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The spatial and temporal variability of East African rainfall seasonal cycle is investigated based on 
modulated annual cycle (MAC). Ensemble empirical mode decomposition (EEMD) is used to extract 
MAC from monthly data for the period 1900 to 2008.  The MAC is given by year-to-year changes in 
annual and semi-annual components. Results show that MAC account for between 45 to 80% 
proportion of rainfall variability. Spatial structure of MAC shows that it captures the north-south 
(equatorial) pattern for annual (semi-annual) mode with explained variance of 54% (22%). The spatial 
structure of MAC further reveals that the seasonality of rainfall over the whole region does not follow 
the north/south classical scheme where the semi-annual component dominates the equatorial while the 
annual component dominates areas relatively far from the equator. MAC amplitude tends to be high 
during anomalous rainfall indicating that the impact of major climate processes that produce seasonal 
cycle are amplified or suppressed by interannual to longer timescale climate variability modes. This 
study has shown variability in the seasonal cycle of East African rainfall on interannual-to-longer time 
scales, which should be considered in studies on variability of rainfall and in seasonal- to-longer time 
scale prediction of rainfall over the region. 
 
Key words: East Africa, rainfall variability, modulated annual cycle, empirical mode decomposition. 

 
 
INTRODUCTION 
 
Major sectors of East African region economy like 
agriculture, heavily depend on the availability of water, 
and therefore, directly or indirectly, on rainfall. The region 
experiences and is sensitive to large climate fluctuations 
in terms of floods and droughts which have resulted to 
disasters which the inhabitants have only marginally been 
able to cope with.  

In recent years, East Africa has suffered frequent 
episodes of both excessive (Webster et al., 1999; Latif et 
al., 1999) and deficient rainfall (Hastenrath et al., 2007) 
which had impacted negatively on the economy. The 
drought of 2011, over most parts of the region was one of  
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the worst in 60 years. Another example is the extreme 
rainfall event of 1961 that led to disastrous floods in the 
region. 

Shongwe et al. (2011) have shown that that the 
frequency disasters related to anomalously strong rainfall 
has increased over east Africa based on their analysis of 
data from the International Disaster Database EM-DAT 
(http://www.em-dat.net/).  

Past studies East African climate variability (Indeje et 
al., 2000; Mutai and Ward 2000; Schreck and Semazzi, 
2004) have shown that the variability is caused by 
different factors on different time-scales. However, few 
studies have examined the coherent temporal modes of 
East African rainfall variability and their association with 
the large scale atmospheric and oceanic patterns on 
individual timescales.  

Bowden and Semazzi (2007) for example, noted that 
previous studies of intraseasonal variability focus on case  



 
 
 
 
studies of wet or dry years linked with the El Niño-
Southern Oscillation (ENSO) phenomenon.  

Segele et al. (2009) studied the seasonal to interannual 
variability of Ethiopia/Horn of Africa monsoon rainfall 
associated with wavelet filtered large-scale atmospheric 
circulation and global sea surface temperatures (SST). 
This study was confined to the northern Horn of African 
region and was based on the summer monsoon season 
(July to September). 

Seasonal cycle is the largest climate signal; however its 
variability has been overlooked as a climate diagnostic. It 
is often removed (by considering anomalies from it) in 
studies concerning climate variability or change. How-
ever, previous studies, for example Pezzulli et al. (2005), 
Shen et al. (2005), and Wu et al. (2008) have shown that 
the seasonal cycle can contain amplitude-frequency 
modulation due to the nonlinearity of the climate system.  

Further, inter-annual variations in the seasonal cycle 
have been observed in climate time series (Thompson, 
1999; Bograd et al., 2002; Whitfield et al., 2002) and 
deserve more careful attention. Moreover, under a 
changing climate, the annual cycle is expected to vary 
and thus the observed increasing intensity of global 
warming in recent years could significantly offset the 
subtle balance among the various climatological sources 
of climate variability over the region. For example, in the 
period 1996 to 2005; 9 out of the 10 years are among the 
years with the highest annual temperature on record prior 
to the most recent Intergovernmental Panel on Climate 
Change report (IPPC, 2007). Knowledge of variability of 
rainfall seasonal cycle is therefore an important compo-
nent in the understanding of climate variability.  

If various forcings of seasonal variability could be 
isolated, then it may be easier to understand the longer 
term variability such as inter-annual and decadal oscilla-
tions in a climate variable. Indeed, a description of the 
seasonal cycle of rainfall also allows for the dominant 
seasonal signal to be removed, to give a background for 
empirical analysis of longer time scale cycles fed by 
ocean-atmosphere dynamics to improve rainfall 
monitoring and prediction.  

Over East Africa, few studies have examined the 
spatial and temporal variability of the seasonality of 
rainfall based on inter-annually varying seasonal cycle. 
While a general understanding of the geographic patterns 
of seasonal distribution of East African rainfall climatology 
have been provided in previous studies (Nicholson, 1996; 
Indeje et al., 2000), it is also important to examine if there 
is temporal variability in rainfall annual cycle.This 
information can be utilized in validation of general 
circulation model (GCM) simulation of rainfall annual 
cycle over the region. Moreover, the previous cited 
studies used multi-stations averaged data to study the 
annual cycle evolution of rainfall and delineate the region 
into homogeneous zones.  

In this study, we use an alternative dynamic annual 
cycle that have  been  proposed by  Wu  et  al.  (2008).  It  
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consists of modulated annual cycle (MAC) that is 
modulated in phase and amplitude with interannual 
variability expressed in terms of these modulations, with 
respect to a fixed annual cycle. The ensemble empirical 
mode decomposition (EEMD) (Zhouhua and Huang, 
2004; Wu and Huang, 2009), which is an improvement of 
the original empirical mode decomposition (EMD) method 
(Huang et al., 1998), is used to extract MAC from monthly 
rainfall series. EEMD is an adoptive decomposition 
technique that can decompose nonlinear and non-
stationary complicated signal time series into finite quasi-
period components with frequencies. 

In this paper, we contribute to the advancement of 
understanding East African rainfall variability by showing 
that the modulated annual cycle of rainfall captures the 
rainfall regimes over the region and that there is 
variability seasonality of rainfall over the region. 
 
 
DATA AND METHODS 
 
Like the rest of Africa, East Africa continues to experience some 
difficulties with the availability of long-time climate data (Camberlin 
and Philippon, 2002). Furthermore, the available data are also 
riddled with numerous gaps in both space and time. These 
limitations in the quantity and quality of in situ observations impose 
substantial constraints on diagnostic studies of the regional climate 
(rainfall) variability. Available are sparse surface observations 
whose number has tremendously reduced over time. Proxy rainfall 
datasets have therefore been used in the region in studies where 
spatial resolution and study period length are of importance. 

In this study, Version 2.01 of the University of Delaware rainfall 
gridded data (Willmott and Matsuura, 2009) was used. The data, 
gridded at 0.5 x 0.5° resolution is land only rain-gauge based 
precipitation and comprises of 109 years (1900 to 2008) of 
continuous monthly data (http://jisao.washington.edu/data/ud/). The 
data has the advantage of being available at higher resolution and 
longer period of time compared to other gridded data sets.  

Further, the University of Delaware dataset benefits from the 
inclusion of Sharon Nicholson’s African gauge data (Nicholson, 
2001) for 1950 to 1996 (Parker et al., 2011). The gauge dataset 
contains a large number of gauges that have not been included in 
other datasets. A complete description of the data was provided by 
the Centre of Climate Research Department, University of Delaware 
webpage: 
http://climate.geog.udel.edu/~climate/html_pages/Global2_Ts_2009
/README.global_p_ts_2009.html. 

We derived monthly rainfall series from the 0.5 x 0.5° gridded 
data averaged on 2 × 2° grids instead of using individual grid cell of 
the original data to reduce the effect of diverse means, localized 
climate regimes and the randomness of convective processes 
reflected in individual station/cell totals over the region (Indeje et al., 
2000). The grid-boxes over which the data were averaged are 
provided in Figure 1a.  
 
 
Empirical mode decomposition (EMD) 

 
Empirical mode decomposition (EMD) was introduced by Huang et 
al. (1998), as an alternative approach to traditional methods for 
analyzing time series such as wavelets or Fourier methods. The 
EMD method is different from Fourier and wavelet transforms 
because it handles nonlinear and non-stationary signals.  

The Fourier transform (FFT), which uses basis functions that  are 
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Figure 1.  (a) Center locations (marked with dots) of the 2 x 2° grids over which the 0.5 x 0.5°

 
gridded rainfall are averaged. (b) The 

dominant component of seasonality at each grid point based on spectral power analysis of the seasonal cycle components extracted by 
EEMD. A (S) denotes annual (semi-annual) cycle component dominates. A(S)/S(A) indicate that the annual/semi-annual component 
dominates in locations where both components co-exist. Grid boxes marked x were omitted in the analysis due to lack of data over the 
Ocean areas. 

 
 
 
sine and cosine functions, is designed to work with linear and 
stationary signals. The amplitudes and frequencies of each basis 
function are time-independent. Therefore, Fourier analysis is a 
global analysis, which can describe the frequency content of a 
signal and works well when the input signal is linear and stationary 
(Qian, 2002). However, the method is unable to characterize 
processes that change frequency over time. The wavelet transform, 
on the other hand, is well suited to handle non-stationary data but 
poor at processing nonlinear data.  

Since the variations in climate variables are complex non-linear 
and non-stationary in nature, EMD is suited in their analysis. EMD 
coupled with the Hilbert transform has been shown to work better in 
depicting the local time scale instantaneous frequencies than 
wavelet and FFT (Huang et al., 1998). The EMD is an adaptive 
decomposition technique that can decompose nonlinear and non-
stationary complicated signal time series into a definite number of 
components with different frequencies.  These components are 
called intrinsic mode functions (IMFs). The IMFs have well-behaved 
Hilbert–Huang transforms from which instantaneous frequencies 
and amplitudes can be calculated. The key idea of EMD is to locally 
decompose data y(t) into oscillatory components (IMFs). It 
considers the signal as a superposition of oscillatory components, 
which are extracted from upper and lower envelopes. The IMFs are 
fully data-driven, easy to implement and does not use any analyzed 
predetermined transform.  

The essential procedure is to locally identify the most rapid 
oscillations   in   the   signal,  defined  as  a  waveform  interpolating  

interwoven local maxima and minima. The algorithm for the 
extraction of IMFs from a given time series y(t) data called sifting 
consists of the following steps (Huang et al.,1998): 
 

1. Initialize the residue , set   , and i = 1; 
the index of IMF k = 1.  
2. Construct the lower minima,  and the upper maxima, 

envelopes of the signal by the cubic spline method. 
3. Calculate the mean values by averaging the upper and lower 
envelopes. Set .  
4. Subtract the mean from the original signal:   and 

i = i + 1, and steps (1) to (4) are repeated until becomes an IMF. If 
so, the kth IMF is given by . An IMF satisfies the following 
two properties. First, the upper and lower envelopes are symmetric 
and second, the number of zero-crossings and the number of 
extremum are equal or differ at most by one. 

5. Update residue . This residual component 
is treated as a new data and subjected to the process described 
previously to calculate the next .  
6. Repeat the foregoing steps until the final residual component r(t) 
becomes monotone. 
 

The advantage of this method is that the oscillatory modes, which 
are generated, are derived directly from the data, without any 
reference to a predetermined dictionary of functions. A one-dimen-
sional discrete signal time series y(t), after being decomposed by 
EMD   method,   can   therefore  be  represented with  the  following 



 
 
 
 
form: 
 

                                   (1)                                                               
 
Where IMF is the Kth mode of the signal time series, and r is the 
residual non-linear trend. The time series y(t) can therefore be 
separated into: 
 

          (2)                                 
 
Where the different components are trend (T), interannual (I), 
seasonal components (S), and higher frequency (H). Each 
component is obtained by summing the IMFs that exhibit its 
frequency. The time scale of each IMF is determined by various 
combinations of the critical points defined as all the union of the 
zero-crossings and extrema of an IMF. The longest and the most 
physical local time scale is the full wavelength: from one maximum 
(minimum) to the next maximum (minimum) or from one up (down) 
zero-crossing to the next up (down) zero-crossing.    

The EMD method as originally proposed suffered a difficulty of 
mode mixing, defined as any IMF having large disparity in time 
scales. The ensemble empirical mode decomposition (EEMD), a 
variant of the EMD algorithm, which is more stable and minimizes 
modes mixing (Niazyet al., 2009), was introduced by Zhaohua and 
Huang (2004) to resolve that shortcoming.  

EEMD is a modification of the basic EMD with added white noise 
to the data at the beginning. Through the ensemble of many trials 
with different realization of white noises, the final ensemble would 
not suffer the mode mixing, because the white noise contains all the 
scales. By adding the white noise, the scale separation is 
guaranteed by the added noise.  

The effects of the added noise on the resulting decomposition 
would be canceled out through the ensemble procedure. The 
principle is to add N realizations of Gaussian white noise to the 
signal y(t) in order to obtain N noisy pseudo signals. Then, EMD 
algorithm is applied to each signal y(i), i = 1, . . .,N. The IMFs vector 
obtained through each EMD decomposition of y(i)(t), where K(i), i = 
1, . . .,N is the number of IMFs.  

Finally, the EEMD IMFs (IMFk) decompositions is obtained by 
averaging corresponding EMD IMFs derived from each signal y(i)(t). 
The Matlab implementation of the EEMD algorithm was used in this 
study. The code can be retrieved at the Research Centre for 
Adaptive Data Analysis (RCADA) webpage: http:// 
rcada.ncu.edu.tw/research1.htm.  

Detailed procedure for using EEMD to extract MAC of a climate 
variable is provided by Wu et al. (2008) and Qian et al. (2010). The 
capability and the advantage of using the EMD/EEMD method in  
extracting the annual cycle component, which has strong 
amplitude-frequency modulation, from a climate variable have been 
validated through analyzing synthetic data, monthly SST data, and 
daily surface air temperature records (Wu et al., 2008; Qian et al., 
2010, 2011). 

 
 

DATA ANALYSIS AND DISCUSSION 
 
Since the domain of the study is in equatorial region, 
MAC is given by the year-to-year changes in the annual 
and semi-annual components of seasonality in sites 
where   both   components  exist  (Figure  1b).  To  obtain 
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spatial and temporal structures of the MAC, empirical 
orthogonal function (EOF) analysis was applied to MAC. 
To depict the interannual variability of seasonal cycle, the 
instantaneous amplitude modulation part of MAC was 
obtained by the Hilbert transform (Huang et al., 1998; 
Huang and Wu, 2008; Kim and Oh, 2009) of MAC. The 
temporal variability of the leading MAC amplitude 
EOFPCs was then evaluated.   

For demonstration purposes, the decomposition of 
rainfall series at grid-box 16, centered at 1°S, 37°E 
(Figure 1a) is used. The semi-annual and annual com-
ponents of seasonal cycle reconstructed from the 
decomposition are provided in Figure 2. The spectral 
density of the MAC component extracted from grid16 
monthly rainfall series (not shown) showed the semi-
annual component to dominate the seasonality in this 
location.  

Semi-annual oscillation is a common feature in the 
equatorial belt where the site under consideration here 
lies. It expresses the two distinctive wet seasons over the 
region where it is large compared to the annual com-
ponent. The seasons coincide with the double passage of 
the ITCZ, which lags behind the overhead sun by 3 to 4 
weeks over the region.  

The dominant seasonality component at each of the 44 
grid-boxes considered is shown in Figure 1b. In order to 
eliminate the minor influence of data end effects during 
the EEMD process (Qian et al., 2010), the first and last 
years of MAC are excluded in further analyses, leaving 
the period 1901 to 2007 (N = 1284). 
 
 

Spatial and temporal structures of modulated annual 
cycle (MAC) 
 
EEMD allows for computation of proportion of variation in 
a time series that can be attributed to fluctuations at 
different time scales. Amount of variance associated with 
each IMF and the residual along with the average period 
of each IMF can then be computed. Theoretically, the 
variance of each IMFs and residue should sum up to the 
variance of the original series, or a value close to the 
observed variance when the IMF covariance terms are 
small.  

To examine the nature and importance of the seasonal 
cycle as a function of geographic location, the proportion 
of total variance described by MAC at each site over the 
region is plotted in Figure 3. It manifests two local 
maxima in most parts of Tanzania and northern Uganda, 
with minimum locations over eastern Kenya and a small 
pocket over western Uganda.  

In general, the distribution of this proportion in such 
greater proportion is found in the southern part of the 
region and the northern tip of Uganda. South of 3° S, the 
proportion is more than 70% with greater than 80% in 
southwestern Tanzania. The grid with the highest pro-
portion of MAC in the total variance is Grid 37 centered at 
9°S, 31°E (86%).  
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Figure 2. The (a) semi-annual and (b) annual seasonal cycle components reconstructed from the IMFs of EEMD decomposed monthly 
rainfall at grid 16 centered at 1° S, 37° E.  

 
 
 

In the equatorial zone between 2° N and 2° S, which 
includes the coastal areas, northern and eastern parts of 
Kenya, MAC generally accounts for between 45 to 65% 
variance. The lowest proportion is 45% at grid 7 [1° N, 
31° E] in western Uganda. These rainfall patterns are 
controlled by the seasonal migration of the inter-tropical 
convergence zone (ITCZ) that migrates, north-south, 
across the region twice a year. The ITCZ thus tends to 
impose a significant influence on the climatological 
rainfall and temperature patterns. The ITCZ’s influence is 
credited for defining the bimodal rainfall regime 
experience in most parts of the region during March to 
May (MAM) and October to December (OND).  

Normally, the passage of ITCZ leads the onset of the 
two rainy seasons by 3 to 4 weeks, but this may be 
modulated from season to season by the interactions 
between the ITCZ and perturbations in the global climate 
circulation, as well as with changes in the local circulation 
systems initiated by land surface heterogeneity induced 
by variable vegetation characteristics, large inland lakes 
and topography.  

In southern Tanzania, unimodal rainfall regime domi-
nates, with the only rainfall season central around 
southern hemisphere summer (December to February) 
and hence higher proportion of MAC variance. Parts of 

Western Kenya, Western and Northwestern Uganda are 
however characterized by trimodal regimes since they 
often receive significant amounts of rainfall during July 
through September due to penetration of mid-
tropospheric moist westerly flow from the Atlantic Ocean 
and tropical Congo rainforest air mass (Davies et al., 
1985; Mutai et al., 1998).  

In the current method of decomposition, the 3 to 4 
month periodicities are treated as high frequency modes 
and therefore not included in the modulated annual cycle 
(MAC), hence the low proportion of variance is in 
locations with trimodal regimes.   

The first two EOFs of MAC contribute 80% of rainfall 
variance. Their spatial loadings and mean time scores 
are illustrated in Figures 4 and 5, respectively. The mean 
monthly time scores are based on 107 (1901 to 2007) 
annual cycle repetitions. The first mode (Figure 4a) 
exhibits a north-south orientation with two maxima of 
opposite signs over northern Uganda and most parts of 
Tanzania (except the coastal areas north of 8° S).  

The change-over of the positive and negative loadings 
have both zonal and meridional orientations. The zonal 
axis is along the equator and ranges from 20 to 36° E 
while the meridional axis is along 36° E and ranges from 
4° N to the equator. The mean time  score (Figure  5a)  of  
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Figure 3. Proportion of total variance of monthly rainfall explained by MAC component. Dots indicate the 

center of grids analyzed. 

 
 
 
this first mode is sinusoidal, with a dip between May to 
October and a peak between November to April. The 
standard deviations of the annual cycle are higher during 
peak season with highest values (2.1) in November and 
lowest values (0.9) in September. The first mode pattern 
depicts the north/south locations of the sun during the 
northern/southern hemisphere summer seasons over the 
areas which experience unimodal rainfall regime. 

Continental climate is distinct in central and southern 
Tanzania where the positive loadings are strongest. To 
the east of this region is the coastal strip where climate is 
influenced by the Ocean via sea/land circulations in most 

times of the year hence diffused signal of the unimodal 
regime.  

The coastal areas have a unique rainfall patterns that 
are not necessarily linked to the regular north-south 
oriented ITCZ passage in the region. The rains in these 
areas lag the ITCZ by some few weeks due to the 
influence of near equatorial trough. Long rains, which are 
much higher in amount generally extends to June. The 
high amount may be largely due to prevailing wind flow 
which is orthogonal to the coastline in this season as 
opposed to the shorts rains season when the winds are 
more parallel to the coastline (Okoola et al., 2008). 
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Figure 4. Spatial modes of MAC EOF, (a) leading mode (explains 58% variance) and (b) second mode (explains 22% variance). 

 
 
 

The first mode, explaining 58% variance of MAC, 
expresses the annual component of rainfall seasonality 
which is strongest in central to southern Tanzania and 
northwestern tip of Uganda. This north-south dipole 
pattern expresses the difference in the occurrences of the 
maxima of the annual component of rainfall seasonality in 
southern Tanzania and Northwestern Uganda. 

The spatial pattern of the second mode, explaining 
22% of MAC variance is shown in Figure 4b, while Figure 
5b illustrates its corresponding mean monthly timescores. 
Its temporal character (Figure 4d) is distinctly bi-modal 
with peaks in March to April, locally known as the “Long 
rains season” and September to November, locally 
known as the “Short rains season” and minimum around 
July to August and December to February.  

Standard deviation of this second mode is 
highest/lowest during peak/low seasons. The highest 
standard deviation (2.3) occurs in November suggesting 
high rainfall variability during the short-rains season in 
area where the bi-modal regime is dominant. Similar 
results are also found in areas dominated by the 
unimodal rainfall regime in Figure 5a.  

The loadings of the second mode are generally positive 
over the region with strongest signals in eastern Kenya, 
coastal areas of East Africa, southern Uganda and 
Northern Tanzania.These results agrees with previous 
studies (Ogallo, 1982; Nyenzi, 1992; Beltrando, 1990; 
Nicholson, 1996) which have shown that relative to the 

long (MAM) rains, the short (OND) rains tend to have 
stronger interannual variability, stronger spatial cohe-
rence of rainfall anomalies across a large part of the 
region.  

Statistic significant station to station correlation and 
seasonal rainfall to annual rainfall correlations during this 
season have also been found. The dominance of large-
scale weather systems is responsible for the spatial 
homogeneity of rainfall during this season. The remaining 
parts of the region exhibit weak loadings implying weaker 
(stronger) semi-annual (annual) oscillation of rainfall.  

With reference to Figure 3, it is evident that in the 
regions of strong seasonality, much of it is from the 
annual cycle component. From the spatial structures of 
the MAC modes (Figure 4), it can be concluded that 
seasonal cycle of rainfall over the whole region does not 
follow the classical scheme of regular north-south 
transition of the peak rainfall with a time lag following the 
overhead sun and the associated ITCZ. This result is 
corroborated in Figure 1b showing dominant modes of 
seasonality at each grid box. This scenario is only true for 
the western strip of the region (29 to 35° E), where the 
annual component dominates areas that are north/south 
of 2° N/S of the equator while the semi-annual com-
ponent dominate the areas within 1° north and south of 
the equator.  

Inspection of the time scores of the first 2 modes of 
MAC whose mean scores are provided in Figure  5  show  
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Figure 5. Mean time scores of leading and second mode respectively, based on 107 (a) annual (A) and 
(b) semi-annual (S) repetitions. The solid line is mean mode, with its scale on the left ordinate, while 
dashed line is standard deviation (SD), with its scale on the right ordinate. 

 
 
 
that the annual component of seasonality is not strictly 
regular in amplitude. High amplitudes occur around 1905/ 
1906, 1916/1917, 1930/1931, 1951, 1961/1962, 1978 
and 1997, during which the amplitude is about twice the 
standard deviation. During some of these years, the 
region experienced anomalous rainfall.  

The extreme rainfall event of 1961 to 1962 was un-
precedented in intensity, duration, and extent during the 
20

th
 century in the East African region (Conway, 2002) 

and was triggered by the Indian Ocean Dipole (IOD) 
mode (Black et al., 2003; Owiti et al., 2008). A similar 
anomalous event but less in magnitude occurred in 1997, 
a period when the Indian Ocean dipole (IOD) and El Niño 
co-occurred. The anomalous rainfall events in 1905 to 
1906 and 1916 to 1917 have also been reported by 
Conway (2002). These results suggest that the amplitude 

of seasonal cycle tends to be high/low during anomalous 
rainfall years.  

Further, the mean PC times scores (Figure 5a, b) 
captures the major rainfall regimes experienced over the 
region, with mean PC1 series expressing the unimodal 
regime over Central and Southern Tanzania and North-
western Uganda. The two areas however experience 
peak rainfall in different seasons of the year with southern 
Tanzania having it peak as shown in Figure 5a during 
southern hemisphere summer; while northwestern 
Uganda peaks in northern hemisphere summer that is, 
the two areas has a dipole rainfall pattern.  

The mean PC2 series expresses the bimodal regime 
over the remaining parts of the region. SVD analysis by 
Jury and Mpeta (2009) based on under composed 
monthly rainfall captured only the  March  to  May  rainfall  
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Figure 6. Morlet wavelet of MAC PC1 amplitude for the period 1901 to 2007 (a), its wavelet power spectrum (b) and its global 
wavelet spectrum. In panel (c) solid line indicates global wavelet power while the dotted line indicates 95% significant level. 
Thick contours in (b) enclose area of greater than 95% for a red-noise process with a lag-1 coefficient of 0.72 (Torrence and 
Compo, 1998). 

 
 
 

 
 
Figure 7. Morlet wavelet of MAC PC2 amplitude. 

 
 
 

season in the annual cycle of east African region. 
 
 
Variability of MAC amplitude  
 
The instantaneous amplitudes of the MAC leading PC 
series, their wavelet power spectrum and global wavelet 
spectrum are displayed in Figures 6 and 7. The time 
scores of the first mode (Figure 6a) exhibits inter-annual 
variability with high peaks coinciding with years (for 

example 1951, 1961, 1997, and 2006) of anomalous 
rainfall events over the region, with most of the extreme 
amplitude cases positive.  

The local and global wavelet spectra of the PC1 series 
provided in Figure 6a and b show that the most dominant 
periodicity of the first mode appears to be at about 32 
year, however most of its significant spectrum is below 
the cone of influence (COI) and thus we assume this 
periodicity results from the edge ‘effects’ of wavelet 
analysis    algorithm.   We    therefore    consider   second  



 
 
 
 
dominant peak, whose variability is observed at inter-
annual time scales (2 to 5 years), typical of ENSO pheno-
menon related variability. The concentration of energy 
within these periods is statistically significant (Figure 6c). 
The 2 to 5 year period is observed at significant levels for 
much of the period (1901 to 2007), except from 1920 to 
1930.  

The second mode time score series, its local and global 
wavelet spectra are provided in Figure 7. As in the spec-
trum of the first EOF PC series, we disregard the 32 year 
cycle due to the same reasons previously. Noticeable in 
Figure 7a are the high/low amplitude phases occurring in 
successive years exhibiting consistently high or low 
values. For example, dominant negative amplitude 
anomalies during the period spanning from 1905 to 1920, 
followed by a positive phase from 1921 to 1937, then a 
low phase from 1938 to 1945.  

In the period 1940 to 1981, no particular phase domi-
nated. Towards the end of the 20

th
 century, the positive 

phase dominated. The local wavelet spectra of Figure 7b 
show variations dominated by peaks whose periods are 
between 4 to 8 years and 9 to 16 years indicating signals 
of ENSO and decadal variability, respectively.  

Earlier studies (Rodhe and Virji, 1976; Ropelewski and 
Halpert, 1987; Ogallo et al., 1994) have also shown the 
existence of oscillatory peaks in East African rainfall of 2 
to 8 years. The decadal signal is found in this study is 
however only significant from 1920 to 1955. 
 
 
Conclusion 
 
EEMD is a useful tool in decomposition of time series in 
which linearity and stationarity is not guaranteed. The 
success of EEMD in isolating seasonality components of 
East African rainfall is shown by the mean EOF PC series 
of MAC that captures the principal rain seasons over the 
region, namely: March to May (MAM) and October to 
December (OND); and the unimodal rainfall regime in the 
southern part of the region. MAC contributes 45 to 80% 
of the proportion of rainfall variability in individual 
locations over the region with the highest proportion of 
variability in areas dominated by the annual component 
of seasonal cycle. The first two MAC modes expressing 
annual and semi-annual components of seasonality, 
explains 80% of the variance of MAC, with the annual 
(semi-annual) component explaining 58% (22%).  

Spatial structure of MAC EOF modes reveal that 
seasonality of rainfall over the whole region does not 
follow the north/south classical scheme where the semi-
annual component dominates the equatorial, while the 
annual component dominates areas relatively far from the 
equator. This scenario is only true for the western portion 
of the region (29 to 35° E), where the annual component 
dominates areas that are north/south of 2° N/S of the 
equator while the semi-annual component dominate the 
areas within 1° north/south of  the  equator.  This  can  be 
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explained by the effects of the complex topographic 
patterns, the existence of large lakes and land-ocean 
contrast which creates localized circulations (Anyah and 
Semazzi, 2004; Okeyo, 1987; Mukabana and Pielke, 
1996) leading to receipt of rainfall over highland areas in 
most months of the year, for example the lake Victoria 
land/lake breeze and the eastern highland induced 
upslope/downslope circulation. 

MAC amplitude tends to be high during anomalous 
rainfall, with high/low amplitudes occurring in successive 
years indicating that the impact of major climate 
processes that produce seasonal cycle can be amplified 
or suppressed by interannual to longer timescale 
variability modes.  

Previous studies (Rodhe and Virji, 1976; Nicholson and 
Entekhabi, 1986) have linked the 2 to 8 years periodicity 
of east African rainfall to the El Niño – southern oscillation 
(ENSO), which is the most coherent interannual signal in 
the global climate.  

Indian Ocean dipole (IOD) is another mode of variability 
which has been shown to modulate the regional rainfall 
within the range of these periodicities.Previous studies 
have shown that Indian Ocean sea surface temperatures 
(SST) anomalies are the dominant factor controlling East 
Africa short-rains (Latif et al., 1999; Goddard and 
Graham, 1999; Black et al., 2003; Clark et al., 2003; 
Behera et al., 2005).  

From the wavelet analysis of the instantaneous 
amplitude of the leading MAC PC series, the years with 
extreme anomalies and high spectral power such as 
1961, 1963, 1997 and 2006 coincided with the years of 
IOD events over the Indian Ocean. In most of these years 
the IOD co-occurred with the ENSO events in the Pacific 
Ocean except in 1961 in which one of the strongest IOD 
events that led to extreme floods over the region 
occurred.  

The 1961 to 1962 rains caused rapid rises in the levels 
of East African lakes. Lake Victoria rose 2 m in little more 
than a year (Conway, 2002; Flohn, 1987). This was not 
an ENSO year, but exceedingly high sea surface 
temperatures (SSTs) occurred in the nearby Indian 
Ocean as well as the Atlantic. The severe El-Nino related 
floods of 1997/1998, the most severe in the last 50 years, 
was also enhanced by unusual pattern of SST in the 
Indian Ocean (IPCC, 2007).  

Previous studies on climate anomalies over the region 
have indicated that the East African rainfall anomalies 
during December to January 1997/1998 were not only 
forced by the record 1997 El Nino, the large buildup of 
SSTs over the Indian Ocean also played a role in 
producing the anomalies in rainfall (Goddard and 
Graham, 1999; Latif et. al., 1999). 

We note that the definition of modulated annual cycle 
(MAC) by the semi-annual and annual components of 
rainfall variability could not capture the trimodal regimes 
experienced in some areas in the study domain. In 
derivation   of  MAC  for  specific  locations  with  trimodal 
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rainfall regime, the 4-month mode can be included to 
capture the trimodal regime for specific location analysis.  

This study has shown variability in the seasonal cycle 
of East African rainfall on interannual-to-longer time 
scales, which should be considered in studies on 
variability of rainfall and in seasonal- to-longer time scale 
prediction of rainfall over the region. Since the modulated 
annual cycle (MAC) has been shown to capture the 
spatial and temporal rainfall seasonality structures over 
the region, it can be used in the assessment of perfor-
mance of climate models in capturing the seasonality of 
rainfall over the region. 
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