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In this paper, we have applied He’s iteration perturbation method for the first time to solve nonlinear 
oscillators with discontinues. Three practical examples are explained and introduced. Comparing with 
exact solutions, just one iteration leads us to high accuracy of solutions which are valid for a wide 
range of vibration amplitudes as indicated in the following examples. 
 
Key words: Nonlinear oscillators, discontinues, iteration perturbation method. 

 
 
INTRODUCTION 
 
Considerable attention has been paid to the study of the 
nonlinear equations, not only in all areas of physics, but 
also in applied mathematics, engineering, and other 
disciplines.  

Generally, finding an analytical approximation for 
nonlinear problems is more difficult than the numerical 
solution. During the past few decades, several methods 
have been proposed for obtaining approximate solutions 
for various types of nonlinear equations (Bayat et al., 
2010, 2011a, b, c, d, e; Pakar et al., 2011; Kimiaeifar et 
al., 2009). 

The major concern of this paper is to assess excellent 
approximations to the exact solutions for the whole range 
of the oscillation amplitude, reducing the respective error 
of angular frequency in comparison with the iteration 
perturbation method. Application of the method to 
different fields of science and engineering has been 
discussed by various researchers (He, 2001; Özis and 
Yildirim, 2009; Rafei et al. 2007). 
 
 
ITERATION PERTURBATION METHOD  
 
Many researchers have devoted their attention to 
obtaining approximate solution of nonlinear equations in 
the form: 
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( , ) 0,u u f u uε′′ ′+ + =                                                (1) 
 
Subject to the following initial conditions: 
 

( 0 ) , ( 0 ) 0u A u= =�                                          (2) 
 
We rewrite Equation (1) in the following form: 
 

. ( , ) 0,u u u g u uε′′ ′+ + = ���������������������������������������������  (3) 
 
Where ( , ) / .g u u f u=�  
We construct an iteration formula for the aforeseen 
equation: 
 
 1 1 1. ( , ) 0,n n n n nu u u g u uε+ + +′′ ′+ + = ������������������������������  (4) 
 
Where we denote by nu  the n th approximate solution. 
For nonlinear oscillation, Equation (4) is of Mathieu type. 
We will use the perturbation method to find approximately 

1nu +
.The technique is called iteration perturbation method. 

 
 
APPLICATIONS 
 
In order to assess the advantages and the accuracy of 
the iteration perturbation method we will consider the 
following examples. 

Here,   we   will   introduce   a  nonlinear  oscillator  with  



 
 
 
 
discontinuity in several different forms: 
 

2

2 ( ) sgn( ) 0,
d u

h u u u
dt

β+ + = ��������������������                  (5) 

 
Or 
 

2

2 ( ) 0,
d u

h u u u
dt

β+ + =                                           (6) 

 
With initial conditions  
 

 
(0)

(0) , 0
du

u A
dt

= =                                                (7) 

 
In this work, we assume that ( )h u is in a polynomial 
form. The reason for this assumption is that the 
discontinuity equations found in the literature belong to 
this family. Since there are no small parameters in 
Equation (6) the traditional perturbation methods cannot 
be applied directly. In the following example, we assume 
a linear form ( )h u . 
 
 
Example 1 
 

Let ( ) ,h u uα=  in Equation (6) 
We can rewrite Equation (6) in the following form: 
 

. 0u u u uα β′′ + + = ���������������������������������������������������� (8) 

 
To apply the iteration perturbation method, the solution is 
expanded and the series of ε  is introduced as follows: 
 

0 0

n i
ii

u u uε
=

= +� ��������������������������������������������������������  (9) 

 
2

0

n i
ii

aα ω ε
=

= +� ����������������������������������                   (10) 

 

0

n i
ii

dβ ε
=

=�                                                          (11) 

 
�Substituting Equations (9), (10) and (11) into Equation 
(8) and equating the terms with the identical powers ofε , 
a series of linear equations are obtained. Expanding the 
first two linear terms becomes as follows: 
 

0 2
0 0 0 0: 0 , (0) , (0) 0u u u A uε ω+ = = =�� �            (12) 

 
1 2

1 1 1 0 1 0 0

1 1

: 0 ,

(0) 0 , (0) 0

u u a u d u u

u u

ε ω′′+ + + =
= =�

����������������������������  
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Substituting the solution into Equation (12), for 
example, 0 cos( )u A tω= , the deferential equation for 1u  
becomes: 
 

 

2
1 1 1

1

1 1

c o s ( )

c o s ( ) c o s ( ) 0 ,

(0 ) 0 , (0 ) 0

u u a A t

d A t A t

u u

ω ω
ω ω

′′ + +
+ =

′= =

                     (14)   

 
Note that the following Fourier series expansion is valid. 
 

2 1
2 1

0

1 3

cos ( ) cos ( ) cos ( ( 2 1) )

cos ( ) cos (3 ) ...

n
k

k

A t t c k t

c t c t

ω ω ω

ω ω

∞
−

+
=

= +

= + +

� ������� (15) 

 
Where ic can be determined by Fourier series, for 
example, Equation (16) in Equation (14) gives: 
 

2

1
0

2 1

2
0

2 1

0

2
c o s ( ) c o s ( ) ( )

c o s ( ) ( )2

c o s ( ) ( )

2 ( 1)
( 3 / 2 )

n

n

n

c t t d t

t d t

t d t

n
n

π

π

π

ω ω ω
π

ω ω
π

ω ω

π

+

+

=

� �
� �

= � �
� �� �−
� �

Γ +=
Γ +

�

�

�

             (16) 

 
2

1 1 1

1 2 1
0

cos ( )

cos ( ( 2 1 ) ) 0k
k

u u a A t

d A c k t

ω ω

ω
∞

+
=

′′ + +

+ + =�
�����������������  (17) 

 
Avoiding the presence of a secular term requires that 
 

2
1 1 1 0a d c A+ =                                                         (18) 

 
Also, substituting 1,ε = into Equations (9) and (10) gives: 
 

2
1aα ω= +                                                               (19) 

 

1dβ = ����������������������������������������������������                     (20) 
 
From Equations (18), (19) and (20), the first-order 
approximation to the angular frequency is: 
 

8
3

Aεω α
π

= +                                                           (21) 

 
 
Case 1 
 

 If 1,α = we have: 
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8
1

3
Aεω

π
= + ������������������������������������������������������������ (22) 

 
It is the same as that obtained by the Homotopy 
perturbation method and the Variational method (He, 
2004; Tao, 2008). 
 
 
Case 2 
 
If 0,α = we have 
 

8
3

Aεω
π

=                                                               (23) 

 
The obtained frequency in Equation (23) is valid for the 
whole solution domain 0 A< < ∞ . 
 
 
Example 2 
 
If 3( )h u uα= , in Equation (6). 
Then we have 
  

2
3

2 . 0
d u

u u u
d t

α β+ + =                                             (24) 

 
To apply the iteration perturbation method, the solution is 
expanded and the series of ε  is introduced as follows: 
 

0 0

n i
ii

u u uε
=

= + �                                                        (25) 

 
2

0
0

n i
ii

aω ε
=

= + �                                                   (26) 

 

0
1

n i
ii

dε
=

= �                                                            (27) 

 
Substituting Equations (25), (26) and (27) into Equation 
(24) and equating the terms with the identical powers 
ofε , a series of linear equations are obtained. Expanding 
the first two linear terms becomes as follows: 
 

0 2
0 0

0 0

: 0 ,

(0) , (0) 0

u u

u A u

ε ω+ =
= =

��

�

                                      (28) 

 
1 2 3

1 1 1 0 1 0

0

1 1

:

cos ( ) 0 ,

(0) 0 , (0) 0

u u a u d u

u A t

u u

ε ω α
β ω

′′+ + +
+ =

= =�

                                 (29) 

 
Substituting the solution into Equation (28), for example,  

0 cos( )u A tω= ,   the   deferential   equation  for    1u   

 
 
 
 
becomes: 
 

2 3 3
1 1 1 1cos ( ) cos ( )

cos ( ) cos ( ) 0

u u a A t d A t

A t A t

ω ω α ω
β ω ω
′′+ + +

+ =
������������ (30) 

 
We have the following identity: 
 

3 3 1
cos ( ) cos ( ) cos (3 )

4 4
t t tω ω ω= +                      (31) 

 
Note that the following Fourier series expansion is valid. 
 

2 1
2 1

0

1 3

cos ( ) cos ( ) cos ( ( 2 1) )

cos ( ) cos (3 ) ...

n
k

k

A t t c k t

c t c t

ω ω ω

ω ω

∞
−

+
=

= +

= + +

� �� (32) 

 

ic can be determined by Fourier series, for example : 
 

2

1
0

2 1

2
0

2 1

0

2
co s( ) co s( ) ( )

co s( ) ( )2

co s( ) ( )

2 ( 1)
( 3 / 2 )

n

n

n

c t t d t

t d t

t d t

n
n

π

π

π

ω ω ω
π

ω ω
π

ω ω

π

+

+

=

� �
� �

= � �
� �� �−
� �

Γ +=
Γ +

�

�

�

                    (33) 

 
By means of Equations (31), (32) and (33) we find that: 
 

2 2
1 1 1 1

3
1

2
2 1

0

3
( ) cos ( )

4
1

cos (3 ) )
4

cos ( (2 1) ) 0k
k

u u a d A A t

d A t

A c k t

ω ω

ω

ω
∞

+
=

′′+ + +

+

+ + =�

                          (34) 

 
No secular term in 1u requires that 
 

2
1 1

3 8
0

4 3
a d A Aα β

π
+ + =                                      (35) 

 
Also, substituting 1,ε = into Equations (26) and (27) 
gives: 
 

2
10 ...aω= + + ����������������������������������������������������������� (36) 

 

11 d=                                                                           (37) 



 
 
 
 
From Equations (35), (36) and (37), the first-order 
approximation to the angular frequency is: 
 

23 8
4 3
A Aα βω

π
= +                                                (38) 

 
 
Case 1 
 
If ,α β β ε= =  we have: 
 

23 8
4 3
A Aβ εω

π
= +                                                 (39) 

 
This agrees well with that obtained by the Homotopy 
perturbation method and the variational method (He, 
2004; Tao, 2008). And its period is given by: 
 

2

2 2

3 8
4 3

T
A A

π π
ω β ε

π

= =
+

                                        (40) 

 
 
Case 2 
 
If 0ε = , its period can be written as: 
 

1
124

3
T A

π β
− −=                                                       (41) 

 
The exact period was obtained by Acton and Squire 
(1985). 
 

1
127.4164exT Aβ

− −=                                                 (42) 
 
The maximal relative error is less than 2.2% for all 0β > ! 
 
 
Example 3 
 
Let ( ) 0,h u =  in Equation (6) 

 By setting 0, 1α β= =  , Equation (5) becomes: 
 

( ) 0u sgn u′′ + =                                                          (43) 
 
or 
 

0u u′′ + =                                                                (44) 

 
We can rewrite Equation (44) to the following form: 
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0. 1. 0u u u′′ + + =                                                     (45) 

 
To apply the iteration perturbation method, the solution is 
expanded and the series of ε  is introduced as follows: 
 

0 0

n i
ii

u u uε
=

= + �                                                     (46) 

 
2

0
0

n i
ii

aω ε
=

= + �                                                      (47) 

 

0
1

n i
ii

dε
=

= �                                                             (48) 

 
Substituting Equations (46), (47) and (48) into Equation 
(45) and equating the terms with the identical powers 
ofε , a series of linear equations are obtained. Expanding 
the first two linear terms becomes as follows: 
 

0 2
0 0 0 0: 0 , (0) , (0) 0u u u A uε ω+ = = =�� � ��������� (49) 

 
1 2 1

1 1 1 0 1 0 0 0

1 1

: ( ) 0,

(0) 0 , (0) 0

u u a u d u u u

u u

ε ω −′′+ + + =
= =�

            (50) 

 
Substituting the solution into Equation (49), for example, 

0 cos( )u A tω= , the deferential equation for 1u  
becomes: 
 

2 1
1 1 1 0 1

1 1

cos( ) cos( ) ( cos( )) 0,

(0) 0, (0) 0

u u a u d A t A t A t

u u

ω ω ω ω −′′+ + + =
′= =

  (51) 

 
Note that the following Fourier series expansion is valid. 
 

2 1
2 1

0

1 3

cos( ) cos( ) cos((2 1) )

cos( ) cos(3 ) ...

n
k

k

t t c k t

c t c t

ω ω ω

ω ω

∞
−

+
=

= +

= + +

�         (52) 

 
Where ic can be determined by Fourier series, in 

Equation (52), 0n =  
 

1

4
c

π
=                                                                      (53) 

 
We rewriting Equation (50) in the following form: 
 

2
1 1 1 1 2 1

0

cos( ) cos((2 1) ) 0k
k

u u a A t d c k tω ω ω
∞

+
=

′′+ + + + =�  (54) 

 
Avoiding the presence of a secular term requires that 
 

1 1
1 0

d c
a

A
+ =                                                                (55) 
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Also, substituting 1,ε = into Equations (47) and (48) 
gives: 
 

2
10 aω= +                                                                  (56) 

 

11 d=                                                                         (57) 
 
From Equations (55), (56) and (57), the first-order 
approximation to the angular frequency is: 
 

2
A

ω
π

=                                                                   (58) 

 
Tao (2008) obtained the same result. 
 
 
CONCLUSION 
 
In this work, iteration perturbation method has been 
successfully used to obtain approximate frequencies for 
nonlinear discontinuity equations. Three examples have 
been considered in this paper. The comparison of the 
results obtained by Iteration perturbation method with the 
exact one show that the first iteration of the method led to 
an excellent solution for the nonlinear oscillators with 
discontinuities. In general, we conclude that this method 
is efficient for calculating periodic solutions for nonlinear 
oscillatory systems, and the author suggest the iteration 
perturbation method as a powerful method and has a 
great potential and could be applied to other strong 
nonlinear oscillators. 
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