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In this article analytical solution of one-dimensional heat equation in relaxation mode of heat generation 
and conduction using Laplace transforms method is presented. The model adopted takes into account 
finite velocity of heat propagation, and relaxation of heat source capacity. The properties of heat source 
terms in four different cases are incorporated in the model and investigated. Temperature distributions 
and variations with conduction mode and relaxation time are analyzed. High relaxation time is observed 
to lowers the temperature profile, whereas enhanced temperature distribution changes at particular 

values of α, and for source capacity proportional to temperature. How the steady state solution is 

achieved for some selected values of coefficients is also discussed. 
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INTRODUCTION 
 
Cattaneo was the first to build an explicit mathematical 
theory to correct unacceptable properties of Fourier 
theory of heat diffusion. The arguments used were based 
on the kinetic theory of gases and second-order 
correction to propose modification of Fourier law 
(Cattaneo, 1948), which gives rise to the well-known 
hyperbolic model of heat conduction. This also leads to 
suitable heat conduction models that permit the finite 
speed of heat flow (Ozisik and Tzou, 1994; Joseph and 
Preziosi, 1990). In most studies of heat propagation in 
systems the hyperbolic model of heat conduction is used 
(Jose and Juan, 2011; Al-Nimr et al., 2004; Malinowski, 
1993a, Saleh and Al-Nimr, 2008;  Cai  et  al.,  2006).  For 

instance in (Malinowski, 1993b) the analytical solutions 
for the relaxation equation in bodies with low heat 
resistance, by neglecting temperature gradient were 
presented. It is shown that differences between parabolic 
and relaxation solution fluctuate as time elapses. 
Differences in heat generation and conduction were 
reported (Lewandowska, 2001) to arise due to the time 
characteristics of the heat source capacity. For example 
when the heat is of constant strength this differences 
slowly decrease for long times. Furthermore, solutions of 
both hyperbolic and parabolic heat conduction equation 
for temperature dependent heat source is reported to be 
use   in   analyzing   normal   zones   in   superconductors
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(Lewandowska and Malinowski, 2002), in which the 
amount of energy that is dissipated in the zone affect 
heat production by the heat source capacity which 
depends on temperature. 

Although a lot of works has been done on the 
hyperbolic and parabolic heat conduction equation under 
different conditions, yet nobody as far as we know 
investigate the solutions for one-dimensional relaxation 
model of heat conduction taking into account the finite 
velocity of heat propagation, and relaxation of heat 
source capacity. Matlab program is one of the robust and 
most widely used program in areas of science and 
technology (Hübner et al., 2011). Also has many 
application in script design (Valipour et al., 2012), and in 
model development (Mohammad and Ali,  2012a; 
Mohammad et al., 2013). For example in irrigation 
engineering (Mohammad and Ali, 2012b) used the 
genetic coding in Matlab environment to determine the 
effective infiltration parameters in Furrow Irrigation. We 
use in this paper Matlab environment to write a script to 
compute the temperature profile in physical domain. 

 
 
MODEL 
 
By using the modified Fourier law Equation (1), which 
physically agree for a very short laser pulses and non-
infinite speed of heat transport. 
 

,             (1) 

 

Where , k, q and  are the relaxation time of the heat 

flux, thermal conductivity, heat flux vector, and 
temperature respectively. Hyperbolic equation of heat 
conduction is obtained by substitution of Equation (1) into 
the energy conservation equation. 
 

,                        (2) 

 
In Equation (2) ρ is the density;  is specific heat at 

constant pressure, and g is the capacity of the internal 
heat source. In this paper we adopt the notion of inert 

heat source and transient capacity of heat source  as 

seen in Equation (3). 

 
tg                                       (3) 

 
For the relaxation heat conduction equation that account 
for both finite speed of heat propagation and the 
relaxation of heat source capacity Equation (4) is use. 

 
                  (4) 

 
 
 
 

Where  is thermal diffusivity, tg is relaxation time of 

source capacity, the length of which depends on nature 
of the source. The dimensionless forms of Equations (1) 
to (3), are given below respectively as adopted in 
Lewandowska (2001), which is necessary to ensure 
temperature variation as a function of dimensionless 
displacement. 
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.                         (7) 

 
Transformation of Equations (5) to (7) yields the equation 
of heat conduction below, which permits a finite speed of 
heat propagation and relaxation of heat source capacity. 
 

        (8) 

 

Where , and is relaxation time due to delay of 

heat flux as a result of temperature gradient. Equation (8) 
is treated, considering the temperature gradient as a 
function of a dimensionless Cartesian co-ordinate, 

for . Thus, we obtained Equation (9). 

 

.    (9) 

 
Equation (9) can be reduced to the classical hyperbolic 
equation of heat conduction for one dimensional case, 
when the relaxation time of heat capacity is set to zero. 
 

.                             (10) 

 
We take into account the finite speed of heat 
propagation, relaxation of heat source capacity and heat 
conduction equations. We also consider temperature 
gradient to be a function of dimensionless displacement, 
and assumed high heat resistance. 
 
 
MATHEMATICAL ANALYSIS 

 
The boundary value problem of Equation (9) was solved after 
including four different source terms namely: (i) source with 
constant capacity, (ii) source capacity proportional to temperature, 
(iii) Dirac delta energy pulse, and (iv) source capacity proportional 
to time. This gives respectively, 

 

          (11) 



 
 
 
 

    (12) 

 
 (13) 

 
 (14) 

 
By using the Laplace transforms technique, with boundary 

conditions , for 

the four different source terms respectively, solutions of Equations 
(11) to (14) yields: 
  

-              (15) 

 

-              (16) 

 

-                            (17) 

 

-                            (18) 

 

Where = , and  = 

for Equations (11) to (14). However, in Equation (12), 

 = . The  and  in 

Equations (16) to (18) are dimensionless coefficients that 
corresponding to the corresponding sources term. The solution of 

Equations (15) to (18) satisfying the conditions for  

and  is: 

 

.         (19) 

 

Where i = 1, 2, 3, and 4,  and  are as defined above 

with the same condition and  
 

 =                                                           (20) 

 

 =                                                           (21) 

 

 =                                                           (22) 

 

 =                                                           (23) 

 
The Equation (19) in Laplace transformed field is inverted for values 

of i = 1, 2, 3, and 4 in order to determine the temperature in 
physical time domain. Riemann-sum approximation (Basant and 
Clement, 2013) is used for the  inversion  of  the  sets  of  Equation  

Lawal et al.          313 
 
 
 
(19). It involves a single summation for the numerical process. In 

this case the function in  is inverted to the time field. 

 

     (24) 

 

Where Re is the real part, i =  is the imaginary number, N is 

the number of terms used in the Riemann-sum approximation. The 

accuracy of this method depends on the value of and the 

truncation error dictated by N. The  is real part of Bromwich 

contour that is used in inverting Laplace transforms, its value must 

be selected so that the Bromwich contour encloses all the branch 
points (Tzou, 1997; Karniadakis and Beskok, 2002). For faster 

convergence, and reasonable results the quantity should be 

approximately 4.7 (Vernotte, 1961). This shortens the 
computational time as compared to other tested values. The 
numerical solution is validated by considering steady state solution 
of Equation (25) for the first case, compared with the solution of 

Equation (15) for i=1 and the two results satisfy the boundary 

conditions x(0)= , and x(1)= . The pulsed energy 

source shows quasi-steady state behavior as the Dirac delta tends 
to unity. This indicates the flow is partly driven by buoyancy. This 
also agrees with source capacity that is proportional to time. 
 

,                                                         (25) 

 

,                                                         (26) 

 

,                                          (27) 

 

.                                          (28) 

 
 
RESULT AND DISCUSSION 
 
The results of the calculations are shown in (Figures 1 to 
6). Figures 1 to 4 show the temperature profiles for the 
source terms that follow   

 and . Using the solutions of 

Equations (11) to (14) for the four source terms, we write 
scripts that solve Equation (19) for i=1, 2, 3, and 4 by 
using MATLAB program in order to compute and 
generate the graphs. This is necessary in order to get a 
clear insight into the physics of the model. Different 

values of  from 0.1 to 1 are used, while higher values 

in some cases enhance temperature profile distribution 
similar to the trend observed in the semi-infinite system 
with a time-dependent pulse energy source 
(Lewandowska, 2001). The resulting values of the 
temperature profiles  are observed to increase 

for dimensionless temperature versus dimensionless time 
in  conduction  mode  for  the  heat   source   capacity   of 

constant strength. The values of are set to 1, 3, and 6
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Figure 1. (a) Temperature distributions in conduction mode for constant heat source capacity, for  (b) 

Temperature profile for  of the first source term. 

 
 
 

 
 
Figure 2. (a) Temperature distributions in conduction mode for source capacity proportional to temperature for for 

, (b) Temperature profile for  of the second source term. 

 
 
 
for all the four cases. In Figure 1(b), temperature profile 
rise as the dimensionless time slowly drop toward the 

direction of heat flow (Vedavarz et al., 1994), when  

at constant source capacity. This increase of temperature 
in the system is caused generally by the heat generation 
process. Hence, dimensionless temperature distribution 
is indirectly proportional with the flow of heat flux as 
indicated in Figure 1(a). Energy is concentrated at the 

intermediate X for , in the case  of  conduction 

mode for constant heat source capacity and source 

capacity proportional to temperature. However, for the 
pulsed heat source and source capacity proportional to 
time shown in Figures 3(a and b) and 4(a and b), the 

energy is less concentrated at  Figure 2(a and b) 

display temperature distributions when the source 
capacity is proportional to temperature, and for 

respectively. Our results for this case show 

enhanced temperature distribution at increase value of α, 

and . The gradual reduction in temperature along the 

direction  of  heat  flow is expected to explain the well
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Figure 3. (a) Temperature distributions in conduction mode for pulsed heat source, (b) Temperature distributions for pulsed 

heat source at . 

 
 
 

 
 

Figure 4. (a) Temperature distributions in conduction mode for source capacity proportional to time. (b) Temperature 

distributions for source capacity proportional to time at . 

 
 
 
behavior of this model.  

Figure 3(a and b) show the temperature distribution of 
the system, in which heat is release from a pulsed energy 
source. In Figure 3(a) high relaxation time lowers the 

temperature profile for , and β =1, but at higher 

value of the temperature profile fluctuate within the set 

boundary, however, the trend remains same. The 
temperature distribution for source capacity proportional 
to time in conduction mode compared to the pulsed 
energy source term as depicted in Figures 3(a and b) and 

4(a and b). This is because when  the Dirac delta 

pulse approach unity, which rendered the two terms to be 

same at that instant that is, when . The little 

difference observed is the variation in temperature 
distribution, which is enhanced for source capacity 
proportional to time as compared to the pulsed energy 
source term.  

Figure 5(a and b) and 6(a and b) show calculations 
results for the four different source terms with respect to 
dimensionless  temperature  variation  versus   relaxation  
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Figure 5. (a) Temperature variation with the relaxation time of source capacity calculated for the constant heat source 

capacity,  (b) Temperature variation with the relaxation time of source capacity calculated for the source capacity 

proportional to temperature. 

 
 
 

 
 

Figure 6. (a) Temperature variation with the relaxation time of source capacity calculated for the pulsed heat source, 

(b) Temperature variation with the relaxation time of source capacity calculated for the source capacity proportional to 
time. 

 
 
 
time of source capacity. In Figure 5(a and b) uniform 
temperature variation occurs at shorter duration, it 
decrease with increase of relaxation time and stabilize at 
high value of relaxation time, hence the mode of 
conduction of heat is non-diffusive for extremely short 
duration. In Figure 5(b) the temperature profile is 
observed to depend on coefficient α, which causes 
oscillation at higher value of α. The overall effect is 
enhancement of temperature profile at high values of the 

coefficients that is, In Figure 6(a), 

temperature variation approaches constant value 

between the heat pulses of 3.5 to 5, and decrease with 
increase of the heat pulse from both sides of the 
temperature profile. The steady state solutions of 
Equations (26), (27) and (28) agrees with source capacity 
proportional to temperature, which proves the validity of 
the Riemann-sum approximation used in this work. 
 
 
CONCLUSION 
 
The problem of  heat  conduction  equation  for  the  finite  



 
 
 
 
velocity of heat propagation, and relaxation of heat 
source capacity is solved analytically and numerically 
using Riemann-sum approximation. Four different 
expressions for dimensionless heat source capacity are 
considered. The effects of coefficients on temperature 
distribution, variation, and steady state solution are 
analyzed. It is observed that the temperature profile 
decreases when the relaxation time is high, however, at 

higher value of  the temperature profile fluctuate within 

the set boundary. Furthermore, the gradual drop in 
temperature profile along the conduction direction agrees 
with the natural behavior of heat propagation. 
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NOMENCLATURE 
 

τ: Dimensionless time, : Relaxation time of the heat 

flux, k: Thermal conductivity, Θ: Temperature, 
 : Dimensionless capacity of the internal heat source, ρ: 

Density, : The specific heat at constant pressure, g: 

Capacity of the internal heat source, : Dimensionless 

relaxation time of source capacity, : Transient heat 

capacity of the source, Φ: Dimensionless temperature, a: 
Thermal diffusivity, α: Dimensionless coefficient in 
expression for the Source capacity proportional to 
temperature, β: Dimensionless coefficient in expression 
for the Dirac delta pulse and Source capacity  

proportional to time, : Dimensionless coefficient in 

expression for the constant Source capacity, : 

Coefficients defined by Equations (20-23), 
δ: Dirac delta function, μ:Thermal diffusivity. 
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