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To support networked multimedia applications, it is  important for the network to provide guaranteed 
quality-of-service (QoS). One way to provide such s ervices is for the network to perform QoS routing, 
where the path taken must fulfill a given set of co nstraints. Multi-constrained path (MCP) problem ref ers 
to the problem of finding a path through a network subject to multiple additive constraints. It has be en 
proven that this problem is Non-deterministic Polyn omial time (NP)-complete and therefore no exact 
algorithm can be found. As such, various heuristics  and approximation algorithms have been proposed 
to solve the MCP problem. This paper proposed a sol ution to the MCP problem using genetic algorithm 
(GA). The effectiveness of the proposed algorithm i s evaluated through simulation. The performance of 
the algorithm is then compared with an exact algori thm called the depth first search and a common 
shortest path algorithm called the Dijkstra’s algor ithm. The result of the simulation shows that the 
performance of the proposed algorithm is almost com parable to an exact algorithm, while at the same 
time can execute much faster. The proposed algorith m has also been shown to have good network link 
utilization and is able to scale well with network size. 
 
Key words:  Genetic algorithm, multi-constrained path problem, quality-of-service (QoS), routing. 

 
 
INTRODUCTION 
 
With the emergence of networked multimedia 
applications, the traditional routing method is no longer 
adequate. This is because multimedia-oriented 
applications require a different set of requirements than 
the one required by data-oriented applications. According 
to Daneshmand et al. (1997), there are three primary 
performance parameters for multimedia applications: 
Delay, mean opinion score and differential delay. From 
networking point of view, these performance parameters 
can be translated to network parameters such as delay, 
jitter and bandwidth. Therefore, to ensure that the 
requirements for multimedia applications can be fulfilled, 
it is important for the network to be able to consider the 
corresponding quality-of-service (QoS) parameters when 
performing data transfer. One way of achieving this is by 
implementing QoS routing. 

In general, routing consists of two tasks. The first task 
is to distribute the state information to the network and 
the second task is to find a feasible path by executing a 
routing algorithm that uses the state information as its 
input. This paper focuses on the second task and 
assumes that all the nodes have the correct state 

information. In traditional routing, the goal of the routing 
algorithm is to find the least-cost path from sender to 
receiver. QoS routing, on the other hand, has a more 
complicated goal. There are two main goals that need to 
be achieved by the QoS routing algorithm (Ghosh et al., 
2001; Chen and Nahrstedt, 1998a). The first goal is to 
find a path that satisfies the QoS requirements. Such 
path is called a feasible path. Data transfer can only be 
performed when a feasible path is found. The second 
goal is to optimize the global network resource utilization. 
The second goal is necessary so that the network can 
accommodate as many QoS requests as possible. 

There are various QoS routing algorithms that have 
been proposed by researchers. The algorithms are 
normally developed to address different problems based 
on the composition rule. There are three main 
composition rules: additive, multiplicative and concave. 
The definition of the composition rules as specified by 
Wang and Crowcroft (1996), and Chen and Nahrstedt 
(1998a) are given as follows: 
 
Let d(i,j) be a QoS metric for link (i, j). For any path p = (i, 



 

 
 
 
 
j, k, …, l, m), metric d is additive if: 
 
d(p) = d(i,j) + d(j,k) + … + d(l,m) 
 
Metric d is multiplicative if: 
 
d(p) = d(i,j) x d(j,k) x … x d(l,m) 
 
Metric d is concave if: 
 
d(p) = min[d(i,j), d(j,k),  … , d(l,m)] 
 
Constraints associated with concave QoS parameters 
can be easily dealt with by pruning all links that do not 
satisfy the constraints (Wang and Crowcroft, 1996). 
Several researchers such as Ghosh et al. (2001), Wang 
and Crowcroft (1996) and Yang et al. (2001) have 
developed algorithms to deal with a concave parameter 
or a combination of a concave and an additive parameter 
(that is, bandwidth-delay constraint). Constraints 
associated with multiplicative QoS parameters can be 
converted to additive parameters by using logarithm. 
However, the problem of finding a path subject to 
constraints of two or more additive QoS parameters is not 
very easy because it has been proven to be NP-complete 
(Wang and Crowcroft, 1996). This paper will mainly focus 
on this type of problem, which is also commonly known 
as the multi-constrained path (MCP) problem. 
 
 
Definition 1   
 
Multi-constrained path (MCP) problem 
 
Consider a network represented by a directed graph 

),( ENG = , where N is the set of nodes and E is the set 

of links. Each link Eji ∈),(  is associated with K additive 

QoS metrics ),( jiwk , k = 1, 2, … , K where all metrics 

are non-negatives. The problem is to find a path p from a 
source node s to a destination node d such that 

∑
∈

≤=
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kkk Cjiwpw
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),()(  for k = 1, 2, … , K, where Ck is 

the constraint for the kth QoS metric. 
Various heuristics and approximation algorithms have 

been proposed to solve the MCP problem. However, 
most of them are based on well-known shortest path 
routing algorithms such as Dijkstra’s Algorithm or 
Bellman-Ford algorithm. The idea is to convert the 
multiple QoS metrics into a single metric which can be 
easily solved using a common shortest path routing 
algorithm. The earliest work on solving the MCP problem 
can be traced back to Jaffe (1984), where he solved a 
two-constraint problem by combining the two link metrics 
into a single mixed link metric.  Chen and Nahrstedt 
(1998b) proposed an approximation to the MCP problem 
by scaling down all the QoS metrics except one. The 
problem is then simplified to  the  problem  of  finding  the  
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shortest path with respect to a single metric (the one that 
is not scaled down). Mieghem et al. (2001) proposed an 
algorithm called SAMCRA where the total cost with 
respect to each QoS metric is calculated and the total 
path cost is determined by the QoS metric that gives the 
largest total cost. Other works that are also based on 
techniques similar to the ones aforementioned are 
Khadivi et al. (2004) and Xue et al. (2008). There are also 
researchers who attempted to solve the MCP problem 
using other approaches such as flooding (Yen et al., 
2008) and vector converting (Dai and Liu, 2009). MCP 
algorithms utilizing AI techniques such as fuzzy logic 
(Jing et al., 2008) and mobile agent (Wei and Yi, 2009) 
have also been explored by researchers. 

This paper proposes a QoS routing algorithm based on 
genetic algorithm (GA) for solving the MCP problem. GA 
is chosen because it is a general-purpose search and 
optimization algorithm suitable for problems that have 
one or more of the following characteristics (Mitchell, 
1996): 
 
1. The search space is large; 
2. The search space is known not to be perfectly smooth 
and unimodal; 
3. The space is not well understood; 
4. The fitness function is noisy; 
5. The task does not require a global optimum to be 
found. 
 
The QoS routing problem fits the characteristics given 
previously. It is a search problem, where the main goal is 
to find a path that can fulfill the QoS requirement. The 
search space can be large for large networks. The search 
space is also not very smooth due to the varying types of 
network links and the varying parameters on each link. 
And finally, the QoS routing problem does not require a 
global optimum to be found. It only needs to find one 
feasible path, and there can be more than one of such 
path in the network. Due to the similarities between the 
characteristics of the QoS routing problem and the type 
of problem that the GA can solve well, it is highly likely 
that genetic algorithm is suitable to be used for solving 
the QoS routing problem. 
 
 
LITERATURE REVIEW 
 
Introduction to genetic algorithm 
 
Genetic algorithm (GA) is a search algorithm that is 
inspired by the theory of genetics and natural selection 
(Holland, 1975; Goldberg, 1989). The problem to be 
solved using GA is encoded as a chromosome that 
consists of several genes. The solution of the problem is 
represented by a group of chromosomes referred to as a 
population. During each iteration of the algorithm, the 
chromosomes in the population will undergo one or more 
genetic operations such as crossover and  mutation.  The 
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result of the genetic operations will become the next 
generation of the solution. This process continues until 
either the solution is found or a certain termination 
condition is met. The idea behind GA is to have the 
chromosomes in the population to slowly converge to an 
optimal solution. At the same time, the algorithm is 
supposed to maintain enough diversity so that it can 
search a large search space. 

The general outline of GA as described by Goldberg 
(1989) and Dumetrescu et al. (2000) is as follows: 
 
1. Initialize the initial population. The initial population is 
normally created randomly or based on some heuristics. 
2. Evaluate the fitness of each chromosome on the 
population. 
3. Perform selection. In this process, chromosomes are 
selected to be put into the mating pool. A selection 
scheme is utilized to choose the chromosomes. 
4. Perform crossover. This process allows two 
chromosomes to exchange information and produce two 
new chromosomes. The parent chromosomes are 
selected randomly from the mating pool. 
5. Perform mutation to the new chromosomes produced 
by crossover. This process randomly changes the 
content of a gene in a chromosome. This is done to 
create diversity in the population and allows the search of 
a new search space. Each gene will be considered for 
mutation with a certain probability. 
 
The algorithm would then loop to step 2 and repeat all the 
subsequent steps until a termination condition is met. The 
termination condition can be one of the following: 
 
1. A desired solution is found; 
2. The population converges; 
3. The maximum number of iteration has been reached. 
 
 
GA-based routing algorithms 
 
Many researchers have applied GA to various types of 
network routing problems. One of the earliest works on 
the use of GA for network routing is the work by 
Shimamoto et al. (1993). Shimamoto proposed a 
dynamic routing control based on GA to provide flexible 
real-time management of the dynamic traffic changes in 
broadband networks. The goal is to keep the traffic loss 
rate below a certain target value. He (1997) proposed a 
GA-based algorithm for the joint problem of selecting a 
route for each communicating node pair and a capacity 
value for each link the network.  However, the proposed 
algorithm is more applicable to a network design problem 
rather than to a routing problem. 

The first real GA-based routing algorithm was proposed 
by Munetomo et al. (1998). This algorithm addresses the 
problem of shortest path routing where delay is used as 
the   link   parameter.   The   proposed   algorithm   is  not  

 
 
 
 
intended to replace standard shortest path algorithm such 
as Dijkstra’s algorithm. Instead, the idea is to produce 
alternate paths which can be quickly used in the case of 
link failures. Ahn and Ramakrishna (2002) also proposed 
a GA-based routing algorithm for solving the shortest 
path routing problem. However, instead of trying to 
generate alternate paths, this algorithm is intended to 
compete directly with Dijktra’s algorithm. They compared 
their results to that of Dijkstra’s algorithm and found out 
that GA has two main advantages. The first one is that 
the GA algorithm is insensitive to variations in network 
topologies with respect to route optimality and 
convergence speed. The second one is that the proposed 
GA-based routing algorithm is scalable in the sense that 
the real computation time does not increase very much 
as the network size gets larger. Other researchers who 
also used GA to solve the shortest path routing problem 
are Sinclair (1998) and Hamdan and El-Hawary (2002). 

With the rise of the importance of QoS routing, GA 
researchers have directed their attention to solving QoS 
routing problems. One of the earliest works on GA-based 
QoS routing algorithms comes from Xiang et al. (1999). 
Xiang proposes a GA-based QoS routing algorithm to 
solve a routing problem subject to four different QoS 
metrics: Delay, bandwidth, loss-rate and jitter. Wang and 
Wang (2001) and Riedl (2002) proposed GA-based QoS 
routing algorithms for solving the delay-bandwidth-
constraint routing problem. On top of finding a feasible 
path, these two algorithms are also designed to optimize 
network resource utilization. Barolli et al. (2002) 
attempted to solve the problem of QoS routing subject to 
two QoS metrics which are delay and transmission 
success rate. Koyama et al. (2004) took Barolli’s work 
further by introducing a multi-purpose optimization 
method that would further improve its performance. 

Even though all the algorithms discussed previously 
use GA, they all vary in terms of the details of their 
implementation. In GA, each part of the algorithm such as 
the genetic encoding, the selection scheme, the 
crossover and mutation operations and the fitness 
function can be implemented in many different ways. In 
terms of genetic encoding, there are three types of 
encoding commonly used in network routing problem. 
Researchers such as Munetomo et al. (1998) and Ahn 
and Ramakrishna (2002) use a list of node IDs from 
source to destination to represent the chromosome. On 
the other hand, researchers such as Wang and Wang 
(2001) and Xiang et al. (1999) use a binary string to 
represent the GA chromosome. A matrix is used to 
represent all the possible links between any two nodes. A 
binary 1 is assigned to a value in the matrix if there is link 
between the two nodes, and 0 otherwise. Barolli et al. 
(2002) and Koyama et al. (2004) model the network as a 
tree and the GA chromosome is made up of a binary 
string that represents the junctions in the tree. Since 
different algorithms use different types of genetic 
encoding,  the  crossover  and  mutation  operations  vary
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Table 1.  Comparisons between GA-based routing algorithms. 
 

Algorithm Routing problem Genetic encoding 

Shimamoto et al. (1993) Minimize call loss rate A string of route numbers for all paths 
He (1997) Minimize delay and cost A combination of line type and route serial number 
Munetomo et al. (1998) Shortest path A list of node IDs in the path 
Sinclair (1998) Shortest path (Not mentioned) 
Ahn and Ramakrishna (2002) Shortest path A list of node IDs in the path 
Hamdan and El-Hawary (2002) Shortest path A binary matrix where each cross point represents a link 

Xiang et al. (1999) Bandwidth, delay, loss rate and jitter 
constrained 

A binary string where each bit in the string represents a 
link in the network 

 

Wang and Wang (2001) Bandwidth-delay constrained A binary string where each bit in the string represents a 
link in the network 

 

Rield (2002) Shortest path and bandwidth-delay 
constrained (Not mentioned) 

 

Barolli et al. (2002) Delay and transmission success rate 
constrained 

A binary string where each bit in the string represents a 
junction in the tree structure used to represent the 
network 

 

Koyama et al. (2004)  Multi-constrained path 
A binary string where each bit in the string represents a 
junction in the tree structure used to represent the 
network 

 
 
 
between algorithms since they are highly dependent on 
the genetic encoding used. The fitness functions also 
vary between algorithms because they are derived from 
the routing problem to be solved and the focus of the 
algorithm. Table 1 summarizes the comparison between 
GA-based routing algorithms reviewed here with respect 
to the routing problem solved and the genetic encoding 
used. 

All the GA-based routing algorithms discussed earlier 
are designed for traditional fixed networks. However, in 
recent years, GA-based routing algorithms have also 
successfully been applied to other types of networks. 
Among them are mobile ad-hoc networks (Barolli et al., 
2010), wireless sensor networks (Nallusamy et al., 2010), 
wireless mesh networks (Hua et al., 2010), delay / 
disruption tolerant networks (Silva and Guardieiro, 2010) 
and optical networks (Tode et al., 2010). 
 
 
DESCRIPTION OF THE PROPOSED GA-BASED MCP 
ROUTING ALGORITHM 
 
Algorithm overview 
 
The proposed algorithm is designed to find a feasible 
path from source node to a destination node given a set 
of additive QoS requirement. The outline of the proposed 
algorithm is as follows: 
 
1. Randomly initialize the initial population;  

2. Evaluate the population using a fitness function; 
3. Create the mating pool, which consists of all the 
chromosomes in the current population; 
4. Apply crossover operator several times to create m 
new children for the new population (where m is the 
population size). The parents are selected using the 
selection operator. Each pair of parent chromosome can 
only mate once and the children produced are only 
accepted into the new population if they are not similar to 
the previously produced children. This is done to diversify 
the search and discourage convergence; 
5. If all the possible pair of parents have mated and there 
are still not enough children to populate the new 
population, select members from the previous population 
using the selection operator to fill in the new population. 
6. Apply mutation operator on the chromosomes in the 
mating pool. Each chromosome has a certain probability 
to be mutated. Mutation result must not be the same as 
any of the chromosome in the current population or else it 
would be ignored. 
7. Replace the worst (the one with the lowest fitness 
value) chromosome produced by the genetic operators 
(crossover and mutation) with the best chromosome in 
the previous population. 
8. Repeat step 2 until a feasible path is found or the 
maximum number of iteration is reached. 

 
The overall procedure of the algorithm is depicted in the 
flowchart shown in Figure 1.  
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Figure 1.  Overall procedure of the GA-based QoS routing 
algorithm. 

 
 
 
 
As opposed to the algorithms proposed by Munetomo et 
al. (1998) and Ahn and Ramakrishna (2002) where the 
objective of the algorithm is to find the shortest path, the 
algorithm proposed here is designed to search a large 
search space for a feasible path. Therefore, this 
algorithm will not run until convergence. In fact, 
convergence is discouraged by not allowing similar 
chromosomes to be in the population. When a new 
chromosome is produced through a genetic operation 
(either crossover or mutation), the new chromosome is 
only included in the next generation if a similar 
chromosome does not yet exist. The proposed algorithm 
also includes a novel fitness function which is designed to 
solve the MCP routing problem. 
 
 
Genetic representation 
 
A communication network can be modeled as a directed 
graph G(N,E), where N is the set of nodes representing 
the routers and E is the set of edges representing the 
links that connect between the routers. For a network 
supporting multiple QoS metrics, each edge (i,j) is 
associate with k independent metrics, d1(i,j), d2(i,j), d3(i,j), 
… , dk(i,j) where d(i,j) is a real positive number. 

The proposed algorithm is intended to be used in 
source routing where the sender executes the algorithm 
and finds a feasible path before the actual data can be 
sent. There are two methods by which the genetic 
encoding can be formulated. The first method is to follow 
the traditional GA where a chromosome is encoded as a 
string of binaries. The second method is to encode the 
chromosome using an encoding specific to the problem 
to be solved. For this algorithm, the latter method is 
chosen where each chromosome consists of a sequence 
of nodes that are in the path from sender to receiver. The 
first gene in the chromosome is always the sender and 
the last gene in the chromosome is always the receiver. 
Figure 2 shows an example of a small network that 
consists of six nodes where each link has two QoS 
metrics associated with it. An application requesting a 
connection between A and F can have its request fulfilled 
by two different paths: A�B�C�F and A�D�E�F. 
These two paths can be encoded as two different 
chromosomes: 
 
Chromosome 1 (path 1): [A B C F] 
Chromosome 2 (path 2): [A D E F] 
 
The top path has a total QoS metric values of (8.11) and 
the bottom path has a total QoS metric values of (21.15). 
For a QoS aware application, any connection request 
made is accompanied by a set of QoS requirement. For 
example, if a multimedia application requested a 
connection with a QoS requirement of (15.13), it can be 
only fulfilled by the top path [A B C F]. 

Since different paths may have different number of 
intermediate nodes, the chromosomes will be  of  variable 
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Figure 2.  A small network with links that have two QoS metrics (k = 
2). 
 
 
 
Length. However, the maximum length of a    chromo-
some   cannot   exceed the   total number of nodes in the 
network. Any repeated nodes in the chromosome signify 
that the path represented by the chromosome contains a 
loop and in network routing, any loop should be 
eliminated. 
 
 
Initial population 
 
In the beginning, the population is filled with 
chromosomes that represent random paths.  Even 
though the paths are random, they are supposed to be 
valid paths, where the chromosomes consist of a 
sequence of nodes that are in the path from sender to 
receiver. The number of chromosomes generated 
depends on the population size. 

The algorithm used to generate the random path is 
adapted from Ahn and Ramakrishna (2002). The 
algorithm goes as follows: 
 
1. Start from the sending node; 
2. Randomly choose, with equal probability, one of the 
nodes that are connected to the current node; 
3. If the chosen node has not been visited before, mark 
that node as the next node in the path. Otherwise, find 
another node; 
4. If all the neighboring nodes have been visited, go back 
to step 1; 
 
Otherwise, repeat step 2 by using the next node as the 
current node. Do this until the receiving node is found. 
 
 
Fitness function 
 
Each chromosome in the population is associated with a 
fitness value that is calculated using a fitness function. 
This value indicates how good the solution is for a 
particular chromosome (Dumetrescu et al., 2000). This 
information is then used to pick the chromosomes that 
will contribute to the formation of the next generation of 
solution. The fitness value is  computed  using  a   fitness 
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function. The fitness function is highly dependant on the 
problem to be solved. For the MCP problem, the 
objective is to find a path that satisfies a set of QoS 
requirement as defined in Definition 1. In general, the 
smaller the total QoS values are on the links along a path 
from source to destination, the larger the possibility for 
the path to satisfy the given QoS requirement. Therefore, 
the fitness function must minimize the total cost CT, which 
is defined as follows: 
 

∑∑
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klT cC                                                           (1) 

 
where ckl represents the kth QoS metric on link l, K 
represents the number of QoS metric on each link and L 
represents the total number of links in the path. However, 
since the range of values of each QoS metric can vary 
depending on the type of the metric, simply adding up all 
the QoS metrics would cause the result to be dominated 
by QoS metrics that have larger values compared to the 
others. Therefore, before the QoS metrics can be added 
up, each QoS metric must be normalized as follows: 
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where R represents the total number of possible paths 

from source to destination. The term ∑∑
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all the kth QoS metric on each link along each possible 
path. 

Based on the argument aforementioned, given a 
population of size p, the fitness function is defined as 
follows: 
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where fi represents the fitness value of the chromosome i, 
K represents the number of QoS metric on each network 
link, ∑

∈

=
il

ijlij cc represents the sum of the jth QoS metric 

for all links l within chromosome i, and ∑
−

=

=
1

0

p

i
ijj cc is 

obtained by adding up the jth QoS metrics for all links of 
all the chromosomes in the population. The division with 
K is done to normalize the whole result so that the 
resulting fitness value is between 0 and 1, where a lower 
value indicates  a  better  path.  The  total  fitness   values 
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from all the chromosomes in the population would add up 
to 1. 

As an example, assume the network depicted in Figure 
2. There are two paths that can be used to travel from 
node A to node F. Therefore, we will assume that the 
population has two chromosomes representing these two 
paths. The fitness values for the top path (f0) and the 
bottom path (f1) are computed as follows: 
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In the example aforementioned, the value given by the 
fitness function indicates that the top path is the better 
path. This can be verified to be correct considering that 
the top path generally has lower QoS metric values. It is 
important to point out that the generality of the proposed 
algorithm which enables it to be applied to any k-
constrained MCP QoS routing problem is due to the 
generality of this fitness function. 
 
 
Selection 
 
In order to generate the next generation of solutions, a 
mating pool that consists of the members of the current 
population is created. The chromosomes in the mating 
pool are then subjected to genetic operations such as 
crossover and mutation. Parents for the crossover 
operation are selected using a selection operator. The 
idea behind the selection operator is to allow 
chromosomes with better fitness values a higher chance 
to reproduce through crossover operation. Parents with 
good fitness values are expected to produce children with 
even better fitness values. 

According to Dumetrescu et al. (2000), there are 
several categories of selection scheme. Among them are 
proportional selection, rank-based selection and 
tournament selection. For each category, there are 
several variations of the selection schemes. This 
algorithm uses a type of proportional selection called 
stochastic sampling with replacement, implemented using 
roulette wheel (Monte Carlo) method. To select two 
parents, this operation is performed twice. A pair of 
parent chromosomes can only be selected once. 
 
 
Crossover 
 
The first genetic operation done to the chromosomes in 
the mating pool is crossover. The idea behind crossover 
is   to   create   an   information   exchange  between  two  

 
 
 
 
chromosomes (Dumetrescu, 2000). By doing so, the 
algorithm will explore new paths and hopefully be able to 
find better paths in the process. 

In order to perform crossover, two chromosomes from 
the mating pool will be selected using the selection 
operator. These two chromosomes will become the 
parent chromosomes. In an iteration, a pair of parents 
can only be selected for crossover once. To ensure that 
the paths generated by the crossover operation are still 
valid paths, the two chromosomes selected must have at 
least one common node other than the sending and 
receiving nodes. If more than one common node exists, 
one of them will be randomly chosen with equal 
probability. The chosen node is called the crossover 
point. Since the number of possible crossover point in a 
pair of chromosome is normally very small, crossover is 
always performed whenever there is at least one 
crossover point (that is, crossover probability, pc = 1). The 
actual crossover operation is similar to the one used by 
Munetomo (1998) and Ahn and Ramakrishna (2002). For 
example, assume that we have the following parent 
chromosomes: 
 
Parent chromosome 1: [A B C G H I X Y Z] 
Parent chromosome 2: [A K L M I T U Z] 
 
where A and Z are the sending node and receiving node 
respectively. In this example, the common node is node I. 
Therefore, crossover operation will exchange the first 
portion of chromosome 1 with the second portion of 
chromosome 2 and vice versa. As a result, the following 
child chromosomes will be generated: 
 
Child chromosome 1: [A B C G H I T U Z] 
Child chromosome 2: [A K L M I X Y Z] 
 
These two chromosomes would then become new 
members of the population. 

It is possible that loops may occur after crossover 
operation is performed. Loops in a chromosome can be 
repaired by performing a search along the chromosome 
to find repeated nodes (Ahn and Ramakrishna, 2002). 
The nodes in between the repeated nodes are then 
eliminated. For example, assume that we have the 
following chromosome that contains a loop: 
 
Chromosome with loop: [A B C G H I K G U W Z]  
 
In this case, there are two G nodes in the chromosome 
which signifies that the path contains a loop. This 
chromosome can be fixed by eliminating one of the G 
node and all the other nodes in between the two G 
nodes. The loop-free chromosome would become like 
this: 
 
Loop-free chromosome: [A B C G U W Z] 
 
The resulting chromosome can be searched again just in 
case there are multiple loops in the chromosome. 



 

 
 
 
 
Mutation 
 
The objective of mutation operation is to create diversity 
in the population (Dumetrescu, 2000). Mutation would 
allow the algorithm to search on the areas of the search 
space that was previously unknown. Each chromosome 
in the population would have a certain probability to be 
mutated. This probability is referred to as the mutation 
rate. For optimal result, the value for the mutation rate 
has to be set correctly.  

The actual mutation operation is adapted from Ahn and 
Ramakrishna (2002). For each chromosome that is 
chosen to be mutated, a mutation point will be chosen 
randomly, with equal probability, among the intermediate 
nodes in the path from sender to receiver (that is, the 
sending and receiving node cannot be chosen as the 
mutation point). Once the mutation point is chosen, the 
chromosome will be changed starting from the node after 
the mutation point and onwards. For example, assume 
that the following chromosome has been chosen to be 
mutated: 
 
Original chromosome: [A C E F G H I Y Z] 
 
where A and Z are the sending node and the receiving 
node respectively. Assume also that the node G has 
been chosen as the mutation point. The mutated 
chromosome would become like this: 
 
Mutated chromosome: [A C E F G x1 x2 … Z] 
 
The mutated chromosome now contains a new path from 
G to Z where xi is the ith new node in the path. The new 
path is generated randomly; the same way as the paths 
in the initial population is generated. 
 
 
EXPERIMENTS  
 
To evaluate the performance of the algorithm, a number of 
simulations had been performed using OMNeT++. The simulations 
were run on a workstation with 3.0 GHz Xeon processor and 1GB 
of RAM. The performance of the GA-based QoS routing algorithm 
will be compared with two other algorithms. The first algorithm is an 
exact algorithm implemented using depth first search (DFS). The 
DFS algorithm will search every single path in the network to find a 
feasible path and is guaranteed to find a feasible path if such path 
exists. In this DFS implementation, the algorithm terminates as 
soon as a feasible path is found. Even though the DFS algorithm is 
confirmed to find a feasible path if such paths exist, it has an 
asymptotic exponential worst-case time complexity and therefore is 
not suitable to be used in practice. The second algorithm to be used 
for comparison is an algorithm that uses a single mixed metric. 
Even though a single mixed metric does not contain enough 
information to determine whether QoS requirements can be 
satisfied, it can reduce the time complexity because a single source 
single destination shortest path algorithm such as Dijkstra’s 
algorithm can be employed (Khadivi et al., 2004). For the 
experiments, the mixed metric for a link, w(e), is simply defined as: 
 

∑
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where n is the number QoS parameters that the link has. With the 
use of a single link parameter, a path is selected by using Dijkstra’s 
algorithm. The selected path is then evaluated to check whether it 
fulfills the QoS requirements. 

There are two network topologies used for the simulations. The 
first topology is a 10×10 mesh network and the second topology is 
a network referred to as the NTT backbone (a network topology 
included in the OMNeT++ software package) as shown in Figure 3. 
During the simulation, nodes will be selected randomly to make a 
connection request to another node (also selected randomly) with a 
particular QoS constraint. The routing algorithms are then executed 
to search for a path to that destination that can fulfill the given 
constraint. 

Four different types of simulation had been performed. The first 
simulation is performed to find the proper population size to be 
used in all the other simulations. The second simulation is to 
evaluate the performance of the proposed algorithm in terms of 
success ratio. The third simulation is to evaluate network resource 
utilization. The fourth simulation is to see how the algorithm scales 
with network size in terms of processing speed. For all the 
simulations, the simulation time used for each run is 3000 s. 
 
 
RESULTS 
 
Finding the proper population size 
 
This simulation was done to find out the proper 
population size to be used in all the other simulations. 
Population size is one of the important parameters in GA. 
A larger population size would cause the algorithm to 
take less number of iterations to find a feasible path and 
at the same time it may be able to find better results. 
However, larger population size will also take more 
memory and computation time. A good population size 
should give a balance between the number of iterations 
taken, the quality of the results and the system resources 
used. 

In this simulation, only the NTT backbone network was 
used. The simulation was run with population size 
ranging from 5 to 50. For each run, the total number of 
iterations taken by each node for the whole duration of 
simulation, the success ratio and the total time taken by 
the routing algorithm to be executed by all nodes are 
recorded.   Success    ratio    is   defined    as    follows: 

  
                                   Number of requests successfully routed 
  Success ratio =   
                                    Total number of routing requests 
 

 
 
The result of this simulation is given in Figures 4 and 5. 

Figure 4 shows the total number of iterations taken from 
all the nodes for the duration of the simulation. As 
expected, the number of iterations required gets smaller 
as the population size grows larger. The number of 
iterations decreases logarithmically. Figure 5 shows the 
success ratio for different population size. The success 
ratio increases logarithmically as the population size 
grows larger. This shows that as the population size 
increases, the quality of the solution gets better. From 
these two results, it can be concluded that the number of 
iterations required and the quality of the solution do get
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Figure 3.  NTT backbone network. 
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Figure 4.  Total number of iterations for the duration of simulation for different population size. 



 

Yussof          7533 
 
 
 

0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0 10 20 30 40 50 60

Population Size

S
uc

ce
ss

 R
at

io

 
 
Figure 5.  Success ratio for different population size. 

 
 
 

Table 2.  Ranges of link parameters and the correlation between them. 
 

Positive correlation No correlation Negative correl ation 
w1(i,j) ~ [1,50] 

w2(i,j) ~ [1,100] 
OR 

w1(i,j) ~ [50,100] 
w2(i,j) ~[100,200] 

w1(i,j) ~ [1,100] 
w2(i,j) ~ [1,200] 

 

w1(i,j) ~ [1,50] 
w2(i,j) ~ [100,200] 

OR 
w1(i,j) ~ [50,100] 
w2(i,j) ~ [1,100] 

 
 
 
better with population size. But, as the population size 
grows larger, the percentage of improvement gets 
smaller.  

Based on the result of this simulation, we have 
decided to use population size 25 for the rest the paper. 
This is because for population size larger than 25, the 
percentage of improvement in success ratio and the 
number of iterations taken is very low. 
 
 
Simulation results for evaluating success ratios 
 
In this simulation, both the 10×10 mesh network and the 
NTT backbone network were used. For each link in the 
network, two additive QoS parameters w1 and w2 are 
randomly generated. These parameters are selected 
from uniform distribution under several types of 
correlation between them. The range of the parameters 
and the correlation between them can be found in Table 
2. The source and destination of a request are randomly 
generated. The QoS constraints C1 and C2 for each 

routing requests are selected from uniform distribution. 
The population size for GA is set to 25 and the algorithm 
iterates to a maximum of 100 iterations before it reports 
failure.  

For each topology, three simulations were performed 
for each of the correlation type. The three simulations 
differ in terms of the range of the QoS constraints given 
for routing requests: low constraints, medium constraints 
and high constraints. For low constraints, not many 
routing requests can be fulfilled, leading to low success 
ratio. The reverse is true for high constraints. The range 
of the QoS parameters for the three constraints can be 
found in Table 3. For each simulation, the results are 
obtained from three different runs, where for each run the 
network is given new link parameters generated using 
random seeds. The total number of requests from the 
three runs for the NTT backbone network is around 
50,000 and for the mesh network, the total number of 
requests is around 89,000. 

Figures 6 and 7 shows the results of the simulation for 
the   two   networks   and for   each   of the three types of 
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Table 3.  Ranges of constraints for QoS requests. 
 

Constraint Constraint for QoS Parameter 1 Constrain t for QoS Parameter 2 

Low C1 ~ [100,300] C2 ~ [200,500] 
Medium C1 ~ [300,500] C2 ~ [600,1000] 
High C1 ~ [500,700] C2 ~ [1000,1500] 

 
 
 

correlation. As expected, the success rate depends a lot 
on the constraints for the QoS requests. Regardless of 
the routing algorithm used and the correlation between 
link parameters, a higher constraint will definitely give a 
higher success ratio.  

Among the three algorithms, the success ratio of DFS 
is the highest since it is a brute force algorithm that 
search all possible paths that guarantees to find a 
feasible path if it exists. GA however performs very close 
to the performance of DFS. Tables 4 and 5 show the 
percentage of GA’s success ratio as compared to DFS 
for the NTT backbone network and the mesh network, 
respectively. For the NTT backbone network, the 
percentage is at least 99.06%, which shows that GA is 
highly successful in its routing decision. For the mesh 
network, however, the percentage can be a bit lower. The 
lowest is around 91.58%. The Dijkstra’s algorithm 
performed the worst due to the use of a single link 
parameter that does not contain enough information to 
guide the search of a feasible path during the routing 
process. 

The correlation between the link parameters also 
seems to have some effect on the success ratio of all the 
three algorithms regardless of the type of constraints, 
although not very much. Link parameters with positive 
correlation seem to give the highest success ratio, 
followed by no correlation and negative correlation. 
 
 
Simulation results for evaluating resource utilizat ion 
 
In this simulation, the three algorithms are run on both 
the NTT backbone network and the mesh network. For all 
the runs, the link parameters assigned have no 
correlation with each other and the QoS requests are of 
high constraints. The objective of this simulation is to 
monitor resource utilization. Optimizing resource 
utilization is one of the goals in QoS routing. Several 
other MCP algorithms such as Baoxian and Mouftah 
(2003) assign one of the QoS parameters to represent 
resource utilization. The algorithm is then designed to 
optimize this one parameter. However, assigning a single 
parameter to represent resource utilization may not be 
feasible in practice. Therefore, in this simulation, 
resource utilization is measured by the distribution of 
network links usage. The number of times each link is 
used throughout the simulation is recorded. Link 
utilization is measured by counting the number of times 

each link is used and computing the standard deviation of 
link usage. The standard deviation is calculated as 
follows: 
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where L represents to total number of links in the 
network, lu  represents the number of times link l is used 

and u is the mean of link utilization which is calculated as 
follows: 
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It is assumed that the mean, u , is the optimum solution 
where all the links in the network are equally utilized. A 
low standard deviation would indicate a distributed link 
usage closer to the mean and this, in turn, indicates a 
better network link utilization. 

Figure 8 shows the result of this simulation. Out of the 
three algorithms, DFS gives the highest standard 
deviation, followed by GA and Dijkstra’s algorithm.  The 
standard deviation of GA and Dijkstra’s algorithm, 
however, is very close. The high standard deviation of 
DFS shows that the link usage is very much concentrated 
on certain links only and it does not use the network links 
evenly. GA, on the other hand, with its lower standard 
deviation shows that it can make more efficient use of the 
network links. Even though the standard deviation of 
Dijkstra’s algorithm is lower, its low success ratio as 
discovered in the previous experiment does not make it a 
good MCP routing algorithm. 
 
 
Simulation results for evaluating processing speed 
for various network size 
 
In this simulation, the three algorithms are run on mesh 
networks with different sizes: 10×10 (100 nodes), 15×15 
(225 nodes) and 20×20 (400 nodes). For all the runs, the 
link parameters assigned have no correlation with each 
other and the QoS requests are of high constraints. At 
the end of the simulation, the total amount of processing 
time of all the nodes is recorded. The objective here is to 
see how the well the algorithm scales with network size in 
terms of processing speed. 
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Figure 6.  Success ratio for the three algorithms on NTT backbone network with respect to different 
link correlations a); no correlation (b), and negative correlation (c)] and QoS request constraints.  
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Figure 7.  Success ratio for the three algorithms on 10×10 mesth network with respect to 
different link correlations [positive correlation [(a); no correlation (b), and negative correlation 
(c)] and QoS request constraints. 
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Table 4.  Percentage of GA success ratio as compared to DFS for NTT backbone. 
 

Correlation Low constraint (%) Medium constraint (% ) High constraint (%) 

No correlation 99.83 99.23 99.06 
Negative correlation 99.91 99.53 99.21 
Positive correlation 99.81 99.30 99.18 

 
 
 

Table 5.  Percentage of GA success ratio as compared to DFS for 10×10 mesh network. 
 

Correlation  Low constraint (%) Medium constraint (%) High const raint (%) 
No correlation 97.59 91.58 96.78 
Negative correlation 99.11 94.46 96.34 
Positive correlation 96.48 91.73 97.41 
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Figure 8.  Link utilization for the three algorithms. 

 
 
 
The result of this simulation is shown in Figure 9. The 
processing time for all three algorithms increases with 
larger network size. However, the GA-based routing 
algorithm performs much faster compared to DFS for 
larger networks. Even though the speed is not as fast as 
Dijkstra’s algorithm, the slower speed is justified due to 
the much better performance that it has. 
 
 
DISCUSSION 
 
Evaluating the performance of an MCP routing algorithm 
is difficult because the performance can be affected by 
various factors such as the range of values for QoS 
constraints, the range of values for the QoS parameters 
of the network links, the correlation between the QoS 
parameters on the network links, the topology of the 
network and also the network size. This paper tries to 

take a number of these factors into account during 
simulation to ensure that the algorithm works for various 
different cases. 

The use of GA also provides its own challenges. As 
mentioned previously, there are many parts of GA that 
can be implemented differently such as the genetic 
encoding, the genetic operators and the details of the 
genetic operations. And then, there are various 
parameters such as the population size, mutation rate, 
crossover rate and maximum iteration that can affect the 
performance of the algorithm. All of these can affect the 
performance of the algorithm. In this paper, only the 
population size is determined experimentally. A more 
detailed study on the effect of the other GA parameters is 
presented in Yussof and Ong (2008). 

The results of the experiments show that the proposed 
GA-based MCP routing algorithm is able to strike a 
balance between the slow, but highly accurate DFS 
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Figure 9.  Processing speed for various network sizes. 

 
 
 
algorithm and the fast, but inaccurate Dijkstra’s algorithm. 
The results also show that the proposed algorithm can 
provide high accuracy, with relatively faster execution 
time compared to the DFS algorithm. In addition to that, 
the proposed algorithm has been shown to provide 
relatively good network resource utilization. These two 
characteristics would allow the proposed algorithm to 
fulfill the two objectives of QoS routing and show that 
using GA is a promising approach for solving the MCP 
routing problem. 

 
 

Conclusion 
 
This paper proposed a GA-based QoS routing algorithm 
for solving the MCP problem. The chromosome in this 
algorithm consists of a series of nodes that is in the path 
from sender to receiver. Based on the simulation, this 
algorithm has been shown to perform well to achieve the 
two objectives of QoS routing which are to find a feasible 
path and to optimize network resource utilization. The 
success ratio achieved is very close to that of an exact 
algorithm, where in all the simulations, the success ratio 
is more than 99% as compared to the exact algorithm 
regardless of the correlation between the link parameters 
and the type of constraints generated by the QoS 
requests. In addition to having a high success ratio, this 
algorithm has been shown to provide a better link 
utilization and faster processing time as compared to the 
exact algorithm. The result is consistent in the two 
network topologies used for the simulations.  
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