

International Journal of the Physical Sciences Vol. 6(33), pp. 7524 - 7539, 9 December, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.613
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

Performance analysis of genetic algorithm (GA)-base d
multi-constrained path routing algorithm

Salman Yussof

College of Information Technology, Universiti Tenaga Nasional, Selangor, Malaysia. E-mail: salman@uniten.edu.my.

Accepted 15 September, 2011

To support networked multimedia applications, it is important for the network to provide guaranteed
quality-of-service (QoS). One way to provide such s ervices is for the network to perform QoS routing,
where the path taken must fulfill a given set of co nstraints. Multi-constrained path (MCP) problem ref ers
to the problem of finding a path through a network subject to multiple additive constraints. It has be en
proven that this problem is Non-deterministic Polyn omial time (NP)-complete and therefore no exact
algorithm can be found. As such, various heuristics and approximation algorithms have been proposed
to solve the MCP problem. This paper proposed a sol ution to the MCP problem using genetic algorithm
(GA). The effectiveness of the proposed algorithm i s evaluated through simulation. The performance of
the algorithm is then compared with an exact algori thm called the depth first search and a common
shortest path algorithm called the Dijkstra’s algor ithm. The result of the simulation shows that the
performance of the proposed algorithm is almost com parable to an exact algorithm, while at the same
time can execute much faster. The proposed algorith m has also been shown to have good network link
utilization and is able to scale well with network size.

Key words: Genetic algorithm, multi-constrained path problem, quality-of-service (QoS), routing.

INTRODUCTION

With the emergence of networked multimedia
applications, the traditional routing method is no longer
adequate. This is because multimedia-oriented
applications require a different set of requirements than
the one required by data-oriented applications. According
to Daneshmand et al. (1997), there are three primary
performance parameters for multimedia applications:
Delay, mean opinion score and differential delay. From
networking point of view, these performance parameters
can be translated to network parameters such as delay,
jitter and bandwidth. Therefore, to ensure that the
requirements for multimedia applications can be fulfilled,
it is important for the network to be able to consider the
corresponding quality-of-service (QoS) parameters when
performing data transfer. One way of achieving this is by
implementing QoS routing.

In general, routing consists of two tasks. The first task
is to distribute the state information to the network and
the second task is to find a feasible path by executing a
routing algorithm that uses the state information as its
input. This paper focuses on the second task and
assumes that all the nodes have the correct state

information. In traditional routing, the goal of the routing
algorithm is to find the least-cost path from sender to
receiver. QoS routing, on the other hand, has a more
complicated goal. There are two main goals that need to
be achieved by the QoS routing algorithm (Ghosh et al.,
2001; Chen and Nahrstedt, 1998a). The first goal is to
find a path that satisfies the QoS requirements. Such
path is called a feasible path. Data transfer can only be
performed when a feasible path is found. The second
goal is to optimize the global network resource utilization.
The second goal is necessary so that the network can
accommodate as many QoS requests as possible.

There are various QoS routing algorithms that have
been proposed by researchers. The algorithms are
normally developed to address different problems based
on the composition rule. There are three main
composition rules: additive, multiplicative and concave.
The definition of the composition rules as specified by
Wang and Crowcroft (1996), and Chen and Nahrstedt
(1998a) are given as follows:

Let d(i,j) be a QoS metric for link (i, j). For any path p = (i,

j, k, …, l, m), metric d is additive if:

d(p) = d(i,j) + d(j,k) + … + d(l,m)

Metric d is multiplicative if:

d(p) = d(i,j) x d(j,k) x … x d(l,m)

Metric d is concave if:

d(p) = min[d(i,j), d(j,k), … , d(l,m)]

Constraints associated with concave QoS parameters
can be easily dealt with by pruning all links that do not
satisfy the constraints (Wang and Crowcroft, 1996).
Several researchers such as Ghosh et al. (2001), Wang
and Crowcroft (1996) and Yang et al. (2001) have
developed algorithms to deal with a concave parameter
or a combination of a concave and an additive parameter
(that is, bandwidth-delay constraint). Constraints
associated with multiplicative QoS parameters can be
converted to additive parameters by using logarithm.
However, the problem of finding a path subject to
constraints of two or more additive QoS parameters is not
very easy because it has been proven to be NP-complete
(Wang and Crowcroft, 1996). This paper will mainly focus
on this type of problem, which is also commonly known
as the multi-constrained path (MCP) problem.

Definition 1

Multi-constrained path (MCP) problem

Consider a network represented by a directed graph

),(ENG = , where N is the set of nodes and E is the set

of links. Each link Eji ∈),(is associated with K additive

QoS metrics),(jiwk , k = 1, 2, … , K where all metrics

are non-negatives. The problem is to find a path p from a
source node s to a destination node d such that

∑
∈

≤=
pji

kkk Cjiwpw
),(

),()(for k = 1, 2, … , K, where Ck is

the constraint for the kth QoS metric.
Various heuristics and approximation algorithms have

been proposed to solve the MCP problem. However,
most of them are based on well-known shortest path
routing algorithms such as Dijkstra’s Algorithm or
Bellman-Ford algorithm. The idea is to convert the
multiple QoS metrics into a single metric which can be
easily solved using a common shortest path routing
algorithm. The earliest work on solving the MCP problem
can be traced back to Jaffe (1984), where he solved a
two-constraint problem by combining the two link metrics
into a single mixed link metric. Chen and Nahrstedt
(1998b) proposed an approximation to the MCP problem
by scaling down all the QoS metrics except one. The
problem is then simplified to the problem of finding the

Yussof 7525

shortest path with respect to a single metric (the one that
is not scaled down). Mieghem et al. (2001) proposed an
algorithm called SAMCRA where the total cost with
respect to each QoS metric is calculated and the total
path cost is determined by the QoS metric that gives the
largest total cost. Other works that are also based on
techniques similar to the ones aforementioned are
Khadivi et al. (2004) and Xue et al. (2008). There are also
researchers who attempted to solve the MCP problem
using other approaches such as flooding (Yen et al.,
2008) and vector converting (Dai and Liu, 2009). MCP
algorithms utilizing AI techniques such as fuzzy logic
(Jing et al., 2008) and mobile agent (Wei and Yi, 2009)
have also been explored by researchers.

This paper proposes a QoS routing algorithm based on
genetic algorithm (GA) for solving the MCP problem. GA
is chosen because it is a general-purpose search and
optimization algorithm suitable for problems that have
one or more of the following characteristics (Mitchell,
1996):

1. The search space is large;
2. The search space is known not to be perfectly smooth
and unimodal;
3. The space is not well understood;
4. The fitness function is noisy;
5. The task does not require a global optimum to be
found.

The QoS routing problem fits the characteristics given
previously. It is a search problem, where the main goal is
to find a path that can fulfill the QoS requirement. The
search space can be large for large networks. The search
space is also not very smooth due to the varying types of
network links and the varying parameters on each link.
And finally, the QoS routing problem does not require a
global optimum to be found. It only needs to find one
feasible path, and there can be more than one of such
path in the network. Due to the similarities between the
characteristics of the QoS routing problem and the type
of problem that the GA can solve well, it is highly likely
that genetic algorithm is suitable to be used for solving
the QoS routing problem.

LITERATURE REVIEW

Introduction to genetic algorithm

Genetic algorithm (GA) is a search algorithm that is
inspired by the theory of genetics and natural selection
(Holland, 1975; Goldberg, 1989). The problem to be
solved using GA is encoded as a chromosome that
consists of several genes. The solution of the problem is
represented by a group of chromosomes referred to as a
population. During each iteration of the algorithm, the
chromosomes in the population will undergo one or more
genetic operations such as crossover and mutation. The

7526 Int. J. Phys. Sci.

result of the genetic operations will become the next
generation of the solution. This process continues until
either the solution is found or a certain termination
condition is met. The idea behind GA is to have the
chromosomes in the population to slowly converge to an
optimal solution. At the same time, the algorithm is
supposed to maintain enough diversity so that it can
search a large search space.

The general outline of GA as described by Goldberg
(1989) and Dumetrescu et al. (2000) is as follows:

1. Initialize the initial population. The initial population is
normally created randomly or based on some heuristics.
2. Evaluate the fitness of each chromosome on the
population.
3. Perform selection. In this process, chromosomes are
selected to be put into the mating pool. A selection
scheme is utilized to choose the chromosomes.
4. Perform crossover. This process allows two
chromosomes to exchange information and produce two
new chromosomes. The parent chromosomes are
selected randomly from the mating pool.
5. Perform mutation to the new chromosomes produced
by crossover. This process randomly changes the
content of a gene in a chromosome. This is done to
create diversity in the population and allows the search of
a new search space. Each gene will be considered for
mutation with a certain probability.

The algorithm would then loop to step 2 and repeat all the
subsequent steps until a termination condition is met. The
termination condition can be one of the following:

1. A desired solution is found;
2. The population converges;
3. The maximum number of iteration has been reached.

GA-based routing algorithms

Many researchers have applied GA to various types of
network routing problems. One of the earliest works on
the use of GA for network routing is the work by
Shimamoto et al. (1993). Shimamoto proposed a
dynamic routing control based on GA to provide flexible
real-time management of the dynamic traffic changes in
broadband networks. The goal is to keep the traffic loss
rate below a certain target value. He (1997) proposed a
GA-based algorithm for the joint problem of selecting a
route for each communicating node pair and a capacity
value for each link the network. However, the proposed
algorithm is more applicable to a network design problem
rather than to a routing problem.

The first real GA-based routing algorithm was proposed
by Munetomo et al. (1998). This algorithm addresses the
problem of shortest path routing where delay is used as
the link parameter. The proposed algorithm is not

intended to replace standard shortest path algorithm such
as Dijkstra’s algorithm. Instead, the idea is to produce
alternate paths which can be quickly used in the case of
link failures. Ahn and Ramakrishna (2002) also proposed
a GA-based routing algorithm for solving the shortest
path routing problem. However, instead of trying to
generate alternate paths, this algorithm is intended to
compete directly with Dijktra’s algorithm. They compared
their results to that of Dijkstra’s algorithm and found out
that GA has two main advantages. The first one is that
the GA algorithm is insensitive to variations in network
topologies with respect to route optimality and
convergence speed. The second one is that the proposed
GA-based routing algorithm is scalable in the sense that
the real computation time does not increase very much
as the network size gets larger. Other researchers who
also used GA to solve the shortest path routing problem
are Sinclair (1998) and Hamdan and El-Hawary (2002).

With the rise of the importance of QoS routing, GA
researchers have directed their attention to solving QoS
routing problems. One of the earliest works on GA-based
QoS routing algorithms comes from Xiang et al. (1999).
Xiang proposes a GA-based QoS routing algorithm to
solve a routing problem subject to four different QoS
metrics: Delay, bandwidth, loss-rate and jitter. Wang and
Wang (2001) and Riedl (2002) proposed GA-based QoS
routing algorithms for solving the delay-bandwidth-
constraint routing problem. On top of finding a feasible
path, these two algorithms are also designed to optimize
network resource utilization. Barolli et al. (2002)
attempted to solve the problem of QoS routing subject to
two QoS metrics which are delay and transmission
success rate. Koyama et al. (2004) took Barolli’s work
further by introducing a multi-purpose optimization
method that would further improve its performance.

Even though all the algorithms discussed previously
use GA, they all vary in terms of the details of their
implementation. In GA, each part of the algorithm such as
the genetic encoding, the selection scheme, the
crossover and mutation operations and the fitness
function can be implemented in many different ways. In
terms of genetic encoding, there are three types of
encoding commonly used in network routing problem.
Researchers such as Munetomo et al. (1998) and Ahn
and Ramakrishna (2002) use a list of node IDs from
source to destination to represent the chromosome. On
the other hand, researchers such as Wang and Wang
(2001) and Xiang et al. (1999) use a binary string to
represent the GA chromosome. A matrix is used to
represent all the possible links between any two nodes. A
binary 1 is assigned to a value in the matrix if there is link
between the two nodes, and 0 otherwise. Barolli et al.
(2002) and Koyama et al. (2004) model the network as a
tree and the GA chromosome is made up of a binary
string that represents the junctions in the tree. Since
different algorithms use different types of genetic
encoding, the crossover and mutation operations vary

Yussof 7527

Table 1. Comparisons between GA-based routing algorithms.

Algorithm Routing problem Genetic encoding

Shimamoto et al. (1993) Minimize call loss rate A string of route numbers for all paths
He (1997) Minimize delay and cost A combination of line type and route serial number
Munetomo et al. (1998) Shortest path A list of node IDs in the path
Sinclair (1998) Shortest path (Not mentioned)
Ahn and Ramakrishna (2002) Shortest path A list of node IDs in the path
Hamdan and El-Hawary (2002) Shortest path A binary matrix where each cross point represents a link

Xiang et al. (1999) Bandwidth, delay, loss rate and jitter
constrained

A binary string where each bit in the string represents a
link in the network

Wang and Wang (2001) Bandwidth-delay constrained A binary string where each bit in the string represents a
link in the network

Rield (2002) Shortest path and bandwidth-delay
constrained (Not mentioned)

Barolli et al. (2002) Delay and transmission success rate
constrained

A binary string where each bit in the string represents a
junction in the tree structure used to represent the
network

Koyama et al. (2004) Multi-constrained path
A binary string where each bit in the string represents a
junction in the tree structure used to represent the
network

between algorithms since they are highly dependent on
the genetic encoding used. The fitness functions also
vary between algorithms because they are derived from
the routing problem to be solved and the focus of the
algorithm. Table 1 summarizes the comparison between
GA-based routing algorithms reviewed here with respect
to the routing problem solved and the genetic encoding
used.

All the GA-based routing algorithms discussed earlier
are designed for traditional fixed networks. However, in
recent years, GA-based routing algorithms have also
successfully been applied to other types of networks.
Among them are mobile ad-hoc networks (Barolli et al.,
2010), wireless sensor networks (Nallusamy et al., 2010),
wireless mesh networks (Hua et al., 2010), delay /
disruption tolerant networks (Silva and Guardieiro, 2010)
and optical networks (Tode et al., 2010).

DESCRIPTION OF THE PROPOSED GA-BASED MCP
ROUTING ALGORITHM

Algorithm overview

The proposed algorithm is designed to find a feasible
path from source node to a destination node given a set
of additive QoS requirement. The outline of the proposed
algorithm is as follows:

1. Randomly initialize the initial population;

2. Evaluate the population using a fitness function;
3. Create the mating pool, which consists of all the
chromosomes in the current population;
4. Apply crossover operator several times to create m
new children for the new population (where m is the
population size). The parents are selected using the
selection operator. Each pair of parent chromosome can
only mate once and the children produced are only
accepted into the new population if they are not similar to
the previously produced children. This is done to diversify
the search and discourage convergence;
5. If all the possible pair of parents have mated and there
are still not enough children to populate the new
population, select members from the previous population
using the selection operator to fill in the new population.
6. Apply mutation operator on the chromosomes in the
mating pool. Each chromosome has a certain probability
to be mutated. Mutation result must not be the same as
any of the chromosome in the current population or else it
would be ignored.
7. Replace the worst (the one with the lowest fitness
value) chromosome produced by the genetic operators
(crossover and mutation) with the best chromosome in
the previous population.
8. Repeat step 2 until a feasible path is found or the
maximum number of iteration is reached.

The overall procedure of the algorithm is depicted in the
flowchart shown in Figure 1.

7528 Int. J. Phys. Sci.

No

No

Yes

Yes

No

Yes

Start

Initialize initial

population

Evaluate population

using fitness function

Create mating

pool

Apply selection function to

choose parents for

Have all

pairs

mated?

Have we

produced

enough

children?

Apply mutation operator to each

chromosome with certain

Replace the worst chromosome with

the best one from the previous

Have we found n

feasible paths OR

maximum number of

iteration is reached?

End

Apply selection operator

to choose chromosomes

from previous population

into the new population

Figure 1. Overall procedure of the GA-based QoS routing
algorithm.

As opposed to the algorithms proposed by Munetomo et
al. (1998) and Ahn and Ramakrishna (2002) where the
objective of the algorithm is to find the shortest path, the
algorithm proposed here is designed to search a large
search space for a feasible path. Therefore, this
algorithm will not run until convergence. In fact,
convergence is discouraged by not allowing similar
chromosomes to be in the population. When a new
chromosome is produced through a genetic operation
(either crossover or mutation), the new chromosome is
only included in the next generation if a similar
chromosome does not yet exist. The proposed algorithm
also includes a novel fitness function which is designed to
solve the MCP routing problem.

Genetic representation

A communication network can be modeled as a directed
graph G(N,E), where N is the set of nodes representing
the routers and E is the set of edges representing the
links that connect between the routers. For a network
supporting multiple QoS metrics, each edge (i,j) is
associate with k independent metrics, d1(i,j), d2(i,j), d3(i,j),
… , dk(i,j) where d(i,j) is a real positive number.

The proposed algorithm is intended to be used in
source routing where the sender executes the algorithm
and finds a feasible path before the actual data can be
sent. There are two methods by which the genetic
encoding can be formulated. The first method is to follow
the traditional GA where a chromosome is encoded as a
string of binaries. The second method is to encode the
chromosome using an encoding specific to the problem
to be solved. For this algorithm, the latter method is
chosen where each chromosome consists of a sequence
of nodes that are in the path from sender to receiver. The
first gene in the chromosome is always the sender and
the last gene in the chromosome is always the receiver.
Figure 2 shows an example of a small network that
consists of six nodes where each link has two QoS
metrics associated with it. An application requesting a
connection between A and F can have its request fulfilled
by two different paths: A�B�C�F and A�D�E�F.
These two paths can be encoded as two different
chromosomes:

Chromosome 1 (path 1): [A B C F]
Chromosome 2 (path 2): [A D E F]

The top path has a total QoS metric values of (8.11) and
the bottom path has a total QoS metric values of (21.15).
For a QoS aware application, any connection request
made is accompanied by a set of QoS requirement. For
example, if a multimedia application requested a
connection with a QoS requirement of (15.13), it can be
only fulfilled by the top path [A B C F].

Since different paths may have different number of
intermediate nodes, the chromosomes will be of variable

(5,7) (9,2)

(2,4)

(4,4)

(2,3)

A

B C

F

D E

(7,6)

Figure 2. A small network with links that have two QoS metrics (k =
2).

Length. However, the maximum length of a chromo-
some cannot exceed the total number of nodes in the
network. Any repeated nodes in the chromosome signify
that the path represented by the chromosome contains a
loop and in network routing, any loop should be
eliminated.

Initial population

In the beginning, the population is filled with
chromosomes that represent random paths. Even
though the paths are random, they are supposed to be
valid paths, where the chromosomes consist of a
sequence of nodes that are in the path from sender to
receiver. The number of chromosomes generated
depends on the population size.

The algorithm used to generate the random path is
adapted from Ahn and Ramakrishna (2002). The
algorithm goes as follows:

1. Start from the sending node;
2. Randomly choose, with equal probability, one of the
nodes that are connected to the current node;
3. If the chosen node has not been visited before, mark
that node as the next node in the path. Otherwise, find
another node;
4. If all the neighboring nodes have been visited, go back
to step 1;

Otherwise, repeat step 2 by using the next node as the
current node. Do this until the receiving node is found.

Fitness function

Each chromosome in the population is associated with a
fitness value that is calculated using a fitness function.
This value indicates how good the solution is for a
particular chromosome (Dumetrescu et al., 2000). This
information is then used to pick the chromosomes that
will contribute to the formation of the next generation of
solution. The fitness value is computed using a fitness

Yussof 7529

function. The fitness function is highly dependant on the
problem to be solved. For the MCP problem, the
objective is to find a path that satisfies a set of QoS
requirement as defined in Definition 1. In general, the
smaller the total QoS values are on the links along a path
from source to destination, the larger the possibility for
the path to satisfy the given QoS requirement. Therefore,
the fitness function must minimize the total cost CT, which
is defined as follows:

∑∑
−

=

−

=

=
1

0

1

0

K

k

L

l
klT cC (1)

where ckl represents the kth QoS metric on link l, K
represents the number of QoS metric on each link and L
represents the total number of links in the path. However,
since the range of values of each QoS metric can vary
depending on the type of the metric, simply adding up all
the QoS metrics would cause the result to be dominated
by QoS metrics that have larger values compared to the
others. Therefore, before the QoS metrics can be added
up, each QoS metric must be normalized as follows:

∑∑
−

=

−

=

=′
1

0

1

0

R

r

L

j
kj

kl
kl

c

c
c (2)

where R represents the total number of possible paths

from source to destination. The term ∑∑
−

=

−

=

1

0

1

0

R

r

L

k
kjc adds up

all the kth QoS metric on each link along each possible
path.

Based on the argument aforementioned, given a
population of size p, the fitness function is defined as
follows:

K

c

c

f

K

j j

ij

i

∑
−

= 











=

1

0
 (3)

where fi represents the fitness value of the chromosome i,
K represents the number of QoS metric on each network
link, ∑

∈

=
il

ijlij cc represents the sum of the jth QoS metric

for all links l within chromosome i, and ∑
−

=

=
1

0

p

i
ijj cc is

obtained by adding up the jth QoS metrics for all links of
all the chromosomes in the population. The division with
K is done to normalize the whole result so that the
resulting fitness value is between 0 and 1, where a lower
value indicates a better path. The total fitness values

7530 Int. J. Phys. Sci.

from all the chromosomes in the population would add up
to 1.

As an example, assume the network depicted in Figure
2. There are two paths that can be used to travel from
node A to node F. Therefore, we will assume that the
population has two chromosomes representing these two
paths. The fitness values for the top path (f0) and the
bottom path (f1) are computed as follows:

35.0
2

26

11

29

8

0 =
+

=f

65.0
2

26

15

29

21

1 =
+

=f

In the example aforementioned, the value given by the
fitness function indicates that the top path is the better
path. This can be verified to be correct considering that
the top path generally has lower QoS metric values. It is
important to point out that the generality of the proposed
algorithm which enables it to be applied to any k-
constrained MCP QoS routing problem is due to the
generality of this fitness function.

Selection

In order to generate the next generation of solutions, a
mating pool that consists of the members of the current
population is created. The chromosomes in the mating
pool are then subjected to genetic operations such as
crossover and mutation. Parents for the crossover
operation are selected using a selection operator. The
idea behind the selection operator is to allow
chromosomes with better fitness values a higher chance
to reproduce through crossover operation. Parents with
good fitness values are expected to produce children with
even better fitness values.

According to Dumetrescu et al. (2000), there are
several categories of selection scheme. Among them are
proportional selection, rank-based selection and
tournament selection. For each category, there are
several variations of the selection schemes. This
algorithm uses a type of proportional selection called
stochastic sampling with replacement, implemented using
roulette wheel (Monte Carlo) method. To select two
parents, this operation is performed twice. A pair of
parent chromosomes can only be selected once.

Crossover

The first genetic operation done to the chromosomes in
the mating pool is crossover. The idea behind crossover
is to create an information exchange between two

chromosomes (Dumetrescu, 2000). By doing so, the
algorithm will explore new paths and hopefully be able to
find better paths in the process.

In order to perform crossover, two chromosomes from
the mating pool will be selected using the selection
operator. These two chromosomes will become the
parent chromosomes. In an iteration, a pair of parents
can only be selected for crossover once. To ensure that
the paths generated by the crossover operation are still
valid paths, the two chromosomes selected must have at
least one common node other than the sending and
receiving nodes. If more than one common node exists,
one of them will be randomly chosen with equal
probability. The chosen node is called the crossover
point. Since the number of possible crossover point in a
pair of chromosome is normally very small, crossover is
always performed whenever there is at least one
crossover point (that is, crossover probability, pc = 1). The
actual crossover operation is similar to the one used by
Munetomo (1998) and Ahn and Ramakrishna (2002). For
example, assume that we have the following parent
chromosomes:

Parent chromosome 1: [A B C G H I X Y Z]
Parent chromosome 2: [A K L M I T U Z]

where A and Z are the sending node and receiving node
respectively. In this example, the common node is node I.
Therefore, crossover operation will exchange the first
portion of chromosome 1 with the second portion of
chromosome 2 and vice versa. As a result, the following
child chromosomes will be generated:

Child chromosome 1: [A B C G H I T U Z]
Child chromosome 2: [A K L M I X Y Z]

These two chromosomes would then become new
members of the population.

It is possible that loops may occur after crossover
operation is performed. Loops in a chromosome can be
repaired by performing a search along the chromosome
to find repeated nodes (Ahn and Ramakrishna, 2002).
The nodes in between the repeated nodes are then
eliminated. For example, assume that we have the
following chromosome that contains a loop:

Chromosome with loop: [A B C G H I K G U W Z]

In this case, there are two G nodes in the chromosome
which signifies that the path contains a loop. This
chromosome can be fixed by eliminating one of the G
node and all the other nodes in between the two G
nodes. The loop-free chromosome would become like
this:

Loop-free chromosome: [A B C G U W Z]

The resulting chromosome can be searched again just in
case there are multiple loops in the chromosome.

Mutation

The objective of mutation operation is to create diversity
in the population (Dumetrescu, 2000). Mutation would
allow the algorithm to search on the areas of the search
space that was previously unknown. Each chromosome
in the population would have a certain probability to be
mutated. This probability is referred to as the mutation
rate. For optimal result, the value for the mutation rate
has to be set correctly.

The actual mutation operation is adapted from Ahn and
Ramakrishna (2002). For each chromosome that is
chosen to be mutated, a mutation point will be chosen
randomly, with equal probability, among the intermediate
nodes in the path from sender to receiver (that is, the
sending and receiving node cannot be chosen as the
mutation point). Once the mutation point is chosen, the
chromosome will be changed starting from the node after
the mutation point and onwards. For example, assume
that the following chromosome has been chosen to be
mutated:

Original chromosome: [A C E F G H I Y Z]

where A and Z are the sending node and the receiving
node respectively. Assume also that the node G has
been chosen as the mutation point. The mutated
chromosome would become like this:

Mutated chromosome: [A C E F G x1 x2 … Z]

The mutated chromosome now contains a new path from
G to Z where xi is the ith new node in the path. The new
path is generated randomly; the same way as the paths
in the initial population is generated.

EXPERIMENTS

To evaluate the performance of the algorithm, a number of
simulations had been performed using OMNeT++. The simulations
were run on a workstation with 3.0 GHz Xeon processor and 1GB
of RAM. The performance of the GA-based QoS routing algorithm
will be compared with two other algorithms. The first algorithm is an
exact algorithm implemented using depth first search (DFS). The
DFS algorithm will search every single path in the network to find a
feasible path and is guaranteed to find a feasible path if such path
exists. In this DFS implementation, the algorithm terminates as
soon as a feasible path is found. Even though the DFS algorithm is
confirmed to find a feasible path if such paths exist, it has an
asymptotic exponential worst-case time complexity and therefore is
not suitable to be used in practice. The second algorithm to be used
for comparison is an algorithm that uses a single mixed metric.
Even though a single mixed metric does not contain enough
information to determine whether QoS requirements can be
satisfied, it can reduce the time complexity because a single source
single destination shortest path algorithm such as Dijkstra’s
algorithm can be employed (Khadivi et al., 2004). For the
experiments, the mixed metric for a link, w(e), is simply defined as:

∑
=

=
n

i
iw

n
ew

0

1
)((4)

Yussof 7531

where n is the number QoS parameters that the link has. With the
use of a single link parameter, a path is selected by using Dijkstra’s
algorithm. The selected path is then evaluated to check whether it
fulfills the QoS requirements.

There are two network topologies used for the simulations. The
first topology is a 10×10 mesh network and the second topology is
a network referred to as the NTT backbone (a network topology
included in the OMNeT++ software package) as shown in Figure 3.
During the simulation, nodes will be selected randomly to make a
connection request to another node (also selected randomly) with a
particular QoS constraint. The routing algorithms are then executed
to search for a path to that destination that can fulfill the given
constraint.

Four different types of simulation had been performed. The first
simulation is performed to find the proper population size to be
used in all the other simulations. The second simulation is to
evaluate the performance of the proposed algorithm in terms of
success ratio. The third simulation is to evaluate network resource
utilization. The fourth simulation is to see how the algorithm scales
with network size in terms of processing speed. For all the
simulations, the simulation time used for each run is 3000 s.

RESULTS

Finding the proper population size

This simulation was done to find out the proper
population size to be used in all the other simulations.
Population size is one of the important parameters in GA.
A larger population size would cause the algorithm to
take less number of iterations to find a feasible path and
at the same time it may be able to find better results.
However, larger population size will also take more
memory and computation time. A good population size
should give a balance between the number of iterations
taken, the quality of the results and the system resources
used.

In this simulation, only the NTT backbone network was
used. The simulation was run with population size
ranging from 5 to 50. For each run, the total number of
iterations taken by each node for the whole duration of
simulation, the success ratio and the total time taken by
the routing algorithm to be executed by all nodes are
recorded. Success ratio is defined as follows:

 Number of requests successfully routed
 Success ratio =
 Total number of routing requests

The result of this simulation is given in Figures 4 and 5.

Figure 4 shows the total number of iterations taken from
all the nodes for the duration of the simulation. As
expected, the number of iterations required gets smaller
as the population size grows larger. The number of
iterations decreases logarithmically. Figure 5 shows the
success ratio for different population size. The success
ratio increases logarithmically as the population size
grows larger. This shows that as the population size
increases, the quality of the solution gets better. From
these two results, it can be concluded that the number of
iterations required and the quality of the solution do get

7532 Int. J. Phys. Sci.

Figure 3. NTT backbone network.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 10 20 30 40 50 60

Population Size

N
um

be
r

of
 I

te
ra

tio
ns

Figure 4. Total number of iterations for the duration of simulation for different population size.

Yussof 7533

0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0 10 20 30 40 50 60

Population Size

S
uc

ce
ss

 R
at

io

Figure 5. Success ratio for different population size.

Table 2. Ranges of link parameters and the correlation between them.

Positive correlation No correlation Negative correl ation
w1(i,j) ~ [1,50]

w2(i,j) ~ [1,100]
OR

w1(i,j) ~ [50,100]
w2(i,j) ~[100,200]

w1(i,j) ~ [1,100]
w2(i,j) ~ [1,200]

w1(i,j) ~ [1,50]
w2(i,j) ~ [100,200]

OR
w1(i,j) ~ [50,100]
w2(i,j) ~ [1,100]

better with population size. But, as the population size
grows larger, the percentage of improvement gets
smaller.

Based on the result of this simulation, we have
decided to use population size 25 for the rest the paper.
This is because for population size larger than 25, the
percentage of improvement in success ratio and the
number of iterations taken is very low.

Simulation results for evaluating success ratios

In this simulation, both the 10×10 mesh network and the
NTT backbone network were used. For each link in the
network, two additive QoS parameters w1 and w2 are
randomly generated. These parameters are selected
from uniform distribution under several types of
correlation between them. The range of the parameters
and the correlation between them can be found in Table
2. The source and destination of a request are randomly
generated. The QoS constraints C1 and C2 for each

routing requests are selected from uniform distribution.
The population size for GA is set to 25 and the algorithm
iterates to a maximum of 100 iterations before it reports
failure.

For each topology, three simulations were performed
for each of the correlation type. The three simulations
differ in terms of the range of the QoS constraints given
for routing requests: low constraints, medium constraints
and high constraints. For low constraints, not many
routing requests can be fulfilled, leading to low success
ratio. The reverse is true for high constraints. The range
of the QoS parameters for the three constraints can be
found in Table 3. For each simulation, the results are
obtained from three different runs, where for each run the
network is given new link parameters generated using
random seeds. The total number of requests from the
three runs for the NTT backbone network is around
50,000 and for the mesh network, the total number of
requests is around 89,000.

Figures 6 and 7 shows the results of the simulation for
the two networks and for each of the three types of

7534 Int. J. Phys. Sci.

Table 3. Ranges of constraints for QoS requests.

Constraint Constraint for QoS Parameter 1 Constrain t for QoS Parameter 2

Low C1 ~ [100,300] C2 ~ [200,500]
Medium C1 ~ [300,500] C2 ~ [600,1000]
High C1 ~ [500,700] C2 ~ [1000,1500]

correlation. As expected, the success rate depends a lot
on the constraints for the QoS requests. Regardless of
the routing algorithm used and the correlation between
link parameters, a higher constraint will definitely give a
higher success ratio.

Among the three algorithms, the success ratio of DFS
is the highest since it is a brute force algorithm that
search all possible paths that guarantees to find a
feasible path if it exists. GA however performs very close
to the performance of DFS. Tables 4 and 5 show the
percentage of GA’s success ratio as compared to DFS
for the NTT backbone network and the mesh network,
respectively. For the NTT backbone network, the
percentage is at least 99.06%, which shows that GA is
highly successful in its routing decision. For the mesh
network, however, the percentage can be a bit lower. The
lowest is around 91.58%. The Dijkstra’s algorithm
performed the worst due to the use of a single link
parameter that does not contain enough information to
guide the search of a feasible path during the routing
process.

The correlation between the link parameters also
seems to have some effect on the success ratio of all the
three algorithms regardless of the type of constraints,
although not very much. Link parameters with positive
correlation seem to give the highest success ratio,
followed by no correlation and negative correlation.

Simulation results for evaluating resource utilizat ion

In this simulation, the three algorithms are run on both
the NTT backbone network and the mesh network. For all
the runs, the link parameters assigned have no
correlation with each other and the QoS requests are of
high constraints. The objective of this simulation is to
monitor resource utilization. Optimizing resource
utilization is one of the goals in QoS routing. Several
other MCP algorithms such as Baoxian and Mouftah
(2003) assign one of the QoS parameters to represent
resource utilization. The algorithm is then designed to
optimize this one parameter. However, assigning a single
parameter to represent resource utilization may not be
feasible in practice. Therefore, in this simulation,
resource utilization is measured by the distribution of
network links usage. The number of times each link is
used throughout the simulation is recorded. Link
utilization is measured by counting the number of times

each link is used and computing the standard deviation of
link usage. The standard deviation is calculated as
follows:

()∑
=

−=
L

l
l uu

L 1

21σ (5)

where L represents to total number of links in the
network, lu represents the number of times link l is used

and u is the mean of link utilization which is calculated as
follows:

∑
=

=
L

i
lu

L
u

1

1 (6)

It is assumed that the mean, u , is the optimum solution
where all the links in the network are equally utilized. A
low standard deviation would indicate a distributed link
usage closer to the mean and this, in turn, indicates a
better network link utilization.

Figure 8 shows the result of this simulation. Out of the
three algorithms, DFS gives the highest standard
deviation, followed by GA and Dijkstra’s algorithm. The
standard deviation of GA and Dijkstra’s algorithm,
however, is very close. The high standard deviation of
DFS shows that the link usage is very much concentrated
on certain links only and it does not use the network links
evenly. GA, on the other hand, with its lower standard
deviation shows that it can make more efficient use of the
network links. Even though the standard deviation of
Dijkstra’s algorithm is lower, its low success ratio as
discovered in the previous experiment does not make it a
good MCP routing algorithm.

Simulation results for evaluating processing speed
for various network size

In this simulation, the three algorithms are run on mesh
networks with different sizes: 10×10 (100 nodes), 15×15
(225 nodes) and 20×20 (400 nodes). For all the runs, the
link parameters assigned have no correlation with each
other and the QoS requests are of high constraints. At
the end of the simulation, the total amount of processing
time of all the nodes is recorded. The objective here is to
see how the well the algorithm scales with network size in
terms of processing speed.

Yussof 7535

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Low constraints Medium constraints High constraints

S
uc

ce
ss

 R
at

io

DFS

Dijktra's algorithm

GA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Low constraints Medium constraints High constraints

S
uc

ce
ss

 R
at

io

DFS

Dijktra's algorithm

GA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Low constraints Medium constraints High constraints

S
uc

ce
ss

 R
at

io

DFS

Dijktra's algorithm

GA

(a)

(b)

(c)

Figure 6. Success ratio for the three algorithms on NTT backbone network with respect to different
link correlations a); no correlation (b), and negative correlation (c)] and QoS request constraints.

7536 Int. J. Phys. Sci.

0

0.2

0.4

0.6

0.8

1

1.2

Low constraints Medium constraints High constraints

S
uc

ce
ss

 R
at

io

DFS

Dijktra's algorithm

GA

0

0.2

0.4

0.6

0.8

1

1.2

Low constraints Medium constraints High constraints

S
uc

ce
ss

 R
at

io

DFS

Dijktra's algorithm

GA

0

0.2

0.4

0.6

0.8

1

1.2

Low constraints Medium constraints High constraints

S
uc

ce
ss

 R
at

io

DFS

Dijktra's algorithm

GA

(a)

(b)

(c)

Figure 7. Success ratio for the three algorithms on 10×10 mesth network with respect to
different link correlations [positive correlation [(a); no correlation (b), and negative correlation
(c)] and QoS request constraints.

Yussof 7537

Table 4. Percentage of GA success ratio as compared to DFS for NTT backbone.

Correlation Low constraint (%) Medium constraint (%) High constraint (%)

No correlation 99.83 99.23 99.06
Negative correlation 99.91 99.53 99.21
Positive correlation 99.81 99.30 99.18

Table 5. Percentage of GA success ratio as compared to DFS for 10×10 mesh network.

Correlation Low constraint (%) Medium constraint (%) High const raint (%)
No correlation 97.59 91.58 96.78
Negative correlation 99.11 94.46 96.34
Positive correlation 96.48 91.73 97.41

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Net60 Mesh

Netw ork

S
ta

nd
ar

d
D

ev
ia

tio
n

DFS

Dijktra's algorithm

GA

Figure 8. Link utilization for the three algorithms.

The result of this simulation is shown in Figure 9. The
processing time for all three algorithms increases with
larger network size. However, the GA-based routing
algorithm performs much faster compared to DFS for
larger networks. Even though the speed is not as fast as
Dijkstra’s algorithm, the slower speed is justified due to
the much better performance that it has.

DISCUSSION

Evaluating the performance of an MCP routing algorithm
is difficult because the performance can be affected by
various factors such as the range of values for QoS
constraints, the range of values for the QoS parameters
of the network links, the correlation between the QoS
parameters on the network links, the topology of the
network and also the network size. This paper tries to

take a number of these factors into account during
simulation to ensure that the algorithm works for various
different cases.

The use of GA also provides its own challenges. As
mentioned previously, there are many parts of GA that
can be implemented differently such as the genetic
encoding, the genetic operators and the details of the
genetic operations. And then, there are various
parameters such as the population size, mutation rate,
crossover rate and maximum iteration that can affect the
performance of the algorithm. All of these can affect the
performance of the algorithm. In this paper, only the
population size is determined experimentally. A more
detailed study on the effect of the other GA parameters is
presented in Yussof and Ong (2008).

The results of the experiments show that the proposed
GA-based MCP routing algorithm is able to strike a
balance between the slow, but highly accurate DFS

7538 Int. J. Phys. Sci.

0

50000

100000

150000

200000

250000

10x10 Mesh 15x15 Mesh 20x20 Mesh

T
ot

al
 P

ro
ce

ss
in

g
T

im
e

(m
ic

ro
se

co
nd

s)

DFS

Dijktra's algorithm

GA

Figure 9. Processing speed for various network sizes.

algorithm and the fast, but inaccurate Dijkstra’s algorithm.
The results also show that the proposed algorithm can
provide high accuracy, with relatively faster execution
time compared to the DFS algorithm. In addition to that,
the proposed algorithm has been shown to provide
relatively good network resource utilization. These two
characteristics would allow the proposed algorithm to
fulfill the two objectives of QoS routing and show that
using GA is a promising approach for solving the MCP
routing problem.

Conclusion

This paper proposed a GA-based QoS routing algorithm
for solving the MCP problem. The chromosome in this
algorithm consists of a series of nodes that is in the path
from sender to receiver. Based on the simulation, this
algorithm has been shown to perform well to achieve the
two objectives of QoS routing which are to find a feasible
path and to optimize network resource utilization. The
success ratio achieved is very close to that of an exact
algorithm, where in all the simulations, the success ratio
is more than 99% as compared to the exact algorithm
regardless of the correlation between the link parameters
and the type of constraints generated by the QoS
requests. In addition to having a high success ratio, this
algorithm has been shown to provide a better link
utilization and faster processing time as compared to the
exact algorithm. The result is consistent in the two
network topologies used for the simulations.

REFERENCES

Ahn CW, Ramakrishna RS (2002). A genetic algorithm for shortest path

routing problem and the sizing of populations. IEEE Transactions on
Evolutionary Computing, 6: 566-579.

Baoxian Z, Mouftah HT (2003). A stateless QoS routing algorithm
subject to multiple constraints. In proceedings of IEEE International
Conference on Communications, 3: 1870-1874.

Barolli A, Takizawa M, Xhafa F, Barolli L (2010). Application of genetic
algorithms for QoS routing in mobile ad hoc networks: a survey. In
proceedings of International Conference on Broadband, Wireless
Computing, Communication and Applications, pp. 250-259.

Barolli L, Koyama A, Matsumoto K, Suganuma T, Shiratori N (2002). A
genetic algorithm based routing method using two QoS parameters.
In proceedings of 13th International Workshop on Database and
Expert Systems Applications, pp 3-7.

Chen S, Nahrstedt K (1998a). An overview of quality of service routing
for next-generation high-speed networks. IEEE Network. 12(6): 64-
79.

Chen S, Nahrstedt K (1998b). On finding multi-constrained path. In
proceedings of IEEE International Conference on Communication,
2: 874-879.

Dai FS, Liu AJ (2009). A multi-constrained quality-of-service routing
algorithm based on vector converting. In proceedings of 5th
International Conference on Wireless Communications, Networking
and Mobile Computing, pp.1-4.

 Daneshmand MF, Roy RR, Savolaine CG (1997). Framework and
requirements of quality of service for multimedia application.
Intelligent Information System, pp 466-474.

Dumetrescu D, Lazzerini B, Jain LC, Dumitrescu A (2000). Evolutionary
Computing. The CRC Press.

Ghosh D, Sarangan V, Acharya R (2001). Quality of service routing in
IP networks. IEEE Transactions on Multimedia. 3(2): 200-208.

Goldberg GE (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley.

Hamdan M, El-Hawary ME (2002). Hopfield-Genetic approach for
solving the routing problem in computer networks. In proceedings of
Canadian Conference on Electrical and Computer Engineering, 2:
823-827.

He C (1997). Route selection and capacity assignment in computer

communication networks based on genetic algorithm. In
proceedings of IEEE International Conference on Intelligent
Processing Systems. 1: 548-552.

Holland JH (1975). Adaptation in Natural and Artificial Systems.
University of Michigan Press.

Hua J, Liping Z, Yanxiu L, Min Z (2010). Multi-constratined QOS routing
optimization of wireless mesh network based on hybrid genetic
algorithm. In proceedings of International Conference on Intelligent
Computing and Integrated Systems, pp. 862-865.

Jaffe JM (1984). Algorithms for finding paths with multiple constraints.
Networks. 14: 95-116.

Jing Z, Xuefen C, Guan L, Hongxia L (2008). Service-aware multi-
constrained routing protocol with QoS guarantee based on fuzzy
logic. In proceedings of 22nd International Conference on Advanced
Networking and Applications Workshop, pp. 762-767.

Khadivi P, Samavi S, Todd TD, Saidi H (2004). Multi-constraint QoS
routing using a new single mixed metric. In proceedings of IEEE
International Conference on Communications. 4: 2042-2046.

Koyama A, Barolli L, Matsumoto K, Apduhan BO (2004). A GA-based
multi-purpose optimization algorithm for QoS routing. In proceedings
of 18th International Conference on Advanced Information
Networking and Applications, 1: 23-28.

Mieghem PV, Neve HD, Kuipers F (2001). Hop-by-hop quality of service
routing. Computer Networks, 37: 407-423.

Mitchell M (1996). An Introduction to Genetic Algorithms. MIT Press.
Munetomo M, Yamaguchi N, Akama K, Sato Y (1998). A migration

scheme for the genetic adaptive routing algorithm. In proceedings of
IEEE International Conference on Systems, Man and Cybernatics.
3: 2774-2779.

Nallusamy R, Duraiswamy K, Muthukumar DA, Sathiyakumar C (2010).
Energy efficient dynamic shortest path routing in wireless Ad hoc
sensor networks using genetic algorithm. In proceedings of
International Conference on Wireless Communication and Sensor
Computing, pp 1-5.

 Rield A (2002). A hybrid genetic algorithm for routing optimization in IP
networks utilizing bandwidth and delay metrics. In proceedings of
IEEE Workshop on IP Operations and Management, pp. 166-170.

Yussof 7539

Shimamoto N, Hiramatsu A, Yamasaki K (1993). A dynamic routing

control based on a genetic algorithm. In proceedings of IEEE
Conference on Neural Networks, pp 1123-1128.

Silva ER, Guardieiro P (2010). An efficient genetic algorithm for anycast
routing in delay/disruption tolerant networks. IEEE Communication
Letters. 14(4): 315-317.

Sinclair MC (1998). Minimum cost routing and wavelength allocation
using genetic algorithm / heuristic hybrid approach. In proceedings
of 6th IEE Conference on Telecommunications, pp 62-71.

Tode H, Hamada K, Murakami K (2010). ORGAN: Online route and
Wavelength design based on Genetic Algorithm for OPS networks.
In proceedings of Conference on Optical Network Design and
Modeling, pp 1-6.

Wang X, Wang G (2001). An algorithm for QoS routing to optimize
network resource utilization. In proceedings of International
Conference on Info-tech and Info-net, 2: 474-479.

Wang Z, Crowcroft J (1996). Quality-of-service routing for supporting
multimedia applications. IEEE J. Selected Areas in Comm., 14(7):
1228-1234.

Wei C, Yi Z (2009). A multi-constrained routing algorithm based on
mobile agent for MANET networks. In proc. Int. Joint Conf. Art.
Intell., pp. 16-19.

Xiang F, Junzhou L, Jieyi W, Guanqun G (1999). QoS routing based on
genetic algorithm. Computer Communications. 22(15-16), pp 1392-
1399.

Xue G, Zhang W, Tang J, Thulasiraman K. Polynomial time
approximation algorithms for multi-constrained QoS routing.
IEEE/ACM Transactions on Networking. 16(3): 656-669.

Yen YS, Chang RS, Chao HC (2008). Flooding- limited for multi-
constrained quality-of-service routing protocol in mobile ad hoc
networks. IET Communications, 2(7): 971-981.

Yussof S, Ong HS (2008). The Effect of GA Parameters on the
Performance of GA-based QoS Routing Algorithm. In proceedings
of 3rd International Symposium on Information Technology, pp 1-7.

