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INTRODUCTION 
 
The main interest in obtaining qualitative information for 
second order functional differential equation is due to the 
fact that they often provide mathematical models for 
physical systems (Lalli and Grace, 1990; Singh 1973; 
Elabbasy and Saker, 1999; Ladas et al., 1972; Ladas et 
al., 1984; Erbe and Kong, 1992; Das, 1994; Staikos and 
Petsoulas, 1970; Stavroulakis, 2005). 

Of particular importance however has been the study of 
oscillations of delay differential equation, which are 
generated by the retarded argument and which do not 
appear in the corresponding differential equations without 
delay. 

A step in the direction, of establishing oscillation results 
generated by delays, was taken by (Ladas et al., 1984) 
where they proved that every bounded solutions of 
retarded equation 
 

( ) ( ) ( ) 0=−−′′ τtytpty  (1.1) 
 

with ( ) ( ) ( ) 2tp0tp0tp 2 ≥≤′> τ,, is oscillatory. 
 
Noting that (1.1) is nonoscillatory for � = 0. 
  
In this paper, we investigate the oscillatory behaviour for 
the solution of the delay differential equation 
 

( ) ( )( ) ( ) ( ) ( )tftytptytr 1 =+′′  (1.2) 
 
in relation to the solution of the delay equation 

( ) ( )( ) ( ) ( ) ( ) ( )( )2 3r t x t p t x t p t x t tτ′′ + = − −  

 
where  
 

( ) ( ) ( ) ( ) ( ), , , , , ,jp t p t j 1 2 3 f t r t and tτ=  are 

functions 
 

), , 0τ τ∞ → >�� R  

 
Also, we denote ( )( ) ( )x t t by x tττ− . 

 
It will be assumed in this paper that p(t), r(t) and r'(t) are 
bounded, real and continuous defined on (—�, �), with 
r(t) > 0, r'(t) � 0, Pi(t) > 0, i = 1, 2, 3. f(t) is eventually 
positive on some half line [ τ , �) �  R ,  τ  > 0.  
 
Definition (1): A solution is oscillatory of there is an 
increasing sequence { } inn n 1

t ∞

=
R  such that 

 
 ( )lim and for alln nn

t x t 0 n
→∞

= ∞ = ∈ N . 

 
Definition (2): The solution x(t) of (1.2) or (1.3) is called 
oscillatory if it has no last zero. 

Equations (1.2) or (1.3) are called oscillatory if all 
continuous nontrivial solutions oscillatory. 
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In this paper, we shall give the conditions which are suf-
ficient for the second order differential equation with de-
lay to be oscillatory or nonoscillatory respectively. 
 
 
RESULTS 
 
Theorem 2.1. Let ( )( )lim

t
t tτ

→∞
− = +∞ .  Assume that there 

is a constant [ ],0 1β ∈  such that  

 

( )
( )

1

3

p t
1

p t
β

� �
≤ <� �� �

� �
 

 
for t � t0 and 0t  large enough. Assume also that 

,1 3p p 0> .  If all solutions of (1.2) are oscillatory, then 
all solutions of (1.3) are oscillatory. 
Proof:  Suppose that the solutions of equation (1.2) are 
oscillatory, let y one of them and suppose that there is a 
solution a x of equation (1.3) which is nonoscillatory and 
nonnegative.  Let 0 0T t≥  a real number large enough.  

So that ( )x t 0>  for all 0t T> . 

Let T = T0 + M, where M is a positive constant such that 

( )0 x t M< < , then ( )x tτ  is strictly positive for t ≥ 

T.  
Let t1 > T,  t2 > t1  be two zeros of  y  such that  y(t) > 0  
for  t  ∈ (t1, t2), ( ) ( )and1 2y t 0 y t 0′ ′> < . 

 
Multiplying (1.2) by x(t) and (1.3) by y(t) and subtracting 
we get 
 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2

3

r t y t x t r t x t y t p t p t x t y t

x t f t p t x t y tτ

′ ′′ ′− + −

= +

   (2.1) 

 
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )
2 1

3

d
r t y t x t x t y t x t f t p t p t x t y t

dt
p t x t y tτ

� 	′ ′− = + −� 


+

 (2.2) 

 
Since x(t) > 0  for t � T, we have  
 

( )
( )

( )
( )

( )
( )

3

1

p t x t x t1
p t x t x t

τ τ

β
≥  (2.3) 

 
According to [9], there is T1 > T large enough, such that 
  

( )
( )

2x t

x t
β>   

 
for       t > T1  (2.4) 

 
 
 
 
From (2.3) and (2.4) for t > T1, it follows 
 

( )
( )

( )
( )

( )
( )

3 2 2

1

p t x t x t1 1
1

p t x t x t
β

β β
> > =  

 
Now using (2.5) in (2.2), we have 
 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )2

d
r t y t x t x t y t x t f t p t x t y t

dt
� 	′ ′− > +� 


  (2.6) 

 
choosing t1 and t2 greater than T1 and integrating (2.6) 
between t1 and t2, we get 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )2 2

1 1

2 2 1 1 1

t t

2t t

r t y t x t r t x t y t

x t f t dt p t x t y t dt

′ ′− >

+� �
         (2.7) 

 
Since the right hand side of (2.7) is integer and 
nonnegative, and the left hand side of (2.7) is nonpositive 
because ( ) ( ),2 1y t 0 y t 0′ ′< > , therefore a contra-

diction. This completes the proof. 
 
Theorem 2.2. Let 
Assume that all of the solutions of (1.2) are 
nonoscillatory.  Let y one of them  
 

(i) Let x be a solution of (1.3) such that ( )0x t 0> . 

Then there is 0δ >  such that x(t) has constant 

sign on ( ),0 0t tδ δ− +  and there is 1t T≥  

such that ( ) ( ),0 0t t t tτ δ δ− ∈ − +  for all 

1t t> . 

 ( )( )lim 0t
t t tτ

→∞
− =       ,     t0  finite. 

(ii)  ( )
[ , )
inf 1T

p t k 0
∞

= >  

(iii) p1(t) = p2(t)         ,          f(t) = 0 
(iv) The zeros of x(t) have no limit point. 

If all the solutions of (1.2) are nonoscillatory, then 
all solutions of the equation (1.3) are nonoscillatory. 
Proof:  Now consider the cases: 
 
(i) Let |x(t0)| > 0.  In this case there is some t1 � T such 

that (t — �(t)) ∈ (t0—�, t0+�), for t > t1. Hence x�(t) has 
a constant sign for t > t1. Assume that for t > t1, the 
sign of y(t) is constant. Then also 

( ) ( ) ( ) ( ) ( )( )d
r t y t x t x t y t

dt
� 	′ ′−� 
 has a 

constant sign and hence there is some t3 > t1 such 
that 

 

( ) ( ) ( ) ( ) ( )( ) for 3 1r t y t x t x t y t 0 t t t� 	′ ′− ≠ > >� 

. 



 
 
 
 
If x(t) oscillatory, then there exist points a > t3, b > t3, such 
that x(a) = x(b) = 0 and x(t) � 0 when t ∈ (a, b). Since 
 

( ) ( ) ( ) ( ) ( )( )r t y t x t x t y t 0� 	′ ′− ≠� 
      in   [a, b] 

 
The solution y(t) has a zero on (a, b).  
(ii) Let x a solution such that x(t0) ≠ 0 in each interval 

which contains t0. From the assumption of the 
theorem it follows that t0 cannot be the limit point of 
zero of x(t). Hence we have either (t – �(t)) ∈ (t0 -�, t0) 
for all t > t1 � T  or  (t – �(t)) ∈ (to , to + �) for all t > t1, 
and hence x�(t) has a constant sign for t > t1. We 
proceed with the proof similarly as in the case (i).  
This completes the proof. 

Theorem 2.3.  Suppose there exists a twice continuously 
differentiable eventually negative and bounded function 
h(t) that satisfies 
 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ), 1 2r t h t p t h t 0 p t p t p t′′ + > = +  (2.8) 
 
Also, let 
 

( )( )lim
t

t tτ
→∞

− = +∞  

 
Then (2.8) is necessary and sufficient for every bounded 
solution of (1.3) to the nonoscillatory. 
Proof:  Assume that 
 

( ) ( )( ) ( ) ( ) ( ) ( )2 3r t x t p t x t p t x t 0τ
′′ + + =  

 
is nonoscillatory and x(t) is any bounded nonoscillatory 
solution of (1.3). Without loss of generality we can 
assume that y(t) is eventually negative. Let h(t) = x(t). 
Choose T1 large enough so that 
 

( ) ( ) for 1h t x t 0 t Tτ τ= < >  
 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1 2

1
3 2

3

r t h t p t x t r t h t p t x t p t x t

p t x t
r t x t p t x t p t x t

p t x tτ
τ

′ ′′ ′+ = + +

′′= + +

 

                                                                                 (2.9) 
 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )3 2

x t
r t x t p t x t p t x t

x tτ
τ

β′′> + +  (2.10) 

 

where β is given in Theorem 2.1 
 

Since ( )( ) ( )
( )lim , lim

t t

x t
t t 1

x tτ

τ
→∞ →∞

− = +∞ = . since  

 

( ) ( )( ) ( ) ( ) ( ) ( )2 3r t x t p t x t p t x t 0τ
′′ = − − >   

 
and , , ,2 3r p p x 0− > , x is increasing. so T1 can be 
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taken so large such that 
 

( )
( )

x t
1

x tτ

>  for any t > T1. 

 
Then from (2.10) and (2.11) we get 
 

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )
1 2

2 3

r t x t p t x t p t x t

r t x t p t x t p t x t 0τ

′′ + + >

′′ + + =

 

 
Now suppose 
 

( ) ( )( ) ( ) ( )r t h t p t h t 0′′ + >  

 
for some eventually negative twice differentiable and 
bounded function h(t). From (2.12) where h'(t) < 0 for t > 
T2 and continuous on r(t) it follows that 
 

( )
2T
t p t dt

∞
< ∞�  

 
This, in turn, due to conditions on p1(t) and p2(t) implies 
 

( )
2

1T
t p t dt

∞
< ∞�  

 

( )
2

3T
t p t dt

∞
< ∞�  

 
By Singh (1973), the proof is complete. 
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