

frequencies 2 . 

2. The positive and negative values of 2 , produce either 

hard or soft spring respectively as the curve is either bent 
to the right or the left, leading to the appearance of the 
jump phenomenon. 
3. The steady state amplitude is monotonic increasing 
function in the excitation amplitudes F and F1. 
4. The steady state response without controller at 
primaryresonance 

2  , is about 9 times of the 

maximum amplitude f and the system is stable and free 
of dynamic chaos. 
5. The effectiveness of the absorber is about 6aE  at 

primary resonance 
2 ,  sub-harmonic resonance 

1 22  and internal resonance 
2 13   this mean that the 

vibration of the main system can be reduced via active 
control. 
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Figure 7. Effects of the excitation amplitude f (a) and f1 (b).  
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