
International Journal of the Physical Sciences Vol. 6(6), pp. 1411-1425, 18 March, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS10.442 
ISSN 1992 - 1950 ©2011 Academic Journals 
 
 
 

Full Length Research Paper 

 

Physics of flow instability and turbulent transition in 
shear flows 

 

Hua-Shu Dou 
 

Temasek Laboratories, National University of Singapore, Singapore 117411. E-mail: tsldh@nus.edu.sg, 
huashudou@yahoo.com. 

 
Accepted 18 February, 2011 

 

Turbulent transition is of great significance in modern sciences and industrial applications. The physics 
of flow instability and turbulent transition in shear flows is studied by analyzing the energy variation of 
fluid particles under the interaction of base flow with a disturbance. A simple model derived from 
physics is proposed to show that the flow instability under finite amplitude disturbance leads to 
turbulent transition. The proposed model is named as “energy gradient method”. It is demonstrated 
that it is the transverse energy gradient that leads to the disturbance amplification while the 
disturbance is damped by the energy loss due to viscosity along the streamline. The threshold of 
disturbance amplitude obtained is scaled with the Reynolds number by an exponent of -1, which is in 
good agreement with experiments in literature for pipe flow with injection disturbance. Experimental 
data for wall bounded parallel flows indicate that the critical value of the so called energy gradient 
parameter Kmax is same at turbulent transition (at least for pressure driven flows). The location of 
instability initiation accords well with the experiments for both pipe Poiseuille flow (r/R=0.58) and plane 
Poiseuille flow (y/h=0.58). It is also inferred from the proposed method that the transverse energy 
gradient can serve as the power for the self-sustaining process of wall bounded turbulence. Finally, the 
relation of “energy gradient method” to the classical “energy method” based on Rayleigh-Orr equation 
is also discussed.  
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INTRODUCTION  
 
Turbulence is one of the most difficult problems in 
classical physics and mechanics.  Turbulence research 
has a history of more than 120 years, since Reynolds’ 
pioneer work on the pipe flow was done (Reynolds, 1883). 
Reynolds showed via experiments that a nominally 
laminar pipe flow would display turbulent behaviour when 
the Reynolds number exceeded a critical value. The 
physical mechanisms that cause laminar flow to lose its 
stability and to transit to turbulence are still poorly 
understood (Trefethen et al., 1993; Grossmann, 2000; 
Drazin and Reid, 2004). From mathematical analysis, Lin 
(1955) demonstrated that transition from laminar to 
turbulent flows may be due to the occurrence of instability. 
Emmons (1951) found the turbulent spot for the first time 
in experiment for natural transition of a boundary layer. 
His measurement indicated that the turbulent spot is the 
initial stage of turbulent transition and it is specifically a 
local phenomenon. There is intermittence at the edge of 
the spot  surround  by  laminar  flow.  Theodorsen  (1952) 

proposed a simple vortex model as the central element of 
the turbulence generation in shear flows. It takes the form 
of a hairpin (or horseshoe)-shaped vertical structure 
inclined in the direction of mean shear. Kline et al. (1967) 
found the detailed coherent structure in the flow of a 
boundary layer that turbulence consists of a series of 
hairpin vortices. These phenomena have been confirmed 
by later simulations and experiments (Perry and Chong, 
1982; Robinson, 1991; Adrian et al., 2000). However, the 
challenge remains to identify the mechanisms of the 
formation of velocity inflection and the lift and breakdown, 
of hairpin vortices.   

On the other hand, for Poiseuille flow in a straight pipe 
and plane Couette flow, linear stability analysis shows 
that they are stable for all the range of Reynolds number 
while they both transit to turbulence at finite Reynolds 
number in experiments (Trefethen et al., 1993; 
Grossmann, 2000; Drazin and Reid, 2004). Now, it is 
generally  accepted  from  experiments  that   there   is   a  
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critical Reynolds number cRe  below which no turbulence 

can be produced regardless of the level of imposed 
disturbance. From experiments the critical value of the 

Reynolds number ( cRe ) for pipe Poiseuille flow is 

approximately 2000 (Patel and Head, 1969). Above this 
critical value, the transition to turbulence depends to a 
large extent on the initial disturbance to the flow. For 
example, experiments showed that if the disturbance in a 
laminar flow can be carefully reduced, the onset of 
turbulence can be delayed to Reynolds number up to 

Re= )10(
5

O  (Pfenninger, 1961; Nishioka et al., 1975). 

Experiments also showed that for Re> cRe , only when a 

threshold of disturbance amplitude is reached, can the 
flow transition to turbulence occur (Darbyshaire and 
Mullin, 1995). Trefethen et al., suggested that the critical 
amplitude of the disturbance leading to transition varies 
broadly with the Reynolds number and is associated with 

an exponent rule of the form, γRe∝A  (Trefethen et al., 

1993). The magnitude of this exponent has significant 
implication for turbulence research (Grossmann, 2000). 
In Waleffe (1995), it is shown that an exponent strictly 
less than -1 would indicate the importance of transient 
growth while -1 is expected from a simple balance 
between nonlinear inertial term and viscous dissipation 
term. Chapman, through a formal asymptotic analysis of 
the Navier-Stokes equations (for Re → ∞ ), found γ = 

−3/2 and -5/4 for plane Poiseuille flow with streamwise 
mode and oblique mode, respectively, with generating a 
secondary instability, and γ = −1 for plane Couette flow 

with both modes. He also examined the boot-strapping 
route to transition without needing to generate a 
secondary instability, and found γ = −1 for both plane 

Poiseuille flow and plane Couette flow (Chapman, 2002). 
Recently, Hof et al. (2003), used pulsed disturbances in 
experiments, to have obtained the normalized 
disturbance flow rate in the pipe for the turbulent 
transition, and found it to be inversely proportional to the 
Re number, that is, 1−=γ . This experimental result 

means that the product of the amplitude of the 
disturbance and the Reynolds number is a constant for 
the transition to turbulence. This phenomenon must have 
its physical background, and the physical mechanism of 
this result has not been explained so far. This issue will 
be clarified in the present work. 

More recently, Dou (2006) suggested a new approach 
to analyze flow instability and turbulence transition based 
on the “energy gradient” concept. He proposed a function 
of energy gradient and then took the maximum of this 
function in the flow field, Kmax, as the criterion for flow 
instability. This approach obtains a consistent value of 
Kmax for the critical condition (that is, minimum Reynolds 
number) of turbulent transition in plane Poiseuille flow, 
pipe Poiseuille flow and plane Couette flow (Dou, 2006; 
Dou and Khoo, 2011). For flows of Kmax  below  this  value 
no turbulence can be generated no  matter  how  large  of  

 
 
 
 
the disturbance amplitude. However, in the previous work, 
the detail of amplification of the disturbance by the 
energy gradient has not been described, and why the 
proposed parameter, Kmax, should be used to 
characterize the critical condition of turbulent transition 
has not been derived rigorously.  

In this paper, based on the analysis of disturbance of 
the fluid particle in shear flows, a model with support of 
detailed physical background and detailed derivation for 
flow instability and turbulent transition is proposed. In this 
model, the basic principle of flow instability under a 
disturbance has been described within the frame of 
Newtonian mechanics. We name the proposed model 
“energy gradient method.” With this method, the 
mechanism of amplification or decay of a disturbance in 
shear flows is elucidated. A formulation for the scaling of 
normalized amplitude of disturbance is obtained. 
Following that, the model is compared to the experi-
mental results of others in literature.  

 
 
ENERGY GRADIENT METHOD 

 
In this section, we will use the basic principles of physics and 
mechanics to analyze the energy variation of a perturbed particle 
and to obtain the criterion for flow instability.  

In mechanics, instability means that a system may leave its 
original rest state when disturbed. Transition means that a flow 
state has changed from laminar to turbulent, or has transited to 
another laminar flow state. It is not yet clear exactly how transition 
is related to stability (White, 1991). Linear stability theory only 
describes the stability of a system that has undergone an 
infinitesimal disturbance. In nature, a mechanical system may be 
stable to infinitesimal disturbance (linear stability), but can still be 
unstable when a sufficiently large disturbance with finite amplitude 
(nonlinear unstable), as shown in Figure 1. Three simple cases are 
demonstrated in Figure 1a to 1c, a smooth ball lies at rest under 
stable (1a), unstable (1b) and neutral stable conditions (1c). A more 
complicated case is illustrated in Figure 1d, where the ball is stable 
for small displacement but will diverge if the disturbance is larger 
than a finite threshold. In fluid flow, the situation of stability is more 
complicated. But, we can understand it better by referring to these 
simple cases of stability problems in principle.  

From the classical theory of Brownian motion, the microscopic 
particles suspended in a fluid are in a state of thermally driven, 
random motion (Einstein, 1956). The fluid particles exchange 
momentum and energy via collisions. Figure 2 demonstrates the 
transport of momentum through the “layers” in parallel shear flow. 
Particles on neighboring layers collide, resulting in an exchange of 
momentum. The viscous nature of the fluids considered here, 
results in inelastic collision and an associated dissipation of energy. 
In the flow, this energy loss due to viscosity leads to the drop of 
total energy along the streamline. Meanwhile, there is an energy 
gradient in transverse direction in shear flows. The variations of 
energy in transverse and streamwise directions might make the 
disturbed particle leave its equilibrium position and forms the 
source (genesis) of flow instability.  

Firstly, let us consider a fluid particle in the middle layer (Figure 
2). This particle acquires energy from the upper layer through 
momentum exchange (inelastic collisions) which is expressed as 

1
E∆ . Simultaneously, this particle releases energy to the lower 

layer through momentum exchange which is expressed as 
2

E∆ . 

The net energy obtained by this particle from  the  upper  and  lower  



 
 
 
 

 
 
Figure 1. Schematic of equilibrium states of a mechanical 
system. (a) Stable (b) Unstable (c) Neutral stable (d) Nonlinear 
unstable (stable for small disturbance but unstable for large 
ones). 

 
 
 

 
 
Figure 2. Schematic of fluid particle flows in a steady parallel shear 
flow. 

 
 
 

layer is 021 >∆−∆=∆ EEE . There is energy loss due to 

viscosity friction on the two interfaces, and this energy loss is 

expressed as H∆ ( H∆ >0). For steady laminar flow,  
 

0=∆−∆ HE .                                  (1) 

 
Thus, the flow of this particle is in an equilibrium state. If the particle 
is subjected to a vertical disturbance, we then have, 
 

0≠∆−∆ HE ,                                 (2) 

 
and there is possibility of instability. If the particle can return its 
original streamline, it is in a stable equilibrium, and if it cannot, the 
particle is in an unstable equilibrium. For a minute displacement of 

the particle to the upper layer, there is 0>∆−∆ HE , or 

1/ >∆∆ HE . For a minute displacement of the particle to the lower 

layer, there is 0<∆−∆ HE , or 1/ <∆∆ HE .  In Figure 2, we 

express that the kinetic energy of this particle in steady flow is 
2

)2/1( um  and the kinetic energy after the displacement is 

2
'

2
1 um  where m is the mass of the particle, and u  and  'u  

represent      the     velocity     before     and     after     displacement,  
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Figure 3. Movement of a particle around its original equilibrium 
position in a cycle of disturbance. 

 
 
 
respectively. For steady laminar flow, 0=∆−∆ HE  corresponds 

to 0
2

1'
2

1 22 =− umum , that is, particles remain in their 

respective layers. For the displacement of the particle to the upper 

layer, 0>∆−∆ HE corresponds to 0
2

1'
2

1 22 >− umum . This 

means that the kinetic energy of the particle will increase after 
being subjected to this disturbance. For the displacement of the 

particle to the lower layer, 0<∆−∆ HE  corresponds 

to 0
2

1'
2

1 22 <− umum . This means that the disturbance has 

resulted in a loss of kinetic energy for the particle. From these 
discussions, it is seen that the stability of a flow depends on the 

relative magnitude of E∆ and H∆ . 
Then, secondly, let us consider the elastic collision of particles 

when a disturbance is imposed to the base of a parallel shear flow 

(Figure 3). Let us consider that a fluid particle  P  at its equilibrium 
position will move a cycle in vertical direction under a vertical 
disturbance, and it will have two collisions with two particles 

( 1P and 2P ) at its maximum disturbance distances, respectively. 

The masses of the three particles are m , 
1

m and 
2

m , and the 

corresponding velocities prior to collisions are u , 
1

u and 
2

u . We 

use primes for the corresponding quantities after collision. Without 

lose of generality, we may assume m =
1

m =
2

m  for convenience 

of the derivation. For a cycle of disturbances, the fluid particle may 
absorb energy by collision in the first half-period and it may release 
energy in the second half-period because of the gradient of the 
velocity profile. The total momentum and kinetic energy are 
conserved during the elastic collisions. The conservation equations 

for the first collision on streamline 1S  are 

 

1111111 )('' ummumumumum +=+=+ α ,                                  (3) 

 
and 
 

2
111

22
11

22
11 )(

2

1
'

2

1
'

2

1

2

1

2

1
ummumumumum +=+=+ β .                       (4) 

 

Here 1α  and 1β  are two constants and 1α ≤ 1 and 1β ≤ 1. It 

should be pointed that the values of 1α  and  1β   are  not  arbitrary.  
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The values of 1α and 1β  are related to the residence time of the 

particle at 1P , and they are definite. If the residence time at position 

1P  is sufficiently long (for example, whole half-period of 

disturbance), the particle P would have undergone a large number 
of collisions with other particles on this streamline and would have 

the same momentum and kinetic energy as those on the line of 1S , 

and it is required that 1α =1 and 1β =1. In this case, the energy 

gained by the particle P in the half-period is 22
1 2

1
2

1 umum − . 

When the particle P remains on S1 for less than the necessary half-
period, of the disturbance, the energy gained by the particle P can 

be written as )
2

1
2

1( 22
11

* umum −β , where 1
*β  is a factor 

of fraction of a half-period with 11
* <β . Similar to 1β , the value of 

1
*β  is definite, its value is exactly related to the residence time of 

the particle at 1P . 

The requirements of conservation of momentum and energy 

should also be applied for the second collision on streamline 2S : 

 

2222222 )('' ummumumumum +=+=+ α ,              (5) 

 
and 
 

2
222

22
22

22
22 )(

2

1
'

2

1
'

2

1

2

1

2

1
ummumumumum +=+=+ β    (6) 

 

Here 2α  and 2β  are two constants and 2α ≥ 1 and 2β ≥ 1. 

Similar to the first collision, 2α and 2β  are related to the residence 

time for P at P2. Similarly, 2α =1 and 2β =1, when the residence 

time is equal to the half-period of the disturbance. For the second 
collision, the energy gained by particle P in a half-period is 

22
2 2

1
2

1 umum −  (the value is negative). The energy gained by 

a particle that is resident on S2 for less than the half-period of the 

disturbance is written as ( )22
22

*

2
1

2
1 umum −β , where 2

*β  is 

a factor of fraction of a half-period with  12
* <β .  Similar to 2β , 

the value of 2
*β  is definite, its value is exactly related to the 

residence time of the particle at 2P . 

For the first half-period, the particle gains energy by the collision 
and the particle also releases energy by collision in the second half-
period. For the first half-cycle of the particle movement, the energy 

gained per unit volume of fluid is ( ) 2
22

1
*

1 uu −ρβ . If this particle 

has several collisions with other particles on the path (say N 
collisions), the energy variation of per unit volume of fluid can be 

written as ( )∑ −
=

N

i
i uu

1

22
1

*
1 2ρβ  for a half-period. If each half-

period is divided into a series of intervals ( t∆ ) and the 

corresponding fluid layer is a series of thin strips y∆ thick, the 

fraction of residence time of the particle in a layer is 
2/

*
1

T

t∆
=β , 

where T is the period. If a particle stays in one layer for a full half- 
period, this particle will have the energy same as those within this 

layer, and thus 1
*

1 =β .  Therefore, the energy variation of per unit 

volume of fluid for a half-period can be written as:  
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where, 

i

i

i
y

uu

y

E 2/)(
22

1
−

=
∂

∂ ρ ,               (8) 

 
is the energy gradient in the transverse direction, and 

2
)2/1( uE ρ=  is the energy per unit volume of fluid. When t∆  

tends to infinite small, Equation (8) becomes 
 

y

uu

y

E y 2/)(
22

1 −
=

∂

∂ ρ
 

 
at an any position of y coordinate of the disturbance, and Equation 
(8) becomes  
 

∫
∂

∂
=∫

∂

∂
=∆

2/

0

2/

0

22 TT

ydt
Ty

E
ydt

y

E

T
E .                             (9) 

 

Here, yu1  is the velocity of mean flow at an any position of y 

coordinate of the disturbance, and y is the distance of the fluid 
particle deviating from its stable equilibrium position in the laminar 

flow. In Equation (9), yE ∂∂ / is considered to be a constant in the 

vicinity of the streamline S and also is treated as a constant in the 
whole cycle. This treatment can also be obtained by expanding 

yE ∂∂ / into a Taylor series in the neighborhood of the original 

location and taking its leading term as a first approximation. 
Without lose of generality (this will be seen later), assuming that 

the disturbance variation is associated with a sinusoidal function,  
  

)sin( 0ϕω += tAy ,                             (10) 

 

Where A is the amplitude of disturbance in transverse direction, ω  

is the frequency of the disturbance, t is the time, and 0ϕ  is the 

initial phase angle. The velocity of the disturbance in the vertical 
direction, is the derivative of (10) with respect to time, 
 

)cos('' 0ϕω +== tv
dt

dy
v m

.                            (11) 

 

Here, ωAv m ='  is the amplitude of disturbance velocity and the 

disturbance has a period of ωπ /2=T .     

Substituting Equation (10) into Equation (9), we obtain the energy 
variation of per unit volume of fluid for the first half-period, 

  

( )

π
ωϕω

ω

ϕω

π A

y

E
tdtA

Ty

E

dttA
Ty

E
ydt

Ty

E
E

TT

2
)sin(

12

sin
22

0
0

2/

0
0

2/

0

∂

∂
=∫ +

∂

∂
=

∫ +
∂

∂
=∫

∂

∂
=∆

.            (12) 

 
The selection of the disturbance function in Equation (10) does not 
affect the result of Equation (12), except there may be a difference 
of a proportional constant. In a similar way, for the second half 
cycle, a complete similar equation to Equation (12) can be obtained 
for the released energy.  



 
 
 
 

 
 
Figure 4. Description of stability of a particle using the energy 
argument. (a) Stable owing to the energy variation not to exceed 
the threshold (b) Losing its stability by gaining more energy (c) 
Losing stability by releasing more energy. 

 
 
 

Due to the viscosity of the fluid, the particle-particle collisions are 
more properly characterized as being inelastic. Shear stress is 
generated at the interface of fluid layers via momentum exchange 
among fluid particles, which results in energy loss. The disturbed 
particle is also subjected to this energy loss in a half cycle. Thus, 
the kinetic energy gained by a particle in a half-period is less than 
that represented by Equation (12). The magnitude of the reduced 
part of the gained kinetic energy is related to the shear stress as 
well as the energy loss (Equation 2).   

The stability of the particle can be related to the energy gained by 
the particle through vertical disturbance and the energy loss due to 
viscosity along streamline in a half-period. It is now left to use to 
calculate the energy loss due to viscosity in a half-period in the 
following. Assuming that the streamwise distance moved by the 
fluid particle in a period is far less than the length of the flow 
geometry, the evaluation of the energy loss is derived as follows. In 

the half-period, the particle moves a short distance of l  along a 

streamline, thus it has an energy loss per unit volume of fluid along 

the streamline,  ( )lxH ∂∂ / , where H is the energy loss per unit 

volume of fluid due to viscosity along the streamline. The 
streamwise length moved by the particle in a half-period can be 

written as, )/()2/( ωπuTul == . Thus, we obtain 

 

u
x

H
l

x

H
H

ω

π

∂

∂
=

∂

∂
=∆ .                                            (13)   

 
Thus far, the energy variation of per unit volume of fluid for the 

first half-period, E∆ , and the energy loss along the streamline  per 

unit volume of fluid for the first half-period, H∆ , have been 
obtained as in Equations (12) and (13). In  the  method,  we  do  not 
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trace the single particle and do not give an identity to each particle, 
but we analyze the macro behaviour of large quantity of fluid 
particles in locality. Now, we discuss how a particle loses its stability 

by comparing the terms: E∆  and H∆ . After the particle moves a 
half cycle, if the net energy gained by collisions is zero, this particle 
will stay in its original equilibrium position (streamline). If the net 
energy gained by collisions is larger than zero, this particle will be 
able to move into equilibrium with a higher energy state. If the 
collision in a half-period results in a drop of kinetic energy, the 
particle can move into lower energy equilibrium. However, there is a 
critical value of energy increment which is balanced (damped) by 
the energy loss due to viscosity (Equation 2 and the discussion). 
When the energy increment accumulated by the particle is less than 
this critical value, the particle could not leave its original equilibrium 
position after a half-cycle. Only when the energy increment 
accumulated by the particle exceeds this critical value, could the 
particle migrate to its neighbor streamline and its equilibrium will 
become unstable (we can understand better with reference to 
Figure 1d). Therefore, if the net energy gained by collisions is less 
than this critical amount, the disturbance will be damped by the 
viscous forces of the fluid and this particle will still stay (return) to its 
original location (Figure 4a). If the net energy gained by collisions is 
larger than this critical amount, this particle will become unstable 
and move up to neighboring streamline with higher kinetic energy 
(Figure 4b). Similarly, in the second half-period, if the energy 
released by collision is not zero, this particle will try to move to a 
streamline of lower kinetic energy.  If the energy released by 
collision is larger than the critical amount, this particle becomes 
unstable and moves to a equilibrium position of lesser energy 
(Figure 4c). If the energy increments in both of the half-periods 
exceed the critical value, the particle would oscillate about the 
original equilibrium and a disturbance wave would be generated. 
This describes how a particle loses its stability and how the 
instability occurs. A continuous cycle of particle movement will lead 
to the particle to gradually deviate from its original location, thus an 
amplification of disturbance will be generated. Since linear 
instability is only associated with infinitesimal disturbance amplitude, 
it is clear from the discussion here that “it is the nonlinearity of the 
disturbance with finite amplitude that acts as a source for instability 
occurrence”.   

As discussed previously, the relative magnitude of the energy 
gained from collision and the energy loss due to viscous friction 
determines the disturbance amplification or decay. Thus, for a given 
flow, a “stability criterion” can be written as: for the half-period, by 
using Equations (12) and 13),  

 

Const
u

v
Ku

x

HA

y

E

H

E
F m <=









∂

∂









∂

∂
=

∆

∆
=

'22
2πω

π

π
,             (14) 

 
and  

x
H

y
E

K

∂
∂

∂
∂

= .                                             (15) 

 
Here, F is a function of coordinates which expresses the ratio of the 
energy gained in a half-period by the particle and the energy loss 
due to viscosity in the half-period. K is a dimensionless field 
variable (function) and expresses the ratio of transversal energy 
gradient and the rate of the energy loss along the streamline. It 
should be mentioned that there is no approximation in deriving 
Equation (14) except that there may exist a proportional constant 
due to the expression of the disturbance function introduced  in 
Equation (10).  

It can be found from Equation (14) that the instability of a flow 
depends  on  the  values  of  K  and  the  amplitude   of  the  relative  
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disturbance velocity uv m' . The magnitude of K is proportional to 

the global Reynolds number (to be detailed later). Thus, it can be 
seen from Equation (15) that F increases with the Reynolds number 
Re. The maximum of F in the flow field will reach its critical value 
first with the increase of Re. The critical value of F indicates the 
onset of instability in the flow at this location and the initiation of 
flow “transition” to turbulence. Therefore, at the onset of turbulence, 
the transition from laminar to turbulent flows is a local phenomenon. 
It is not surprising that a turbulence spot can be observed in earlier 
stage of the transition process. Experiment confirmed that the 
turbulent spot is actually a localized turbulence phenomenon which 
is resulted from the hairpin vortices (Adrian et al., 2000; Singer and 
Joslin, 1994; Hommema and Adrian, 2002). As observed from 
experiments, a small region of turbulence is generated in the flow at 
a relatively low Re number, while the turbulence is generated in the 
full domain at a high Re (Drazin and Reid, 2004; Wu et al., 2006).  

From Equation (8), we have  
L

U

y

E
2

~
ρ

∂

∂
; The rate of energy 

loss of per unit volume of fluid along the streamwise direction is 

2

32
//)(

~
L

U

L

LU

L

LLL

x

H
µ

µτ
==

⋅⋅

∂

∂ . Here, τ  is the shear 

stress, µ  is the dynamic viscosity, U is the characteristic velocity 

and L  is the characteristic length. Thus, for a given geometry and 
flow condition, we obtain the following equation from Equation (15) 
 

 Re~

2

2

=

∂
∂

∂
∂

=

L

U

L
U

x
H

y
E

K
µ

ρ

,                                           (16) 

 

where µρUL=Re  is the Reynolds number. For any type of 

flows, it can be demonstrated that the variable K is proportional to 
the global Reynolds number for a given geometry (Dou, 2006).  
Therefore, the criterion of Equation (14) can be written as: 
 

Const
u

v m <
'

Re                                 (17) 

 
or    
 

Re

' 1C

u

v

c

m =







 ,                              (18) 

 

where 
1

C  is a constant. Since the disturbance of velocity at a 

location in the flow field can be written as: 
   

U

v

u

U

U

v

u

v mmm '
~

''
= ,                                        (19) 

 
Equation (18) can be written as: 

 

Re

' 2C

U

v

c

m =







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where 2C  is another constant. Here, ( )

cm Uv'  is the normalized 

amplitude of the velocity disturbance at critical condition. In 
Equation  (19),  the  fact  is  used  that   the  velocity  ratio  U/u  is  a 
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for pipe flow. 
If the Re is sufficiently small (for example, Re<2000 for pipe 

Poiseuille flow), the energy gained by the disturbed particle in a 
half-period is similarly small. Even if the disturbance amplitude is 
large, the particle still cannot accumulate enough energy for the 
stability criterion of the particle (F in Equation 14) to exceed the 
critical number. Therefore, it can be found from Equation (14) that 
there exists a critical value of the non-dimensional field variable K 
below which the flow remains laminar always. The critical value of K 
is decided by its maximum (Kmax) in the domain. Thus, we take Kmax 
as the energy gradient parameter. The critical value for Kmax is 
related to the critical Reynolds number for the onset of turbulence. 
For situations where Kmax is below this critical value, all the energy 
gained by collision is damped (by viscous friction) and the flow is 
stable, independent of magnitude of the normalized disturbance. 
For a parallel flow, the fluid particles flow along straight streamlines 
and the energy gradient only involves kinetic energy (there is no 
gradient of pressure energy or potential energy).  Thus, the critical 
value of Kmax should be a constant for all parallel flows. From these 
discussions, the physical implication of the critical Reynolds number 
for turbulence transition can be further understood. The critical 
Reynolds number is the minimum Re, below which the disturbed 
particle could not accumulate sufficient energy to leave its 
equilibrium state because the energy loss due to viscosity is large.  

For pressure driven flows, the energy loss due to viscosity along 
the streamline equals to the magnitude of the energy gradient along 
the streamline (Dou, 2006). Thus, for this case, the function K 
expresses the ratio between the energy gradient in the transverse 
direction and that in the streamwise direction. This is why the 
“energy gradient method” is named. If there is an “inflection point” 

on the velocity profile, the energy loss xH ∂∂ /  at this point is zero. 

The value of function K becomes infinite at this point and indicates 
that the flow is unstable when it is subjected to a finite disturbance 
(Equation 14). As such, the existence of inflection point on a 
velocity profile is a sufficient condition for flow instability. For 
inviscid flows, that the value of function K becomes infinite at the 
inflection point is still true. Therefore, for inviscid flows, the 
existence of inflection point on a velocity profile is a sufficient 
condition for flow instability, but not a necessary condition.  

Further explanation of the physical implication of the critical value 
in Kmax is given as follow, from which we can better understand the 
model presented here. For pressure driving flow (without work input 

or output), we obtain, dHdE −= , from the Navier-Stokes equation 

along the streamline (Dou et al., 2007). Then, we have 
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Thus, for pressure drive flows, the Equation (15) can be written as: 
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As we concern the magnitude of K, the minus symbol in the 
equation is not important. Equation (22) indicates that the function 
K represents the ratio between the energy gradients in the two 
directions, and characterizes the direction of the vector of total 
energy gradient in the flow field. This is why the model is named as 

“energy gradient model.”  The value of “ Karctan ” expresses the 

angle between the direction of the total energy gradient and the 
streamwise    direction.    Therefore,    we     write,       Karctan=α  



 
 
 
 

 
 
Figure 5. Streamwise vortices makes the velocity profile 
periodically inflectional and swollen, and formation of hairpin 
vortices. 

 
 
 

 
 
Figure 6. Schematic of energy gradient and energy angle for 
plane Poiseuille flows. 

 
 
 
 
                                                       (23) 
 
The angle α is named as "energy angle," as shown in Figure 5. 

There is a critical value of energy angle, cα  ( cc Karctan=α ), 

corresponding to the critical value of Kmax. Thus, the value of the 
energy angle (its absolute value) can also be used to express the 
extent of the flow near the instability occurrence,  
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(1) ,cαα < the flow is stable. 

(2) cαα ≥ , the flow is unstable. 

(3) 
o90=α , the flow is unstable. 

 
Here  cα  is called the critical energy angle for flow transition. 

When cαα > , the flow becomes unstable if it is subjected a 

disturbance. When ∞→K , we have 
o90→α .  At this condition, 

the threshold of disturbance energy needed to trigger the transition 
at a given base flow (and thus Re is given as infinite) is infinitely 
small. Figure 5 show the schematic of the energy angle for plane 

Poiseuille flows as an example. For Poiseuille flows, 
oo 900 ≤≤ α , 

the flow stability depends on the magnitude of α  and the level of 

disturbance. For parallel flow with a velocity inflection, α=90° 
(Kmax=∞) at the inflection point, and the flow is therefore unstable 
(Figure 6).  

 
 
COMPARISON WITH EXPERIMENTS AND 
DISCUSSIONS 

 
Mechanism of turbulence transition event 

 
It is well known that there is a coherent structure in 
developed turbulence (Robinson, 1991). This coherent 
structure consists of a series of hairpin vortices with scale 
of the same order as the flow geometry. This form of a 
hairpin (or horseshoe)-shaped vertical structure has been 
confirmed by extensive experiments and simulations 
(Adrian et al., 2000; Singer and Joslin, 1994; Hommema 
and Adrian, 2002). Both simulations and experiments 
showed that the development of the hairpin vortex in 
boundary layer flows will lead to the formation of the 
young turbulent spot (Adrian et al., 2000; Singer and 
Joslin, 1994; Hommema and Adrian, 2002), which will 
result in the evolution of developed turbulent flow when 
Re is high. In the process of turbulence generation, two 
bursting phenomena, namely, an “ejection” and a 
“sweep” or “in-rush”, are generated, the former refers to 
the ejection of low-speed fluid from the wall, while the 
latter means the impinging of high-speed flow towards 
the wall. There must be some driving mechanisms behind 
these phenomena from the view point of mechanics. 
However, the mechanisms of these phenomena are still 
not well understood although there are a lot of studies for 
these. In present model, these phenomena in shear flows 
can be explained as follows: When a disturbance is 
imposed to the base flow, the fluid particle gains energy 
via the interaction of the disturbance in the transverse 
direction and the energy gradient of the base flow in 
transverse direction. If the energy variation in the cycle is 
much larger than the energy loss due to viscous friction 
and the criterion in Equation (14) is violated, nonlinear 
instability will occur and the particle will move to a new 
equilibrium position, with an energy state that depends 
upon the result of the disturbance cycle on the particle.  If  
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Figure 7. Schematic of the direction of the total energy gradient 
and energy angle for flow with an inflection point at which the 
energy angle equals 90 degree. 

 
 
 
the particle gains energy during the complete cycle of the 
disturbance, this particle moves to higher energy position 
upward, (Figure 4b), coinciding with a higher energy state. 
After a continuous migration upward of the fluid particle, 
an inflection point on the velocity profile will be produced. 
Further downstream, a continuous interaction of the 
particle and the transverse energy gradient could lead to 
the lift of spanwise vortex roll and the formation of hairpin 
vortex (this is typical for boundary layer flow, (Kline et al., 
1967), which will results in a bursting (ejection) and the 
appearance of the young turbulent spot at further 
downstream after more disturbance amplification. As is 
well known, the appearance of the turbulent spot is the 
primary stage of the generation of turbulence (Hommema 
and Adrian, 2002). When the particle releases energy 
during the whole cycle (total energy increment is negative 
except viscous loss), this particle will move downward in 
the flow (Figure 4c), to a position with lower energy. After 
a few cycles of motion, this kind of events will make the 
flow profile swollen, compared to the normal velocity 
profile without disturbance. In this case, the so called 
“sweep or in-rush” will be generated after a continuous 
migration. Although the hairpin vortex structure was first 
found in boundary layer flows, hairpin-vortex packets are 
also found in other wall-bounded shear flows (Hommema 
and Adrian, 2002). From these discussions, it can be 
seen that how the nonlinear instability is connected to the 
generation of turbulence. The first occurrence of 
nonlinear instability actually corresponds to the beginning 
of the transition process, and the final transition to full 
turbulence is the results of a series of nonlinear 
interactions of the disturbance with the energy gradient of 
the base flow.   

Jimenez and Pinelli (1999) used numerical simulations 
to demonstrate that a self-conservation cycle exists which 
is local to the near-wall region and does not depend on 
the outer flow for wall bounded turbulence. Waleffe (1997)  

 
 
 
 
also   discovered   a   similar   mechanism   via    detailed 
mathematical analysis. However, what mechanism 
should provide the power to drive this cycle which is 
independent of the outer flow? The present model 
explains that the transversal energy gradient plays the 
part of the source of the disturbance amplification and 
transfers the energy to the disturbance via the interaction. 
With a similar way as in Dou (2006), applying Equation 
(15) to the Blasius boundary layer flow and calculating 
the distribution of K, it is easy to find that the position of 
Kmax is very near the wall (within 1/10 of the thickness of 
the boundary layer), (Dou and Khoo, 2009). This is why 
the turbulence is always generated very near the wall for 
boundary layer flow (Kline et al., 1967, Perry and Chong, 
1982). In comparison, the position of Kmax in pipe 
Poiseuille flow is at r/R = 0.58 (Dou, 2006). 

For the boundary layer flow, the transverse velocity is 
not zero (not exactly parallel flow). At a higher Re, the 
generation of linear instability leads to propagating of 
Tollmien-Schlichting waves and the formation of 
streamwise streaks as well as appearance of streamwise 
vortices (Wu et al., 2006; Drazin and Reid, 2004). These 
streamwise vortices make the streamwise velocity 
periodically “inflectional” and “swollen” along the 
spanwise direction (Figure 7). At such background, the 
nonlinear interaction of disturbed particles with 
transversal energy gradient will lead to the instability 
which results in the “ejection” at the inflection side and 
the “sweep” at the swollen side at larger disturbance, and 
further development of these events may result in 
transition to turbulence. In the developed turbulence, 
these phenomena may occur randomly in the flow. The 
dominating factors to lead to turbulence transition and 
those to sustain a turbulence flow should be the same, 
since there is similarity between these two types of flows 
found from experiments (Lee, 2000). Thus, these 
phenomena may also provide a mechanism for the self-
sustaining process of wall bounded turbulence. The 
nonlinear interaction of disturbed particles with energy 
gradient continuously transfers the energy from the mean 
flow to the vortex motion in developed turbulence, 
therefore, turbulence is sustained. 
 
 
Threshold amplitude of disturbance scaled with Re 
 
Many researchers have investigated the scaling 
relationship between the threshold amplitude of the 
disturbance and the Reynolds number (Re) (Thefethen et 
al., 1993; Chapman, 2002). Recently, Hof et al. (2004) 
repeated the experiment of pipe flow done 120 years ago 
by Reynolds (1883) with detailed care of control. It was 
found that the scaling is well fitted by an exponent -1, that 

is, cm Uv )/'(  inversely proportional with Re, as shown in 

Figure 8. The mechanism of this phenomenon has not 
been explained so far. One can find that the result in the 

present study  (Equation  (20),  cm Uv )/'( ~ 1Re− ,  obtains  



 
 
 
 

 
 
Figure 8. Experimental results for pipe flow: the normalized flow 
rate of disturbance versus the Reynolds number (Hof, Juel, and 
Mullin (2003). The range of Re is from 2000 to 18,000. The 
normalized flow rate of disturbance is equivalent to the 
normalized amplitude of disturbance for the scaling of Reynolds 

number, pipeinj ΦΦ / ~ ( )
cm Uv'  

 
 
 
exactly agreement with the experiments of Hof et al. 
(2003) and therefore the present model well explains the 
physics of scaling law derived from their experimental 
data.  Shan et al. (1998)’s results of direct numerical 
simulation for transition in pipe flow under the influence of 
wall disturbances also showed that the critical amplitude 
of disturbance is scaled with Re by the exponent of -1. It 
is interesting that this exponent (-1) has also been found 
in experiments on transition in boundary layers 
(Govindarajan and Narasimha, 1991); this agreement has 
been discussed by Hof et al. (2003).  

The physical mechanism of the effect of disturbance 
amplitude on the stability can be concisely explained by 
the present model. In the first half-period of the 
disturbance cycle at a given Re, if the amplitude of 
disturbance is large, the particle could gain more energy 
because it can exchange energy with particles with 
higher kinetic energy.  However, the viscous energy loss 
may not increase (for example, the energy loss is 
constant for the whole flow field in simple pipe and plane 
Poiseuille flows (Dou, 2006) which equals to the pressure 
drop per unit length). Thus, the energy gained in the 
cycle will be much larger than the energy loss, which 
leads to the flow being more unstable.  Similarly, in the 
second half-period of the disturbance cycle, if the 
amplitude of disturbance is large at a given Re (exceeds 
the value expressed by Equation (20), the particle could 
release more energy because it can exchange energy 
with particles with lower kinetic energy. However, as 
stated previously, the magnitude of the energy loss may 
not change much. Thus, the energy released can reach 
its threshold  expressed  by  Equation  (20)  for  instability 
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Figure 9. Schematic of wall bounded parallel flows. (a) Pipe 
Poiseuille flow (b) Plane Poiseuille flow (c) Plane Couette flow. 

 
 
 
occurrence at lower Re.  
 
 
Critical value of Kmax for turbulent transition 
 
It is mentioned in previous section that the critical value 
of K in Equation (14) is decided by its maximum (Kmax) in 
the field and should be a constant for parallel shear flows. 
In this section, we will give the comparison of the theory 
with the experimental data for the critical condition of 
turbulent transition for parallel flows. The derivation of 
function K in Equation (14) for the pipe Poiseuille flow, 
plane Poiseuille flow and plane Couette flow have been 
given previously in (Dou, 2006; Dou and Khoo, 2011). 
The schematic diagrams of these flows are shown in 
Figure 9. 

For pipe Poiseuille flow, the function K has been 
derived in (Dou, 2006), here it is just introduced, 
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Here, 
µ

ρUD
≡Re  is the Reynolds number, ρ  is the 

density, µ is the dynamic viscosity, U is the averaged 

velocity, r is in the radial direction of the cylindrical 
coordinate system, R is the radius of the pipe, and D the 
diameter of the pipe. It can be seen that K is a cubic 
function of radius, and the magnitude of K is proportional 
to Re for a fixed point in the flow field.  The position of the 
maximum value of K occurs at r/R=0.58.   

For plane Poiseuille flow, the function K has been 
derived    in   Dou   (2006),   here   it   is   just   introduced, 
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Figure 10. Parameter Kmax at turbulent transition versus the Reynolds number for 
various flows. The symbols in the figure represent the data determined from 
experimental data. For Plane Poiseuille flow, the Reynolds number 

µ

ρ UL
≡Re  is used in this figure. The definition of Re is shown in Table 1. The 

critical value of Kmax is same for all the wall bounded parallel flows and regardless 
of the Reynolds number. 
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Here, 
µ

ρUL
≡Re  is the Reynolds number, U is the 

averaged velocity, y is in the transversal direction of the 
channel, h is the half-width of the channel, and L=2h is 
the width of the channel. It can be seen that K is a cubic 
function of y which is similar to the case of pipe flow, and 
the magnitude of K is proportional to Re for a fixed point 
in the flow field. The position of the maximum value of K 
occurs at y/h=0.58. In references, another definition of 

Reynolds number is also used, 
µ

ρ hu0Re ≡ , where 0u  the 

velocity at the mid-plane of the channel (Trefethen, 1993). 
For plane Couette flow, the function K has been derived 
in Dou and Khoo (2011), here it is just introduced, 
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where 
µ

ρ huh≡Re  is the Reynolds number, 
h

u  is the 

velocity  of  the  moving  plate, y   is   in   the   transversal 

direction of the channel, h the half-width of the channel. It 
can be seen that K is a quadratic function of y/h across 
the channel width, and the magnitude of K is proportional 
to Re at any location in the flow field. The position of the 
maximum value of K occurs at y/h=1.0, and  
 

Remax ==
µ

ρUh
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The values of Kmax at the critical condition determined 

by experiments for various types of flows are shown in 
Figure 10 and Table 1. We take this critical value of Kmax 

for the turbulent transition as Kc. It is seen that the critical 
value of Kmax for all the three types of flows fall within in a 
narrow range of 370~389. It is observed that although the 
critical Reynolds number is different for these flows, the 
critical value of Kmax is the same for these flows. This 
demonstrates that Kmax is really a dominating parameter 
for the transition to turbulence. These data strongly 
support the proposed method in present study and the 
claim that the critical value of Kmax is constant for all 
parallel flows, as discussed previously.  

For wall bounded parallel flows, Kc=370~389 

corresponds to the critical energy angel o
85.89=cα   in 

Equation (23). This means that turbulent transition can 

only be possible when oo 90~85.89=α . When o85.89<α ,  
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Table 1. Comparison of the critical Reynolds number and the energy gradient parameter.  
 

Flow type Re expression 
Eigenvalue 

analysis, cRe  

Energy method 

cRe  

Experiments, 

cRe  

Energy gradient Method, Kmax at 

cRe (from experiments), ≡  Kc 

Pipe Poiseuille  µρ /Re UD=  Stable for all Re 81.5 2000 385 

Plane Poiseuille  
µρ /Re UL=  7696 68.7 1350 389 

µρ /Re
0
hu=  5772 49.6 1012 389 

Plane Couette µρ /Re Uh=  Stable for all Re 20.7 370 370 

 

Kmax for plane Poiseuille flow and pipe Poiseuille flow as well as for plane Couette flow (Dou, 2006). U  is the averaged velocity, 0u  the velocity at 

the mid-plane of the channel, D the diameter of the pipe, h  the half-width of the channel for plane Poiseuille flow (L=2h) and plane Couette flow. The 
experimental data for plane Poiseuille flow and pipe Poiseuille flow are taken from Patel and Head (1969). The experimental data for plane Couette 
flow is taken from Tillmark and Alfredsson (1992), Daviaud et al. (1992), and Malerud et al. (1995). Here, two Reynolds numbers are used since both 
definitions are employed in literature. The data of critical Reynolds number from energy method are taken from Drazin and Reid (2004). 
 
 
 
no turbulence exists despite of the disturbance. 

In Table 1, the critical Reynolds number determined 
from energy method is also listed in it for purpose of 
comparison later. The critical Reynolds number 
determined from eigenvalue analysis of linearized Navier-
Stokes equations is also listed for reference.  

In the proposed method, the flow is expected to be 
more unstable in the area of high value of K than that in 
the area of low value of K. In the flow field, the instability 
should start first at the location of maximum of F 
according to Equation (14) with the increase of Re. For a 
given disturbance, the first instability should be 
associated with the maximum of K, Kmax, in the flow field 
if the amplitude of disturbance does not change much in 
the neighborhood of Kmax. That is, the position of 
maximum of K is the most unstable position. For a given 
flow disturbance, there is a critical value of Kmax over 
which the flow becomes unstable. Now, it is difficult to 
directly predict this critical value by model. However, it 
can be determined using available experimental data as 
done in Table 1. It is better to distinguish that Kmax is the 
maximum of the magnitude of K in the flow domain at a 
given flow condition and geometry, and Kc is critical value 
of Kmax for instability initiation for a given geometry. 

Recently, Hof et al. (2004) have shown for pipe flow 
that there exist unstable traveling waves with 
computational studies of the Navier-Stokes equations 
and ideas from dynamical systems theory. It is suggested 
that traveling waves moving through the fluid at different 
speeds might be responsible for the onset and 
sustenance of turbulence. These traveling wave solutions 
consist of streamwise swirls and streaks with rotational 
symmetry about the axis of the pipe. The outlines of 
these solutions of traveling waves seem to obtain good 
agreement with experimental observations in pipe flow. 
Hof et al. (2004) suggested that the dynamics associated 
with these unstable states may indeed capture the nature 
of fluid turbulence. Dou suggested that these traveling 
waves may  be  associated  with  the  instability  resulting 

from the transverse energy gradient since the location of 
the kink (inflection of velocity profile) on the velocity 
profile obtained by the solution of traveling waves 
accords with the position of the maximum of the function 
K (Dou, 2006). According to the present study, with the 
increase of Re, the oscillation of base flow should start 
first from the position of Fmax, Equation (14). If 

max
)/'( uv

m
 does not vary too much at the neighborhood 

of Fmax, the position of Kmax coincides approximately with 
that of Fmax. The oscillation of base flow could lead to 
secondary flows if the oscillation amplitude is large. The 
secondary flow should appear first around the position of 
Kmax. The experiments by Hof et al. (2004) showed that 
the streamwise vortices at Re=2000 (the base flow is still 
laminar) occur at about r/R=0.5-0.6 (Figure 2(A) in Hof et 
al. (2004), which accords with the present study that we 
found the maximum of K occurring at the ring of r/R=0.58 
(Dou, 2006).   

More recently, Nishi et al. (2008) did experiment of 
turbulent transition for pipe flow through puffs and slugs 
generation and the disturbance was introduced at the 
pipe inlet by a short duration of inserted “wall fences”. 
Figures 11 and 12 shows an example of the experimental 
results chosen from a large number of time records for 
the instantaneous velocities of the puffs at different radial 
locations r/R. The typical axial velocity at different radial 
position r/R versus time which is shown in Figure11 from 
the time when the control system for disturbance 
operated at Re=2450. The cross-sectional velocity 
profiles measured at the exit of the pipe for the puff 
structures at Re=2450 are shown in Figure 12. The 
structures reveal laminar-to- turbulent transition between 
t =4 and 4.40 s. These figures display the puff structures 
correspond to Re=2450. It is clearly shown that the 
laminar flow is basically smooth when time is from 4.0 s 
to 4.25 s, and the velocity oscillation first appears at 
r/R=0.47-0.73 from time of 4.25 s. This fact indicates that 
the flow becomes most unstable in the range of r/R=0.47-
0.73  under   the    disturbance   influence,   which    is   in
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Figure 11. Axial velocity at different radial position r/R versus time which is 
shown from the time when the iris diaphragm is operated at Re=2450, 
reproduced from Nishi et al., 2008, (Courtesy of F. Durst; Use permission 
by Cambridge University Press). The oscillation first started in 
r/R=0.53~0.73. 

 
 
 

 
 
Figure 12. Axial velocity as a function of different radial position r/R at different time after the iris diaphragm 
is operated at Re=2450, reproduced from Nishi et al., 2008 (Courtesy of F. Durst; Use permission by 
Cambridge University Press). The oscillation first started in r/R=0.53~0.73. 

 
 
 
agreement  with  the  prediction  in  this   study   that   the 
r/R=0.58 is the most unstable position to first making 
initiation of transition.  

For plane Poiseuille flow, the position of the maximum 
of K occurs at y/h=0.58 so that this position is the most 
dangerous position for instability. Nishioka et al. (1975)’s 
experimental data has shown that the flow oscillation first 
appears at the location of about y/h=0.6.  

For plane Couette flow, the position of the maximum  of  
K occurs at y/h=1.0. Owing to the fact of no-slip at the 
wall, the disturbance at the wall is zero. The most 
dangerous position should be off a short distance from 
the wall such that the magnitude of the disturbance is 
apparently playing a role and the value of K is still large. 
Thus, the value of F could get large value and, therefore, 
the Equation  (14)  is  violated.  Some  nonlinear  analysis  



 
 
 
 
showed that  the  development  of  disturbance  and   the 
distortion of base flow first start at the layer near one of 
the walls (Lessen and Cheifetz, 1975). 

The energy gradient method has been applied to 
Taylor-Couette flow between concentric rotating cylinder 
and it is confirmed that this method is also applicable to 
rotating curved flows if the kinetic energy in parallel flows 
is replaced by the total mechanical energy (kinetic energy 
plus pressure energy while gravitational energy is 
neglected) (Dou et al., 2008). Another previous work 
demonstrated that the energy loss due to viscosity along 
the streamline has stable role to the disturbance (Dou et 
al., 2007). 
 
 
Comparison of energy gradient method with energy 
method 
 
The critical Reynolds numbers determined from energy 
method are also included in Table 1 for various flows 
which are taken from (Drazin and Reid, 2004). It can be 
seen that the critical values of the Reynolds number for 
various flows by this method are much lower than those 
obtained from experiments. Energy method is based on 
the famous Reynolds-Orr equation (Drazin and Reid, 
2004), 
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where ∫=
v ii dVuutk

2

1
)(  is the kinetic energy of 

disturbances. This equation is integrated over the flow 
domain V. The first term on the right side of the equation 
is the production of disturbance kinetic energy and the 
second term on the right side is the dissipation of 
disturbance energy in the system. The term dk/dt in the 
left side of Equation (28) means the rate of increase of 
disturbance kinetic energy over the system. When Re is 
sufficient small so that dk/dt<0, the flow is stable.  

The energy method looks at the variation of the kinetic 
energy in the whole domain with the time for a given Re. 
The critical Reynolds number determined with it is the 
minimum Reynolds number below which the kinetic 
energy of any finite-amplitude disturbance decay 
monotonically (Drazin and Reid, 2004). Actually, at a 
given Re, the kinetic energy in the system, k, may first 
increase and then decrease with the time. When the k 
reaches its maximum, the flow may not achieve its 
threshold to lose its stability. This is because the flow 
instability does not depend on the temporal increase of 
the kinetic energy of the disturbance if the disturbance 
amplitude is not sufficiently large (Equation (14). 
Therefore, the critical Re obtained with energy method 
may not be the real critical Re to make the flow instability 
and it is generally much lower than the experimental 
value as shown in Table 1. 
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In energy gradient method, the flow instability is not 
based on the increase of the disturbance energy with the 
time. The essence of this method is to observe the 
stability of mean flow caused by the interaction of the 
disturbance with the base flow. This interaction leads to 
variation of the distribution of energy of mean flow. When 
the variation of the energy of the mean flow reaches a 
threshold at a position in the domain as described in 
previously, the mean flow will lose its stability due to the 
requirement of energy equilibrium. 

However, the energy gradient method is related to the 
magnitude of the kinetic energy of the local disturbance. 
In Equation (14), it is noted that the function F is 

proportional to the disturbance amplitude, 
u

v
KF m'∝ , 

while the kinetic energy of the disturbance is generally 
proportional to the squares of the disturbance amplitude 

and the disturbance frequency,  22
' ωmvk ∝  for a normal 

disturbance. Thus, we have 2
/' ωkv m ∝  and 

u

k
KF

2
/ω

∝ . Therefore, a large kinetic energy of 

disturbance will promote the instability when the 
frequency of the disturbance is fixed for a given base flow. 

 
  
Some further remarks 

 
1) On the starting equation. The present study shows 
that the flow stability is purely a stability of the 
mechanical energy field. The analysis of the stability is 
not started from the Navier-Stokes equations but based 
on the principle of Newtonian mechanics. Therefore, it is 
clear that the energy gradient model is compatible to, and 
is not contradicting with the Navier-Stokes equations. 
Actually, in order to compare the method with the 
experiments, the calculations of K for the three types of 
parallel flows are obtained via the analysis of Navier-
Stokes equations.  
2) On the essence of flow instability. The essence of 
flow instability and turbulent transition can be understood 
as follow according to the proposed model. The 
disturbance causes variation of the energy field of mean 
flow and leads to the energy field of mean flow to lose its 
equilibrium. To reach a new equilibrium state, the flow 
instability must occur. The instability is the beginning of 
the transition, and the transition is a process of 
disturbance development. When this process is 
completed, the full developed turbulence is formed. We 
may restate the principle of energy gradient method in a 
simple way as follow. In shear flows, disturbed fluid 
particles wander at their original equilibrium position 
under the disturbance. This wandering makes their 
kinetic energy exchanged with others in the neighboring 
streamlines and leads to their kinetic energy of mean flow 
differing from those which are not disturbed or not  largely  
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disturbed at the original streamline. Thus, an energy 
difference of mean flow is formed between the disturbed 
particle and the undisturbed particle at the original 
streamline. Therefore, if this energy difference is 
sufficient large, these disturbed particles can migrate 
toward their new equilibrium position in term of energy 
due to the equilibrium role of energy so that these 
particles lose the stability.  A similar and simple example 
is the two-phase flow in which some polymer particles are 
uniformly suspended in the water and flow with the water. 
When the temperature rises, the density of water has no 
change, but the density of polymer may decrease. Due to 
the role of equilibrium of gravitational energy, these 
polymer particles (like the disturbed particle in pure fluid 
flow) will lose their stability and will migrate up until they 
reach the surface of the water. The difference is that the 
energy leading to instability is the kinetic energy for the 
case of parallel flows of pure fluid, while the energy 
leading to instability is the gravitational energy for the 
case of the said two-phase flow. 
3) On the scaling for different types of disturbance. The 
scaling of disturbance in this study is worked out under 
the assumption that the base flow is “parallel flow” and 
the fluid particle is subjected to a transversal disturbance. 
It is believed that for crossflow injection disturbance 
introduced to all parallel flows, the amplitude scales with 
Re by the exponent of -1, based on present analysis. The 
scaling is suitable for injection disturbance or natural 
transition for all parallel shear flows (both wall bounded 
flow and free shear flow). The scaling law of -1 is not 
suitable for push-pull disturbance in Peixinho and Mullin, 
2007) where an exponent of -1.3 or -1.5 is observed and 
the disturbance induced by ring-type obstacles (Nishi et 
al., 2008). In the latter two types of disturbances induced 
by ring-type obstacles, the base flow is made not be a full 
developed laminar parabolic flow during the transition 
initiation (that is, not parallel flow), while the base flow 
keeps to be parallel flow before breaking down for 
injection disturbance. 
4) On the criteria for flow instability and turbulent 
transition. Criteria for flow instability and turbulent 
transition have been given under the frame of energy 
gradient theory (Dou, 2004, 2006, 2007; Dou and Khoo, 
2010).  These criteria are summarized as follow.  
 
Theorem 1: Potential flow (inviscid and 0u =×∇ ) is 

stable.   
 
Theorem 2: Inviscid rotational ( 0u ≠×∇ ) flow is unstable. 

 
Theorem 3: Velocity profile with an inflectional point is 
unstable when there is no work input or output to the 
system, for both inviscid and viscous flow, in curved 
streamline configurations (including parallel flow 
configurations).  

For viscous flow, the flows can be classified as 
pressure driven and shear driven flows  according  to  the  

 
 
 
 
energy process. That there is no work input or output to 
the system means the pressure driven flow. 
 
Theorem 4: For pressure driven flow, the necessary 
condition and sufficient condition for turbulent transition is 
the presence of velocity inflection of the “averaged flow 
profile” 
 
Theorem 5: For shear driven flow, the necessary 
condition and sufficient condition for turbulent transition is 
the existence of zero velocity gradient on the velocity 
profile of the “averaged flow profile”.  
 
 
Conclusions  
 
After analyzing the process of energy transfer in 
perturbed shear flows we have developed a model for 
flow instability, called the “energy gradient method”. The 
method proposes that in shear flows it is the transverse 
energy gradient interacting with a disturbance to lead to 
the flow instability, while the energy loss, due to viscous 
friction along the streamline, damps the disturbance. The 
mechanisms of velocity inflection and formation and lift of 
the hairpin vortex in shear flows are well explained with 
the analytical result, the disturbed particle exchanges 
energy with other particles in base flow in transverse 
direction during the cycle and causes the particle leaves 
its equilibrium position.  

The proposed theoretical model is in agreement with 
the experiments primarily in three aspects: (1) The 
threshold amplitude of disturbance for transition to 
turbulence is scaled with Re by an exponent of -1 in 
parallel flows, which explains the recent experimental 
results of pipe flow by Hof et al. (2003) and also Peixinho 
and Mullin (2007) where injection disturbances are used. 
(2) For wall bounded parallel flows, turbulent transition 
takes place at a critical value of the energy gradient 
parameter, Kmax, about 370 to 380, below which no 
turbulence exists. (3) The location where the flow 
instability is first initiated accords with the experiments. 
This location is at y/h=0.58 for plane Poiseuille flow and 
at r/R=0.58 for pipe Poiseuille flow, which have been 
confirmed by Nishioka et al. (1975)'s experiments and 
Nishi et al. (2008)’s experiments, respectively. 

 The physical implication of the critical Reynolds 
number for turbulence transition can then be 
reinterpreted from this result. Since the flow instability 
and the initial transition to turbulence can be described by 
the “energy gradient method,” it is reasonable to deduce 
that the coherent structure in developed turbulence is 
dominated by the variation of energy gradient and energy 
loss of mean flows. Furthermore, the turbulence could be 
controlled by manipulating the energy gradient and 
energy loss.   

Although the analytical model may be simply a heuristic 
one,   the   results   found  in  present  research  are  very  



 
 
 
 
inspiring. Further work following this streamline may 
reveal significant findings in this field. 
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