
International Journal of Physical Sciences Vol. 7(40), pp. 5545-5551, 23 October, 2012
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS12.321
ISSN 1992 - 1950 ©2012 Academic Journals

Full Length Research Paper

Partitioning large ontologies based on their structures

Asieh Ghanbarpour1,2* and Hassan Abolhassani1

1
Computer Department, Sharif University of Technology, Tehran, Iran.

2
Sistan and Baluchestan University, Zahedan, Iran.

Accepted 13 August, 2012

With awareness of ontology capabilities in processing semantic web information, the number of
ontologies have been increasing over the past decade. However, there are still some difficulties in
working with ontologies having large sizes (that is having considerable amount of concepts and
relationships) resulting from high time and space complexity of the processing involved. To overcome
these problems, some researchers tend to use clustering and fragmentation techniques to partition the
ontologies into meaningful parts called sub-ontology. Such partitioning can be used to process sub-
ontologies locally and then combine those processing results to gain final results. In these manners,
the technique chosen for the partitioning is an effective factor in the quality of the final results. In this
paper we have proposed an efficient new structure-based method for partitioning an ontology to the
meaningful clusters. Although, this method can act completely automated, it also enables the user to
determine the number of final clusters in each level of granularity. The time-complexity of this method

is of 𝑶(𝒏𝟐) where n is number of concepts in the ontology.

Key words: Ontology partitioning, sub-ontology, closeness, cluster similarity.

INTRODUCTION

Converting the web to a network of data is the main goal
of semantic web. In this form of web, ontology has a
basic role and information are processed by employing
them. An ontology covers a specific domain of
information with organizing entities and relations between
them in a predefined schema. In semantic web world,
there exists ontologies with large number of entities that
bring many problems and challenges to web extenders
because of their complex and time consuming
processing. According to Sellami et al. (2008), clustering
and fragmentation approaches are optimization
techniques to work on these ontologies, because in many
cases it‟s better that ontologies are partitioned to small
dense parts and processing is performed on those parts.
Ontology partitioning can be used in applications such as
ontology alignment, ontology merging and ontology-
based text summarization (Zhang et al., 2007). For
example in the case of summarization, if the text ontology
is properly partitioned so that distinguished groups of
related sentences are located in different clusters, a

*Corresponding author. E-mail: ghanbarpour@ce.sharif.edu.

summary can be produced by extracting more important
sentences from each cluster and gathering them. This
summary will be produced quickly and it seems to be of
good quality.

One of the major applications of ontology partitioning is
in ontology alignment efforts. Because of heterogeneous
nature of web information, it is possible that two
ontologies are constructed on the same domain with
differences in entity descriptions or in the structure of the
ontologies. The aim of ontology alignment is finding a
near-optimal mapping between such ontologies. Solving
this problem is very complicated and time consuming,
especially for large ontologies. Using ontology
partitioning, alignment can be done in three steps: first,
each of the large ontologies is partitioned to sub-
ontologies; next, alignment is performed on the similar
sub-ontologies and finally all of gained results from sub-
ontologies alignment are combined. In such problems,
finding a proper set of partitions is very important and can
have a significant effect on the alignment quality.

Until now a few works have been performed on
ontology partitioning. Some of them just relied on locality
features of entities and some others considered the
syntactic and semantic features of entities. The work

5546 Int. J. Phys. Sci.

presented in this paper is an approach to logical
partitioning of an ontology that relies on the structural
features of the ontology.

In what follows, we first reviewed some related works,
we then introduced our approach and finally,
performance of proposed approach has been evaluated
and its results were compared with some comparable
approaches.

RELATED WORK

As earlier mentioned, the introduced approaches in this
area do partitioning in one of two ways: some of them
use modularization techniques and others use graph-
clustering techniques.

In a study by Kolli (2008), the graph representation for
clustering an ontology is traversed in a breadth-first
manner starting from the root and collected MB number
of nodes within a subset (2*MB is the total number of
nodes that can be held in main memory); Next, each
subset is expanded to covering its neighbors. The goal of
this approach is just dividing ontology to make further
processing on it practical.

In the study carried out by Hu et al. (2006), the
clustering done on the graph was constructed based on
dependencies caused by subclass hierarchy. In this
approach, a weight is assigned to each dependency by
using the linguistic and structural information of entities.

Let
𝑐𝑖 , 𝑐𝑗

 be two entities and

𝑐𝑖𝑗
 be the nearest common

superclass of them. |𝑑𝑒𝑝𝑡𝑂𝑓 𝑐𝑖 − 𝑑𝑒𝑝𝑡𝑂𝑓 𝑐𝑗 | ≤ 1 shows

the depth of entity 𝑑𝑒𝑝𝑡𝑂𝑓(𝑐𝑘) in an hierarchy. Structural

similarity between 𝑐𝑖 , 𝑐𝑗 such that

|𝑑𝑒𝑝𝑡𝑂𝑓 𝑐𝑖 − 𝑑𝑒𝑝𝑡𝑂𝑓 𝑐𝑗 | ≤ 1 is defined as follows:

𝑎𝑓𝑓𝑠 𝑐𝑖 , 𝑐𝑗 =
2 × 𝑑𝑒𝑝𝑡𝑂𝑓(𝑐𝑖𝑗)

𝑑𝑒𝑝𝑡𝑂𝑓 𝑐𝑖 + 𝑑𝑒𝑝𝑡𝑂𝑓(𝑐𝑗)

(1)

 (1)

Also linguistic similarity between
𝑐𝑖 , 𝑐𝑗

 that
𝑑𝑘

is the

description of entity

𝑐𝑘 is calculated according to (2).

𝑠𝑖𝑚 𝑐𝑖 , 𝑐𝑗 = 𝑐𝑜𝑚𝑚 𝑑𝑖 ,𝑑𝑗 − 𝑑𝑖𝑓𝑓 𝑑𝑖 ,𝑑𝑗 + 𝑤𝑖𝑛𝑘𝑙𝑒𝑟(𝑑𝑖 ,𝑑𝑗) (2)

 (2) (2)

With combining two gained similarity values, weight of the
link between two entities is gained by (3).

𝑎𝑓𝑓 𝑐𝑖 , 𝑐𝑗 = 𝛼. 𝑎𝑓𝑓𝑠 𝑐𝑖 , 𝑐𝑗 + 1 −𝛼 .𝑠𝑖𝑚(𝑐𝑖 , 𝑐𝑗)

(3)

 (3)

Where 𝛼 ∈ [0,1] After weighting links, the ROCK
algorithm is used (it is an agglomerative clustering
method) for graph partitioning. In final step each cluster is
expanded to a group of entities called block.

In the study carried out by Stuckenschmidt and Klein

(2004), it is shown that clustering is done based on this
assumption: “Dependencies between concepts can be
derived from the structure of the ontology”; so a
dependency graph is built by extracting dependencies
resulted by subclass hierarchy and dependencies
resulted by the domain and range restrictions on
properties. Next, a weight is assigned to each
dependency by using formula (4). These assignments are

repeated until all of the weights are fixed. Note that

𝑎𝑚𝑛
in the formula is the pre-assigned weight to the link

between 𝑐𝑖 and 𝑐𝑗

𝑝𝑖𝑗 =
𝑎𝑖𝑗 + 𝑎𝑗𝑖

 𝑎𝑖𝑘 + 𝑎𝑘𝑖𝑘

 (4)

 (4)

In partitioning step, this method uses a modularization
algorithm called „island‟: a set of nodes are located in a
line island if and only if they have formed a connected
sub-graph and the edges inside the island are stronger
than edges existing in the island.

Schlicht and Stuckenschmidt (2007) extended this
approach with the addition of two steps after producing
islands: merging (merge similar islands) and axiom
duplication (copy axioms in adjacent islands). These two
steps have improved results a little.

In the study carried out by Huang and Lai (2006), they
acted on edge-by-node matrix of ontology graph (also
called incidence matrix). Here, the similarity value
between two entities is partly determined by the number
of edges common between them. This value is calculated
by (5).

𝑠𝑖𝑚 𝑎, 𝑏 =
#(𝑎𝑖 = 𝑏𝑖 = 1)

#(𝑎𝑖 = 1) + # 𝑏𝑖 = 1 − #(𝑎𝑖 = 𝑏𝑖 = 1)
 (5)

 (5)

Where a𝑖 and b𝑖 are binary vectors of two entities and

#(ai = bi = 1) represent the number of edges occurring

in both a𝑖 and b𝑖. All of the existing expressions in (5) are
gained by multiplying related incidence matrixes in each
other.In cases where two entities do not have any
common edge, their similarity value is gained by
multiplying similarity values of pairs located on the
shortest path between them.

In partitioning step, this approach uses KNN (k nearest
neighbors) algorithm in which nodes with degrees higher
than (𝜇 + 𝜎) are considered as the initial clusters and

other nodes are assigned to theses clusters in some
steps iteratively. After assigning all of the nodes, clusters
with high similarity values are merged together.

The approach introduced by Cuenca et al. (2005) has
nstages in which n is the number of entities in the
ontology. In each stage a decision is made about one
entity and if it and its relations can be transfered to a
cluster or not; so in each stage, one entity might be
transferred to another cluster or might be left in the initial
cluster. This type of partitioning is also done in

polynomial time.

In addition to techniques used in the approaches earlier
presented by Kunjir and Pujari (2009), a review is done
on techniques to calculate clusters similarity on point sets
domain so that they can easily adopt such a technique for
calculating clusters similarity in ontology graphs.

PROPOSED APPROACH

Let us assume all of the ontologies used by this method are in the
form of RDF or OWL. Ontology in these forms are organized as a
DAG (Directed Acyclic Graph) with its nodes showing entities of
ontology and the edges between nodes are labeled based on the
types of relations between entities. Our goal of ontology partitioning
is dividing ontology into a set of clusters with related entities based
on graph structure. This algorithm is done in some phases as
discussed here after.

Build RDF sentence from RDF statements

In RDF (also RDFS and OWL) ontologies, there are special kinds of
nodes, called blank nodes (or bnodes), which are not identified by
URIs and have no meaning individually. A blank node is just used
as a connector to share the information of a group of nodes and
allows it to specify a meaning for them that cannot be obtained
without the blank node. It‟s obvious that such group of nodes must
be located in thesame partition. For this purpose, we appled RDF
Sentence concept, as defined in the research of Hu et al. (2008).

Definition 1. (RDF Sentence)[10] Let O be an ontology. An RDF
sentences is a set of RDF triples, which satisfies the following
conditions:

(1) 𝑠 ⊆ 𝑂;

(2) ∀𝑡𝑖 , 𝑡𝑗 ∈ 𝑠, 𝑖 ≠ 𝑗, 𝑡𝑖 , 𝑡𝑗 𝑠𝑎𝑟𝑒 𝑏𝑙𝑎𝑛𝑘 𝑛𝑜𝑑𝑒𝑠;

(3) ∀𝑡𝑖 ∈ 𝑠 , 𝑡𝑗 ∉ 𝑠, 𝑡𝑖 , 𝑡𝑗 𝑑𝑜𝑛′𝑡 𝑠𝑎𝑟𝑒 𝑏𝑙𝑎𝑛𝑘 𝑛𝑜𝑑𝑒𝑠.

RDF sentences provide more integrated syntactic and semantic
structures than RDF triples (that is statements), since they
encapsulate blank nodes; for this reason, in our algorithm, each
RDF sentence is considered as aninseparablenode in graph and all
of links to it are modified.

Construct inheritance graph

There are many build-in relations in ontologies in the form of RDF,
RDFS and OWL such as: “SubClassOf”, “SubPropertyOf”, ”Range”,
“Domain”, “Type” etc. Among these types, two types of them
are more important, ”SubClassOf” and “SubPropertyOf”. These two
relation types can solely specify the inheritance structure of the
ontology; thus we have constructed a graph based on initial
ontology graph with considering just its ”SubClassOf” and
“SubPropertyOf” relations and removing all of other types of
relations. This graph reflects the inheritance relations between
nodes, hence we named it inheritance graph.

Calculating the closeness of entities

Closeness is a value assigned to each edge of inheritance graph
and shows the amount of affinity between its nodes. We have

Ghanbarpour and Abolhassani 5547

defined closeness by (6).

𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 𝑒𝑖 ,𝑒𝑗 =
 𝑑𝑒𝑔 𝑒𝑖 − 𝑑𝑒𝑔 𝑒𝑗

𝑀𝑎𝑥 𝑑𝑒𝑔 𝑒𝑖 , 𝑑𝑒𝑔 𝑒𝑗
×

2𝑑𝑒𝑝𝑡(𝑒𝑖𝑗)

𝑑𝑒𝑝𝑡 𝑒𝑖 + 𝑑𝑒𝑝𝑡(𝑒𝑗)

 (6)

In the equation, 𝑑𝑒𝑝𝑡 𝑒𝑘 represents the depth of entity 𝑒𝑘 in

the inheritance graph and 𝑑𝑒𝑝𝑡(𝑒𝑖𝑗) represents the depth of

common superclass of 𝑒𝑖 and

 𝑒𝑗 . Also,

deg 𝑒𝑘
 for each entity

𝑒𝑘
 represents the corresponding node degree in ontology graph

and is gained by (7). Note that in order to reducing computation
complexity, the closeness value is just calculated for two entities
that their depth difference is lower than one.

 𝑑𝑒𝑔(𝑒𝑖) = 𝐼𝑛𝑑𝑒𝑔𝑟𝑒𝑒 𝑒𝑖 + 𝑂𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒(𝑒𝑖) (7)

𝐼𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑒𝑖)
 in (7) is the number of input edges to the node

related to

𝑒𝑖 and

𝑂𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒(𝑒𝑖)
 is the number of output

edges from this node.

Ontology partitioning

We have used three concepts in this section: “cohesion”,
“coupling”and “inter-connectivity”. “Cohesion” is a measure to
represent correlation among the cluster entities, “coupling” is a
measure to represent correlation between clusters and inter-
connectivity is a measure to select proper clusters to merge [Two
first concepts are firstly introduced by Karypis et al. (1999)].

Partitioning is done in two steps: initialize and merging. In the
initialize step, each entity is considered as a cluster, so the number
of the initial clusters will be equal to the number of the existing
entities in the ontology graph. The cohesion values of these clusters
are set to one that is highest amount of cohesion values,in such
case an entity is much related to itself. In addition to that, the
coupling values between each two initial clusters are set to the
closeness value of their entities. The coupling value of two
unconnected cluster is set to zero (that is, lowest amount of
couplings).

Merging phase is performed iteratively. In each iteration, the
similarity value between each pair of clusters is calculated and a
couple of them with the highest similarity are selected to merge. For
measuring the similarity between the clusters, we have defined

inter-connectivity

𝐼𝐶(𝐶𝑖 , 𝐶𝑗)
 concept as represented by (8). Suppose

𝐶𝑖 and

𝐶𝑗
 are two clusters and

𝑆𝑖𝑧𝑒(𝐶𝑘) represents the number

of existing entities in cluster

 𝐶𝑘 . The amount of inter-connectivity
between these two clusters is calculated as follows:

𝐼𝐶 𝐶𝑖 ,𝐶𝑗 =
2 × 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝐶𝑖 ,𝐶𝑗

𝐶𝑜𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑖 + 𝐶𝑜𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑗
×

1

 𝑆𝑖𝑧𝑒 𝐶𝑖 × 𝑆𝑖𝑧𝑒(𝐶𝑗)

 (8)

As it is obvious, the inter-connectivity value between two clusters
has a reverse relation with their sizes; it shows that two clusters
with a large number of entities have fewer tendencies to combine. It
also has a reverse relation with the amount of clusters cohesion
that shows the clusters with high dense entities do not have more
tendencies to combine and to accept new members.
After selecting two clusters with highest inter-connectivity value,
they are checked to oversize problem in which if the sum of their
size be less than δ (Maximum size of a cluster), they will merge and
if not two another clusters must be found to merge.

5548 Int. J. Phys. Sci.

For merging two clusters, all of their entities are located in the
same cluster and the cohesion value of new cluster is set to the
same coupling value between them before merging. In addition, the
coupling values of new cluster with other clusters are modified
according to (9).

 𝐶𝑜𝑢𝑝𝑙𝑖𝑔 𝐶𝑖 ,𝐶𝑗 = 𝑤𝑒𝑖𝑔𝑡(𝑙𝑖)

𝑙𝑖∈𝑆

 (9)

In (9) S is a set containing all of the edges connecting two clusters.
To exemplify, consider the graph depicted in “Figure 1”. In this

graph, the value of inter-connectivity between two cluster

𝐶𝑖 and

𝐶𝑗

is calculated as follows:

𝐼𝐶 𝐶𝑖 ,𝐶𝑗 =
2 × (𝑎 + 𝑏)

𝐶𝑜𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑖 + 𝐶𝑜𝑒𝑠𝑠𝑖𝑜𝑛(𝐶𝑗)
×

1

 4 × 5

 (10)

If these two clusters satisfy merge condition, the cohesion value of

new cluster will be set to (a+b) and the coupling value between

 𝐶𝑘
and new cluster will be set to (n+m).

Merging clusters continues until the number of the clusters
reaches to k (the predefined number of clusters) or algorithm
cannot proceed any further because none of the clusters can be
merged. At this point, as a post processing, if k has not been
defined by user, all clusters with one member are grouped with the
clusters whose sizes do not exceed δ.

Performance analysis

All of the operations in this algorithm were performed with an
inheritance graph. If this graph has nnodes number, its edges is

from

𝑂(𝑛) , since the inheritance relations are not circular.
Therefore, the degree and depth of each node can be calculated in

𝑂(𝑛) .
In the initial step of partitioning, it is noted that just initial clusters by
one node are constructed, cohesion value of each cluster is set to
1, behind it, the coupling and inter-connectivity values between

clusters are calculated in

𝑂(𝑛) because as we stated earlier just

𝑂(𝑛) edges exist in the initial graph that each edge could define a
non zero inter-connectivity value between two clusters.

In merging step of partitioning and in each iterate, an amount of
work is required. First, a pair of clusters with the highest inter-

connectivity value is selected in

𝑂(𝑛) , next in the state of satisfying

merge conditions, these two clusters are merged at most in

𝑂(𝑛)
and then the inter-connectivity values between the new cluster and
the other clusters are modified, this modification can be done at

most in

𝑂(𝑛) since each cluster has at most (n-1) neighbors. With
regard to the above explanations, each iteration of this phase needs

𝑂(𝑛) to run.
On the other hand, since the number of initial clusters at the

beginning of second phase is n and in the worst case (n-1) clusters
must be merged. In the merging phase the worst case is

from

𝑂(𝑛2) ; which is also the overall computational complexityof
our approach.

EXPERIMENTAL RESULTS

In this section, some experimental evaluations of

proposed approach are presented. All of the tests are
carried out on an Intel Core 2 Duo 2.26 GHz laptop
machine with 4 GB DDR2 memory under Windows vista
business operating system and Java 1.6 compiler.

NCI ontology

NCI ontology is a relatively large OWL ontology
containing about 26000 concepts. Most of the
approaches in ontology partitioning discussion uses NCI
ontology to evaluate efficiency of their approach by
analyzing its produced clusters. We have also evaluated
our approach by employing it. Prior to presenting
theexperimental results, it is helpful to label the partitions
by representative entities to assist in the evaluation. In
ontology summarization field, based on reported results
from researches carried out by Zhang et al. (2007) and
Mihalcea (2004) the use of degree centrality is a simple
and efficient way to find important nodes. In our work,we
have also assumed a node with highest degree has more
centrality among its cluster nodes and can be more
indicative of the cluster for human observation and
understanding. Summarized information of partitioned
NCI ontology by setting parameter δ (Maximum size of
each cluster) to 300 is shown in Table 1. In addition,
details of produced partitions are shown in Table 2. The
name of partitions in this table indicates that the distinct
parts of the body have been grouped into distinct
partitions so that such logical partitioning can help us
meet our goal.

Figure 2 shows generated network (partitions and their
relations) visualized by Batagelj and Mrvar (2003). In this
network, each partition is displayed as a vertex with each
size corresponding to the number of cluster entities.
Among the produced partitions, some of them have more
internal dependencies. To measure this factor we have
defined a measure called “density”. For each cluster, the
density value shows the average value of the closeness
values determined between cluster entities. This value is
calculated by (11):

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑐𝑖 =
 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠(𝑒𝑖 , 𝑒𝑗)𝑒𝑖 ,𝑒𝑗∈𝑐𝑖

2 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑐𝑖

 (11)

The diagrams of inter density of clusters based on their
sizes in two cases are shown in “Figure 3”. As reflected
inthe diagram, densities of all partitions are in their logical
levels. Note that the cluster with density zero is the
cluster that consists of a combination of eight clusters
with one member, so none of its entities has relations
with others.

Presented results on NCI ontology has been compared
by Pato and partitioning approach introduced by Kunjir et
al. (2009). Pato (explained in earlier sections) uses a
parameter to determine lowest number of entities in a
module. This parameter is set to 4 in our experiments.

Ghanbarpour and Abolhassani 5549

b n

m

a

Ci

Cj

Ck

Figure 1. A graph with its partial partitions.

Table 1. Summarized information of partitioned NCI ontology.

#Entities #Real links #Used links #Partitions Max part Runtime (min)

3306 53170 3761 19 299 3

Table 2. Generated partitions for NCI ontology.

Organ 289 Vein 128

Normal_Tissue 299 Heart_part 37

Gastrointestinal_part 278 Head_and_Neck_part 86

Body_Part 296 Ear_part 66

Brain_part 290 Mature_B_Lymphocyte 88

Muscle 266 Anterior_Supratentorial 30

Body_Fluid_or_Substance 289 Hepatic_Tissue 8

Artery 244 Intrahepatic_Bile_Duct 14

Other_Anatomic_Concept 295 SumCluster 8

Glandular_Cell 295

Second approach is the partitioning method used in PBM
that is one of the best ontology matching approaches. It
has a parameter for determining most number of entities
in a module; this parameter is set to 300 in the
experiment. Comparison of results of partitioning NCI
ontology by these three approaches is shown in Table 3.

AGROVOC ontology

AGROVOC is one of the thesauri of food task that was
used in OAEI 2007 as a big task to evaluate approaches
efficiency. This task was created by “Food and
Agriculture Organization of the United Nations”.

5550 Int. J. Phys. Sci.

Figure 2. Module graph of the NCI ontology.

Figure 3. Sizes and densities of partitions of NCI ontology.

Table 3. Comparision of partitining approaches on NCI.

Module Pato PBM Proposed approach

Number of modules 41 150 19

Smallest module 4 2 8

Largest module 268 151 299

Mean of modules size 56 21.77 174

Ghanbarpour and Abolhassani 5551

Figure 4. Sizes and densities of partitions of AGROVOC.

AGROVOC owns 1452347 concepts, 28,439 of them are
classes with 625008 links among them. In the inheritance
graph of this ontology just 28403 of links are considered.
By selecting δ=500 for partitioning, 445 clusters are
realized that their information have been shown in “Figure
4”. Based on the diagram, the density values of produced
clusters is about 0.8 that it shows the conceptual
closeness of entities in each cluster. Mean size of
partitions in this partitioning is 65 which seems
acceptable.

Conclusion

Partitioning ontologies is usually applicable for dividing
large ontologies and acting on sub-ontologies to increase
the performance of algorithms‟ execution time or even for
making processing on such ontologies practical. Thus,
partitioning algorithms must run as fast as possible. In
this paper we proposed a structural-based ontology

partitioning approach with

𝑂(𝑛2) time-complexity. This
approach is completely automated and one of its
advantages is its ability to produce a predefined number
of partitions. In other words, it can produce clusters in
each level of granularity which is beneficial in some
cases. Evaluation results of the approach shows that it
can produce meaningful clusters with relatively balanced
sizes.

REFERENCES

Batagelj V, Mrvar A (2003). Pajek Analysis and Visualization of Large

Networks. Graph Drawing Software Book, Springer. pp. 77-103.

Cuenca Grau B, Parsia B, Sirin E, Kalyanpur A (2005). Automatic
Partitioning of OWL Ontologies Using E-Connections. International
Workshop on Description Logics.

Hu W, Qu Y, Cheng G (2008). Matching large Ontologies:A divide-and-
conqure approach. Data Knowl. Eng. 67(1):140-160.

Hu W, Zhao Y, Qu Y(2006). Partition-based block matching of large
class hierarchies.In Asian Semantic Web Conference,pp72-83.

Huang X, Lai W(2006). Clustering graphs for visualization via node
similarities. J. Vis. Lang. Comput. 17(3):225-253.

Karypis G, Han E, Kumar V (1999). CHAMELEON: A Hierarchical
Clustering Algorithm Using Modeling. IEEE Comput. 32(8):68-75.

Kolli R (2008). Scalable Matching Of Ontology Graphs Using
Partitioning. M.S. Thesis, University of Georgia.

Kunjir MP, Pujari MD (2009). Project Report on Effective and Efficient
computation of Cluster Similarity. M.S. Thesis, Indian Institute of
Science, Bangalore.

Mihalcea R (2004). Graph-based Ranking Algorithms for Sentence
Extraction, Applied to Text Summarization, ACL. 20.

Schlicht A, Stuckenschmidt H (2007). Criteria-Based Partitioning of
Large Ontologies. In Proceedings of the 4th international conference
on Knowledge capture (KCAP), ACM press. pp. 171-172.

Sellami S, Benharkat A, Amghar Y, Rifaieh R (2008). Study of
Challenges and Techniques in Large Scale Matching. In Proceedings
of the 10th International Conference on Enterprise Information
Systems, Barcelona, Spain. pp. 355-361.

Stuckenschmidt H, Klein M (2004). Structure-Based Partitioning of
Large Concept Hierarchies.In Proceedings of the 3th International
Semantic Web Conference, Hiroshima, Japan.

Zhang X, Cheng G, Qu Y (2007). Ontology summarization based on rdf
sentence graph. In Proceedings of the 16th InternationalConference
on World Wide Web, New York, NY, USA. ACM press. pp. 707-716.

http://data.semanticweb.org/person/xiang-zhang
http://data.semanticweb.org/person/gong-cheng
http://data.semanticweb.org/person/yuzhong-qu

