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Most efficient algorithms for rotating 2D images are based on the succession of three translations, 
following the lines, then the columns and the lines of the image again (LCL). These translations result 
from the decomposition of the rotation matrix into a product of an upper triangular matrix, a lower 
triangular matrix and an upper triangular matrix (ULU). We have shown in this paper that the 
decomposition of the rotation matrix is not unique and have separated it into a product of a lower 
triangular matrix, an upper triangular matrix and a lower triangular matrix (LUL). This new 
decomposition led to a new algorithm based on a succession of three translations following the 
columns, then the lines and the columns of the images again (CLC). Statistical analysis of experimental 
results showed that the computational complexity of images rotation does not depend significantly 
(p>0.05) on the factorization ULU or LUL, whereas the precision depends on it significantly (p<0.05). 
Each of the two algorithms of rotation is more precise for certain images and for certain angles. The 
method can be generalized in a case of 3D image rotation using the Euler angles. 
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INTRODUCTION 
 
Rotation of a 2D image about its Cartesian origin can be 
accomplished by translating coordinates ( )yx,  of this 
image into coordinates 
( �y�x�, yy�xx rr cossinsincos +=−= ), where �  is 
the counter-clockwise angle of rotation with respect to the 
horizontal axis of the input image (Pratt 1997). The 
vector-space representation of rotation is given by: 
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θR  being the rotation matrix. 

 
The new coordinates xr and yr correspond to new  
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pixels, generally obtained by interpolation. The basic prin-
ciple of all methods of interpolation of images consists to 
determine the parameter of a representation of an analo-
gical image obtained from the digital image. Different 
interpolation functions were developed, nearest neighbor, 
linear, cubic and quadratic B-Spline, etc. (Thevenaz et 
al., 2000). The quality of an algorithm for rotating images, 
in terms of precision, is directly related to the order of 
accuracy of the underlying interpolation mo-del (Schoen-
berg, 1946). Nearest neighbor functions are simple to 
implement but are likely to produce images with notice-
able artifacts (Pratt, 1978). More satisfactory re-sults can 
be obtained using B-spline functions (Hou and Andrews, 
1978; Keys, 1981; Unser et al., 1991). In terms of compu-
tational efficiency, the quality of images rotation depends 
on hardware architectures as well as algorithms (Suchitra 
et al., 2006). 

The work presented in this paper is set in the frame-
work of algorithms for rotating 2D images developed by 
Unser et al. (1995), Owen and Makedon (1997), algori-
thms based on a succession of  translations of the lines  
and  the  columns of the  image  implemented by linear 1- 
D  filtering. These translations result from the decomposi- 
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)(θR into a product of triangular matrices. The first decom-

position of )(θR  into a product of two triangular matrices 
were implemented in an algorithm for rotating images by 
Catmul and Smith (1980), Friedman (1981) and Fraser 
(1989): 
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Paeth (1986), Danielson and Hammerin (1992) factorized  

)(θR  into a product of three triangular matrices, an  
upper triangular matrix, a lower triangular matrix and an  
upper triangular matrix: 
 

�
�

	


�

� −
×�
�

	


�

�
×�
�

	


�

� −
=

10
)2/tan(1

1)sin(
01

10
)2/tan(1

)(
θ

θ
θ

θR
        (2) 

 
The Upper-Lower-Upper (ULU) factorization gives in 

relation (2) leads to algorithms based on the succession 
of three translations, following the lines, then the columns 
and the lines of the image again called three-pass 
rotation algorithms. We demonstrate in section 2 that this 
factorization is not unique and give an alternative decom-
position which leads in section 3 to a new algorithm. In 
section 4 we carried out rotation experiments with various 
algorithms based on the one hand on the ULU factoriza-
tion and on the other hand on our factorization, and 
compare the quality of images obtained. 
 
 
Generalised decomposition of the rotation matrix 
 

The rotation matrix �
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decomposed into a product of three triangular matrices 
according to four transformations resulting from the 
expansion of ( )θcos  and ( )�sin  given by relations (7) 
and (8) respectively. These transformations derive from 
three basic trigonometric relations (3), (4) and (5). 
 

( ) ( )2sin2cos1 2 θθ =−
                       (3)   

    
( ) ( )2cos2cos1 2 θθ =+

                                                     (4) 
 

( ) ( ) ( )2cos2sin2sin θθθ =
                                               (5) 

 
From relation (5) we deduce 
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( ) ( ) ( )2tansin
2
1

2sin 2 θθθ =                                    (6) 

 
Relations (3) and (6) give ( ) ( ) ( )2tansin1cos θθθ −=      (7) 

 
By dividing relation (5) by relation (4) we obtain relation  

(8) 
 

( ) ( )( ) ( )2tancos1sin θθθ +=               (8)

  
First transformation: transformation of the elements of 

the first line of )(θR  
By replacing the elements of the first line of the rotation 

matrix )(θR  by the expressions of the relation (7) and 
(8), we obtain  
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which can be written as a product of the following three 
triangular matrices. 
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This decomposition is a product of three matrices, an 
upper triangular matrix, a lower triangular matrix and an 
upper triangular matrix (ULU factorization). 

Second transformation: transformation of the elements 
of the second column of )(θR  

By replacing the elements of the second column of the 
rotation matrix )(θR  by the expressions of the relation 
(7) and (8), we obtain 
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which can be written as a product of the following three 
triangular matrices. 
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This decomposition is a product of three matrices, an 

upper triangular matrix, a lower triangular matrix and an 
upper triangular matrix (ULU factorization). 

Third transformation: transformation of the elements of 
the second line of )(θR  

By replacing the elements of the second line of the 
rotation matrix )(θR  by the expressions of the relation 
(7) and (8), we obtain 
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which can be written as a product of the following three 
triangular matrices. 
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This decomposition is a product of three matrices, a 
lower triangular matrix, an upper triangular matrix and a 
lower triangular matrix (LUL factorization). 

Fourth transformation: transformation of the elements 
of the first column of )(θR  

By replacing the elements of the first column of the 
rotation matrix )(θR  by the expressions of the relation 
(7) and (8), we obtain 
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product of the following three triangular matrices. 
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This decomposition is a product of three matrices, a 
lower triangular matrix, an upper triangular matrix and a 
lower triangular matrix (LUL factorization). 
 
 
Application to the rotation of images 
 
2D image rotation 
 
The first two decompositions of the rotation matrix are the 
ULU factorizations, which generate classical algorithms 
of rotating images based on a succession of three 
translations: 

Translation of the image following the lines by applying 
an upper triangular matrix, 

Translation of the image following the columns by 
applying a lower triangular matrix, 

Translation of the image following the lines by applying 
an upper triangular matrix. 

The last two decompositions of the rotation matrix are 
the LUL factorizations, where the lower triangular matrix  
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θ  is applied is translated at the  

coordinates ( )( )2tan �xx, y + . Its coordinates therefore 

undergoes a translation of ( )2tan �x+  in the y direction. 

As a consequence, the columns of an image on which 
this matrix is applied are translated to the left at each 

point ( )yx,  of ( )2tan �x  and the image is sheared in 

the y direction. When the upper triangular matrix 
( )
�
�

	


�

� −
10

sin1 θ
 is applied to coordinates, it is translated 

at the coordinates ( )( )yyx ,sin θ− . The coordinates 

( )yx,  therefore undergoes a translation of ( )θsiny−  in 
the x direction. As a consequence, the lines of an image 
on which this matrix is applied are translated to the right 
at each point ( )yx,  of ( )θsiny  and the image is 
sheared in the x direction. We conclude that the last two 
decompositions of the rotation matrix yield algorithms of 
rotating images based on the succession of the following 
three translations: 

Translation of the image following the columns by app-
lying the: 
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Figure 1. Euler angles - The xyz (fixed) system is shown 
in blue, the XYZ (rotated) system is Shown in red. The 
line of nodes, labelled N, is shown in green. 
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At the end of these three translations, following the 

columns, then the lines and finally the columns (CLC) a 
pixel of coordinates ( )yx,  is displaced at the coordinates 

( )( ) ( ) ( )( )[ ] ( )( )2tansin2tan2tansin2tan ���xyx�x�, y�xyx +−+++− . 

The determinant of each of the elementary matrices in 
(9), (10), (11) and (12) is one, indicating that all areas in 
the image are preserved throughout the translation 
process (Unser et al., 1995). 
 
 
3D image rotation 
 
In a case of 3D image rotation using the Euler angles 
(Figure 1), the rotation matrixes R is defined as follow.  
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R is a product of three square (3x3) matrices, γR , 

βR and αR . 

�
�
�

�

	








�

�

−=
100
0cossin
0sincos

γγ
γγ

γR , 

 

�
�
�

�

	








�

�

−
=

ββ
βββ

cossin0
sincos0

001
R , 

 

�
�
�

�

	








�

�

−=
100
0cossin
0sincos

αα
αα

αR  

 
Each of these matrixes can be decomposed into a 
product of a lower triangular matrix, an upper triangular 
matrix and a lower triangular matrix (LUL). Then, R  
becomes LUL RRR γγγ LUL RRR βββ LUL RRR ααα , which is a 

LULULUL matrix that leads to an algorithm based on a 
succession of 7 translations following the x, y 
 
 
RESULTS AND DISCUSSION 
 
Experimental setting 
 
The two types of factorization of the rotation matrix, the 
LUL and the ULU factorizations were compared in their 
efficiency for implementing the rotation of 2D images. 
The efficiency of the algorithms for rotating images 
derived from the two types of factorization was evaluated 
on two criteria of performance: the residual root mean 
square (RMS) error and the CPU time in Intel Pentium III 
670 MHz PC with 256 MB RAM. The Rotation was imple- 

mented in a separable fashion using Matlab routines 
(Gonzalez et al. 2004). Three interpolation functions were 
considered: nearest-neighbor, linear B-spline, cubic B-
spline. In our experiments, three square (256 x 256) ima-
(Figure 2) and three rectangular images (Figure 3) were 
used. The residual RMS error was computed for a series 
of back and forth rotations at various angle ranging from 
5° to 45°, on the 128  x128 central portion of the image to 
factor out boundary effects. The CPU time was measured 
after a complete or z direction or z direction  of  four  suc- 



 
 
  
 
 

 

a) 

 

b) 

 

c)  
 
Figure 2. Square (256 x 256) images involved 
in our experiments, a) Fra, b) Lena, c) Bongou. 
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Figure 3. Rectangular images (Photo © NASA / Hubble heritage 
team, STSci / Aura) involved in our experiments, a) Centaurus 
(358x540), b) Sombrero (302 x 540), c) Whirlpool (358 x 540). 
 
 
 

 
 
Figure 4. Illustration of the three-pass rotation algorithm derived 
from the ULU factorization of the rotation matrix (Original image: 
Centaurus), a) Shearing along the y-axis b) Shearing along the x-
axis c) Shearing along the y-axis which yields the rotated image. 
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Figure 5. Illustration of the three-pass rotation algorithm 
derived from the LUL factorization of the rotation matrix 
(Original image: Centaurus), a) Shearing along the x-axis 
b) Shearing along the y-axis c) Shearing along the x-axis 
which yields the rotated image. 

 
 
 
cessive rotations of 90°, at the end of which the image is 
back in its initial position. The residual RMS error mea-
sure was repeated twice, and the CPU time measured 
was repeated five times. Results were statistically analy-
zed using Statgraphics and Statistica to know if the 
LUL and the ULU factorizations are significantly different 
in terms of efficiency of the algorithms for rotating ima-
ges, and estimate the amount of variability contributed by 
each of the factors influencing this result.  

Figures 4 and 5 illustrate the images rotation with each 
algorithm. The rotated images obtained from an original 
image do not exhibit the same characteristics.  

                                   
 
 
 

 
 
Figure 6. The CPU time (s) of rotation of images. Image 1: 
“Bongou”, Image 2: “Centaurus”, Image 3: “Fra”, Image 4: 
“Lena”, Image 5: “Sombrero”, Image 6: “Whirlpool”. Interpolation 
1: nearest-neighbor, Interpolation 2: linear B-spline, Interpolation 
3: cubic B-spline. 

 
 
 
The CPU time of rotation 
 
The analysis of variance (ANOVA) of the CPU time mea-
sured after a complete rotation, by a series of four suc-
cesssive rotations of 90°, at the end of which the image is 
back in its initial position, shows that this CPU time de-
pends significantly (p<0.05) on the image and the interpo-
lation function but does not depend significantly (p>0.05) 
on the decomposition ULU or LUL of the rotation matrix. 
Unser et al. (1995) reported this dependence, but the 
amount of variability contributed by each of the factors 
was not evaluated. The variance components analysis of 
this time of rotation, which estimates the amount of varia-
bility contributed by each of the factors, shows that the 
factor contributing the most variance is the image whose 
contribution represents 65.4% of the total variation in 
time, followed by the interpolation function (34.6%). The 
analysis of variance (ANOVA) for the CPU times mea-
sured with each algorithm for rotating images (LCL, CLC) 
derived from the two types of factorization shows that 
they are not significantly different. This result indi-cates 
that the computational complexity of the two algorithms is 
identical. The nearest-neighbor interpolation func-tion 
gives the lowest time of rotation, followed by the linear B-
spline function and the cubic B-spline function (Figure 6). 
This result is in agreement with other studies (Unser et al. 
1995, Thevenaz et al.,  2000).  We  observe  in  Figure  6 
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a) 

 

b)  
 
Figure 7. The RMS error measured for the six images of Figures 1 and 2. a) CLC algorithm b) 
LCL algorithm. Image 1: “Bongou”, Image 2: “Centaurus”, Image 3: “Fra”, Image 4: “Lena”, Image 
5: “Sombrero”, Image 6: “Whirlpool”. Interpolation 1: nearest-neighbour, Interpolation 2 : linear B-
spline, Interpolation 3 : cubic B-spline. 
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Figure 8. The difference of RMS error calculated between CLC algorithm and LCL algorithm. Image 1: “Bongou”, 
Image 2: “Centaurus”, Image 3: “Fra”, Image 4: “Lena”, Image 5: “Sombrero”, Image 6: “Whirlpool”. Interpolation 1: 
nearest-neighbour, Interpolation 2: linear B-spline, Interpolation 3: cubic B-spline. 

 
 
 
that the time of rotation is proportional to the size of the  
image. 
 
 
The residual root mean square (RMS) error 
 
The analysis of variance (ANOVA) of the residual RMS 
error computed for a series of back and forth rotations at 
various angle ranging from 5° to 45°, on the 128 x 128 
central portion of the image shows that this RMS error 
depends significantly (p<0.05) on the image, the interpo-
lation function, the angle and the decomposition ULU or 
LUL of the rotation matrix. Each algorithm for rotating 
images (LCL, CLC) derived from the two types of factori-
zation depends significantly (p<0.05) on the image 
(86.6% for CLC and 84% for LCL), the interpolation func-
tion (12.9% for CLC and 11.6% for LCL) and the angle 
(0.5% for CLC and 4.4% for LCL). Our results (Figure 7) 
showing the RMS error measured for six images are in 
agreement with earlier reports (Unser et al. 1995). The 
analysis of variance (ANOVA) of the difference computed 

between the RMS errors measured for each rotating 
images algorithm, called “delta”, shows that it depends 
significantly (p<0.05) on the image and the angle but 
does not depend significantly (p>0.05) on the interpo-
lation function. The variance components analysis of 
“delta”, which estimates the amount of variability contri-
buted by each of the factors, shows that the factor contri-
buting the most variance is the image whose contribution 
represents 73.1% of the total variation in RMS errors, 
followed by the angle (22.2%). This difference “delta” 
plotted in Figure 8 indicates that each of the two algori-
thms of rotation is more precise for certain images and 
for certain angles. For example, algorithm CLC is more 
precise at 45° for images 1, 2 and 6, whereas algorithm 
LCL is more precise at 5° for images 1, 2 and 6. 
 
 
Conclusion 
 
We have shown in this paper that the decomposition of 
the rotation matrix is  not  unique  and  have  separated  it  



 
 
 
 
into a product of a lower triangular matrix , an upper trian- 
gular matrix and a lower triangular matrix. This new 
decomposition led to algorithm based on a succession of 
three translations following the columns, then the lines 
and the columns of the images again. Statistical analysis 
showed that this new algorithm compare very well to the 
classical algorithm based on the succession of three 
translations, following the lines, then the columns and the 
lines of the image again in terms of the time of rotation. 
Concerning the RMS error, each of the two algorithms of 
rotation is more precise for certain images and for certain 
angles. 
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