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With awareness of ontology capabilities in processing semantic web information, the number of 
ontologies have been increasing over the past decade. However, there are still some difficulties in 
working with ontologies having large sizes (that is having considerable amount of concepts and 
relationships) resulting from high time and space complexity of the processing involved. To overcome 
these problems, some researchers tend to use clustering and fragmentation techniques to partition the 
ontologies into meaningful parts called sub-ontology. Such partitioning can be used to process sub-
ontologies locally and then combine those processing results to gain final results. In these manners, 
the technique chosen for the partitioning is an effective factor in the quality of the final results. In this 
paper we have proposed an efficient new structure-based method for partitioning an ontology to the 
meaningful clusters. Although, this method can act completely automated, it also enables the user to 
determine the number of final clusters in each level of granularity. The time-complexity of this method 

is of 𝑶(𝒏𝟐)  where n is number of concepts in the ontology. 
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INTRODUCTION 
 
Converting the web to a network of data is the main goal 
of semantic web. In this form of web, ontology has a 
basic role and information are processed by employing 
them. An ontology covers a specific domain of 
information with organizing entities and relations between 
them in a predefined schema. In semantic web world, 
there exists ontologies with large number of entities that 
bring many problems and challenges to web extenders 
because of their complex and time consuming 
processing. According to Sellami et al. (2008), clustering 
and fragmentation approaches are optimization 
techniques to work on these ontologies, because in many 
cases it‟s better that ontologies are partitioned to small 
dense parts and processing is performed on those parts. 
Ontology partitioning can be used in applications such as 
ontology alignment, ontology merging and ontology-
based text summarization (Zhang et al., 2007). For 
example in the case of summarization, if the text ontology 
is properly partitioned so that distinguished groups of 
related   sentences   are   located  in  different  clusters, a 
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summary can be produced by extracting more important 
sentences from each cluster and gathering them. This 
summary will be produced quickly and it seems to be of 
good quality. 

One of the major applications of ontology partitioning is 
in ontology alignment efforts. Because of heterogeneous 
nature of web information, it is possible that two 
ontologies are constructed on the same domain with 
differences in entity descriptions or in the structure of the 
ontologies. The aim of ontology alignment is finding a 
near-optimal mapping between such ontologies. Solving 
this problem is very complicated and time consuming, 
especially for large ontologies. Using ontology 
partitioning, alignment can be done in three steps: first, 
each of the large ontologies is partitioned to sub-
ontologies; next, alignment is performed on the similar 
sub-ontologies and finally all of gained results from sub-
ontologies alignment are combined. In such problems, 
finding a proper set of partitions is very important and can 
have a significant effect on the alignment quality.  

Until now a few works have been performed on 
ontology partitioning. Some of them just relied on locality 
features of entities and some others considered the 
syntactic  and  semantic  features  of  entities.  The   work  
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presented in this paper is an approach to logical 
partitioning of an ontology that relies on the structural 
features of the ontology.  

In what follows, we first reviewed some related works, 
we then introduced our approach and finally, 
performance of proposed approach has been evaluated 
and its results were compared with some comparable 
approaches. 
 
 
RELATED WORK 
 
As earlier mentioned, the introduced approaches in this 
area do partitioning in one of two ways: some of them 
use modularization techniques and others use graph-
clustering techniques. 

In a study by Kolli (2008), the graph representation for 
clustering an ontology is traversed in a breadth-first 
manner starting from the root and collected MB number 
of nodes within a subset (2*MB is the total number of 
nodes that can be held in main memory); Next, each 
subset is expanded to covering its neighbors. The goal of 
this approach is just dividing ontology to make further 
processing on it practical. 

In the study carried out by Hu et al. (2006), the 
clustering done on the graph was constructed based on 
dependencies caused by subclass hierarchy. In this 
approach, a weight is assigned to each dependency by 
using the linguistic and structural information of entities. 

Let 
𝑐𝑖 , 𝑐𝑗  

 be two entities and 

 

 

𝑐𝑖𝑗  
 be the nearest common 

superclass of them. |𝑑𝑒𝑝𝑡𝑂𝑓 𝑐𝑖 − 𝑑𝑒𝑝𝑡𝑂𝑓 𝑐𝑗  | ≤ 1  shows 

the depth of entity 𝑑𝑒𝑝𝑡𝑂𝑓(𝑐𝑘)  in an hierarchy. Structural 

similarity between 𝑐𝑖 , 𝑐𝑗   such that 
 

 

|𝑑𝑒𝑝𝑡𝑂𝑓 𝑐𝑖 − 𝑑𝑒𝑝𝑡𝑂𝑓 𝑐𝑗  | ≤ 1  is defined as follows: 

 
 

 

𝑎𝑓𝑓𝑠 𝑐𝑖 , 𝑐𝑗  =
2 × 𝑑𝑒𝑝𝑡𝑂𝑓(𝑐𝑖𝑗 )

𝑑𝑒𝑝𝑡𝑂𝑓 𝑐𝑖 + 𝑑𝑒𝑝𝑡𝑂𝑓(𝑐𝑗 )
 

(1)           

 

                            (1)           
 

Also linguistic similarity between 
𝑐𝑖 , 𝑐𝑗  

 that 
𝑑𝑘  

is the 

description of entity 

 

𝑐𝑘   is calculated according to (2). 
  

𝑠𝑖𝑚 𝑐𝑖 , 𝑐𝑗  = 𝑐𝑜𝑚𝑚 𝑑𝑖 ,𝑑𝑗  − 𝑑𝑖𝑓𝑓 𝑑𝑖 ,𝑑𝑗  + 𝑤𝑖𝑛𝑘𝑙𝑒𝑟(𝑑𝑖 ,𝑑𝑗 ) (2) 

 

      (2)   (2) 
 
With combining two gained similarity values, weight of the 
link between two entities is gained by (3). 
  

𝑎𝑓𝑓 𝑐𝑖 , 𝑐𝑗  = 𝛼. 𝑎𝑓𝑓𝑠 𝑐𝑖 , 𝑐𝑗  +  1 −𝛼 .𝑠𝑖𝑚(𝑐𝑖 , 𝑐𝑗 ) 

 

(3)           

 

                   (3)           
 

Where 𝛼 ∈ [0,1]  After weighting links, the ROCK 
algorithm is used (it is an agglomerative clustering 
method) for graph partitioning. In final step each cluster is 
expanded to a group of entities called block. 

In  the  study  carried  out by Stuckenschmidt and Klein  

 
 
 
 
(2004), it is shown that clustering is done based on this 
assumption: “Dependencies between concepts can be 
derived from the structure of the ontology”; so a 
dependency graph is built by extracting dependencies 
resulted by subclass hierarchy and dependencies 
resulted by the domain and range restrictions on 
properties. Next, a weight is assigned to each 
dependency by using formula (4). These assignments are 

repeated until all of the weights are fixed. Note that 

 

𝑎𝑚𝑛   
in the formula is the pre-assigned weight to the link 

between 𝑐𝑖   and  𝑐𝑗   
 

𝑝𝑖𝑗 =
𝑎𝑖𝑗 + 𝑎𝑗𝑖

 𝑎𝑖𝑘 + 𝑎𝑘𝑖𝑘
 

 (4)           

 

                                                             (4)           
 
In partitioning step, this method uses a modularization 
algorithm called „island‟: a set of nodes are located in a 
line island if and only if they have formed a connected 
sub-graph and the edges inside the island are stronger 
than edges existing  in the island. 

Schlicht and Stuckenschmidt (2007) extended this 
approach with the addition of two steps after producing 
islands: merging (merge similar islands) and axiom 
duplication (copy axioms in adjacent islands). These two 
steps have improved results a little. 

In the study carried out by Huang and Lai  (2006), they 
acted on edge-by-node matrix of ontology graph (also 
called incidence matrix). Here, the similarity value 
between two entities is partly determined by the number 
of edges common between them. This value is calculated 
by (5). 
 

 

 

𝑠𝑖𝑚 𝑎, 𝑏 =
#(𝑎𝑖 = 𝑏𝑖 = 1)

#(𝑎𝑖 = 1) + # 𝑏𝑖 = 1 − #(𝑎𝑖 = 𝑏𝑖 = 1)
 (5) 

 

                       (5) 
 

Where a𝑖 and b𝑖 are binary vectors of two entities and 
 

 

#(ai = bi = 1)  represent the number of edges occurring 

in both a𝑖 and b𝑖. All of the existing expressions in (5) are 
gained by multiplying related incidence matrixes in each 
other.In cases where two entities do not have any 
common edge, their similarity value is gained by 
multiplying similarity values of pairs located on the 
shortest path between them.  

In partitioning step, this approach uses KNN (k nearest 
neighbors) algorithm in which nodes with degrees higher 
than (𝜇 + 𝜎 ) are considered as the initial clusters and 

other nodes are assigned to theses clusters in some 
steps iteratively. After assigning all of the nodes, clusters 
with high similarity values are merged together. 

The approach introduced by Cuenca et al. (2005) has 
nstages in which n is the number of entities in the 
ontology. In each stage a decision is made about one 
entity and if it and its relations can be transfered to a 
cluster or not; so in each stage, one entity might be 
transferred to another cluster or might be left in the initial 
cluster.  This   type    of    partitioning    is   also   done   in  



 
 
 
 
polynomial time. 

In addition to techniques used in the approaches earlier 
presented by Kunjir and Pujari (2009), a review is done 
on techniques to calculate clusters similarity on point sets 
domain so that they can easily adopt such a technique for 
calculating clusters similarity in ontology graphs. 
 
 
PROPOSED APPROACH 
 
Let us assume all of the ontologies used by this method are in the 
form of RDF or OWL. Ontology in these forms are organized as a 
DAG (Directed Acyclic Graph) with its nodes showing entities of 
ontology and the edges between nodes are labeled based on the 
types of relations between entities. Our goal of ontology partitioning 
is dividing ontology into a set of clusters with related entities based 
on graph structure. This algorithm is done in some phases as 
discussed here after. 
 
 
Build RDF sentence from RDF statements 
 
In RDF (also RDFS and OWL) ontologies, there are special kinds of 
nodes, called blank nodes (or bnodes), which are not identified by 
URIs and have no meaning individually. A blank node is just used 
as a connector to share the information of a group of nodes and 
allows it to specify a meaning for them that cannot be obtained 
without the blank node. It‟s obvious that such group of nodes must 
be located in thesame partition. For this purpose, we appled RDF 
Sentence concept, as defined in the research of Hu et al. (2008).  
 
 
Definition 1. (RDF Sentence)[10] Let O be an ontology. An RDF 
sentences is a set of RDF triples, which satisfies the following 
conditions: 
 

(1) 𝑠 ⊆ 𝑂;  

(2)  ∀𝑡𝑖 , 𝑡𝑗 ∈ 𝑠, 𝑖 ≠ 𝑗, 𝑡𝑖 , 𝑡𝑗  𝑠𝑎𝑟𝑒 𝑏𝑙𝑎𝑛𝑘 𝑛𝑜𝑑𝑒𝑠;  

(3) ∀𝑡𝑖 ∈ 𝑠 , 𝑡𝑗 ∉ 𝑠, 𝑡𝑖 , 𝑡𝑗  𝑑𝑜𝑛′𝑡 𝑠𝑎𝑟𝑒 𝑏𝑙𝑎𝑛𝑘 𝑛𝑜𝑑𝑒𝑠.  
 
RDF sentences provide more integrated syntactic and semantic 
structures than RDF triples (that is statements), since they 
encapsulate blank nodes; for this reason, in our algorithm, each 
RDF sentence is considered as aninseparablenode in graph and all 
of links to it are modified. 
 
 
Construct inheritance graph 
 
There are many build-in relations in ontologies in the form of RDF, 
RDFS and OWL such as: “SubClassOf”, “SubPropertyOf”, ”Range”, 
“Domain”, “Type” etc. Among these   types,   two   types   of  them  
are more important, ”SubClassOf” and “SubPropertyOf”. These two 
relation types can solely specify the inheritance structure of the 
ontology; thus we have constructed a graph based on initial 
ontology graph with considering just its ”SubClassOf” and 
“SubPropertyOf” relations and  removing all of other types of 
relations. This graph reflects  the inheritance relations between 
nodes, hence we named it inheritance graph. 
 
 
Calculating the closeness of entities 
 
Closeness is a value assigned to each edge of inheritance graph 
and  shows  the  amount  of  affinity  between  its  nodes.  We  have  
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defined closeness by (6).  
  

𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 𝑒𝑖 ,𝑒𝑗  =
 𝑑𝑒𝑔 𝑒𝑖 − 𝑑𝑒𝑔 𝑒𝑗   

𝑀𝑎𝑥 𝑑𝑒𝑔 𝑒𝑖 , 𝑑𝑒𝑔 𝑒𝑗   
× 

2𝑑𝑒𝑝𝑡(𝑒𝑖𝑗 )

𝑑𝑒𝑝𝑡 𝑒𝑖 + 𝑑𝑒𝑝𝑡(𝑒𝑗 )
 

 

         (6) 
 

In the equation, 𝑑𝑒𝑝𝑡 𝑒𝑘   represents the depth of entity 𝑒𝑘   in 

the inheritance graph and 𝑑𝑒𝑝𝑡(𝑒𝑖𝑗 )  represents the depth of 

common superclass of 𝑒𝑖  and 

 

 

 𝑒𝑗  . Also,  

 

 

deg 𝑒𝑘  
 for each entity 

 

 

𝑒𝑘  
 represents the corresponding node degree in ontology graph 

and is gained by (7). Note that in order to reducing computation 
complexity, the closeness value is just calculated for two entities 
that their depth difference is lower than one.  
 

 

           𝑑𝑒𝑔(𝑒𝑖) = 𝐼𝑛𝑑𝑒𝑔𝑟𝑒𝑒 𝑒𝑖 + 𝑂𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒(𝑒𝑖)                                  (7) 

 

 

 

𝐼𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑒𝑖) 
 in (7) is the number of input edges to the node 

related to 

 

 

𝑒𝑖   and 

 

 

𝑂𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒(𝑒𝑖) 
 is the number of output 

edges from this node. 
 
 
Ontology partitioning 
 
We have used three concepts in this section: “cohesion”, 
“coupling”and “inter-connectivity”. “Cohesion” is a measure to 
represent correlation among the cluster entities, “coupling” is a 
measure to represent correlation between clusters and inter-
connectivity is a measure to select proper clusters to merge [Two 
first concepts are firstly introduced by Karypis et al. (1999)]. 

Partitioning is done in two steps: initialize and merging. In the 
initialize step, each entity is considered as a cluster, so the number 
of the initial clusters will be equal to the number of the existing 
entities in the ontology graph. The cohesion values of these clusters 
are set to one that is highest amount of cohesion values,in such 
case an entity is much related to itself. In addition to that, the 
coupling values between each two initial clusters are set to the 
closeness value of their entities. The coupling value of two 
unconnected cluster is set to zero (that is, lowest amount of 
couplings). 

Merging phase is performed iteratively. In each iteration, the 
similarity value between each pair of clusters is calculated and a 
couple of them with the highest similarity are selected to merge. For 
measuring the similarity between the clusters, we have defined 

inter-connectivity 

 

 

𝐼𝐶(𝐶𝑖 , 𝐶𝑗 ) 
 concept as represented by (8). Suppose 

 

 

𝐶𝑖   and 

 

 

𝐶𝑗  
 are two clusters and 

 

 

𝑆𝑖𝑧𝑒(𝐶𝑘)  represents the number 

of existing entities in cluster 

 

 𝐶𝑘  . The amount of inter-connectivity 
between these two clusters is calculated as follows: 
 

 

 

𝐼𝐶 𝐶𝑖 ,𝐶𝑗  =
2 × 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝐶𝑖 ,𝐶𝑗  

𝐶𝑜𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑖 + 𝐶𝑜𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑗  
×

1

 𝑆𝑖𝑧𝑒 𝐶𝑖 × 𝑆𝑖𝑧𝑒(𝐶𝑗 )
 
             (8) 

 
As it is obvious, the inter-connectivity value between two clusters 
has a reverse relation with their sizes; it shows that two clusters 
with a large number of entities have fewer tendencies to combine. It 
also has a reverse relation with the amount of clusters cohesion 
that shows the clusters with high dense entities do not have  more 
tendencies to combine and to accept new members.  
After selecting two clusters with highest inter-connectivity value, 
they are checked to oversize problem in which if the sum of their 
size be less than δ (Maximum size of a cluster), they will merge and 
if not two another clusters must be found to merge. 
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For merging two clusters, all of their entities are located in the 
same cluster and the cohesion value of new cluster is set to the 
same coupling value between them before merging. In addition, the 
coupling values of new cluster with other clusters are modified 
according to (9).  

 

 

 

            𝐶𝑜𝑢𝑝𝑙𝑖𝑔 𝐶𝑖 ,𝐶𝑗  =  𝑤𝑒𝑖𝑔𝑡(𝑙𝑖)

𝑙𝑖∈𝑆

 
                                                       (9) 

 
In (9) S is a set containing all of the edges connecting two clusters. 
To exemplify, consider the graph depicted in “Figure 1”. In this 

graph, the value of inter-connectivity between two cluster 

 

 

𝐶𝑖   and 

 

 

𝐶𝑗  
 

is calculated as follows: 
 

 

 

𝐼𝐶 𝐶𝑖 ,𝐶𝑗  =
2 × (𝑎 + 𝑏)

𝐶𝑜𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑖 + 𝐶𝑜𝑒𝑠𝑠𝑖𝑜𝑛(𝐶𝑗 )
×

1

 4 × 5
 
                (10) 

 
If these two clusters satisfy merge condition, the cohesion value of 

new cluster will be set to (a+b) and the coupling value between 

 

 𝐶𝑘   
and new cluster will be set to (n+m). 

Merging clusters continues until the number of the clusters 
reaches to k (the predefined number of clusters) or algorithm 
cannot proceed any further because none of the clusters can be 
merged. At this point, as a post processing, if k has not been 
defined by user, all clusters with one member are grouped with the 
clusters whose sizes do not exceed δ. 

 
 
Performance analysis 

 
All of the operations in this algorithm were performed with an 
inheritance graph. If this graph has nnodes number, its edges is 

from 

 

 

𝑂(𝑛) , since the inheritance relations are not circular. 
Therefore, the degree and depth of each node can be calculated in 

 

 

𝑂(𝑛) .  
In the initial step of partitioning, it is noted that just initial clusters by 
one node are constructed, cohesion value of each cluster is set to 
1, behind it, the coupling and inter-connectivity values between 

clusters are calculated in 

 

 

𝑂(𝑛)  because as we stated earlier just 

 

 

𝑂(𝑛)  edges exist in the initial graph that each edge could define a 
non zero inter-connectivity value between two clusters. 

In merging step of partitioning and in each iterate, an amount of 
work is required. First, a pair of clusters with the highest inter-

connectivity value is selected in 

 

 

𝑂(𝑛) , next in the state of satisfying 

merge conditions, these two clusters are merged at most in 

 

 

𝑂(𝑛)  
and then the inter-connectivity values between the new cluster and 
the other clusters are modified, this modification can be done at 

most in 

 

 

𝑂(𝑛)  since each cluster has at most (n-1) neighbors. With 
regard to the above explanations, each iteration of this phase needs 

 

 

𝑂(𝑛)  to run.  
On the other hand, since the number of initial clusters at the 

beginning of second phase is n and in the worst case (n-1) clusters 
must be merged. In the merging phase the worst case is 

from

 

 

𝑂(𝑛2) ; which is also the overall computational complexityof 
our approach. 
 
 
EXPERIMENTAL RESULTS 
 
In   this   section,   some   experimental    evaluations    of  

 
 
 
 
proposed approach are presented. All of the tests are 
carried out on an Intel Core 2 Duo 2.26 GHz laptop 
machine with 4 GB DDR2 memory under Windows vista 
business operating system and Java 1.6 compiler. 

 
 
NCI ontology 

 
NCI ontology is a relatively large OWL ontology 
containing about 26000 concepts. Most of the 
approaches in ontology partitioning discussion uses NCI 
ontology to evaluate efficiency of their approach by 
analyzing its produced clusters. We have also evaluated 
our approach by employing it. Prior to presenting 
theexperimental results, it is helpful to label the partitions 
by representative entities to assist in the evaluation. In 
ontology summarization field, based on reported results 
from researches carried out by Zhang et al. (2007) and 
Mihalcea (2004)  the use of degree centrality is a simple 
and efficient way to find important nodes. In our work,we 
have also assumed a node with highest degree has more 
centrality among its cluster nodes and can be more 
indicative of the cluster for human observation and 
understanding. Summarized information of partitioned 
NCI ontology by setting parameter δ (Maximum size of 
each cluster) to 300 is shown in Table 1. In addition, 
details of produced partitions are shown in Table 2. The 
name of partitions in this table indicates that the distinct 
parts of the body have been grouped into distinct 
partitions so that such logical partitioning can help us 
meet our goal. 

Figure 2 shows generated network (partitions and their 
relations) visualized by Batagelj and Mrvar (2003). In this 
network, each partition is displayed as a vertex with each 
size corresponding to the number of cluster entities. 
Among the produced partitions, some of them have more 
internal dependencies. To measure this factor we have 
defined a measure called “density”. For each cluster, the 
density value shows the average value of the closeness 
values determined between cluster entities. This value is 
calculated by (11): 
 

 

 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑐𝑖 =
 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠(𝑒𝑖 , 𝑒𝑗 )𝑒𝑖 ,𝑒𝑗∈𝑐𝑖

2 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑐𝑖
 
                        (11) 

 

The diagrams of inter density of clusters based on their 
sizes in two cases are shown in “Figure 3”. As reflected 
inthe diagram, densities of all partitions are in their logical 
levels. Note that the cluster with density zero is the 
cluster that consists of a combination of eight clusters 
with one member, so none of its entities has relations 
with others. 

Presented results on NCI ontology has been compared 
by Pato and partitioning approach introduced by Kunjir et 
al. (2009). Pato (explained in earlier sections) uses a 
parameter to determine lowest number of entities in a 
module.  This parameter  is  set  to 4  in our experiments.  
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Figure 1. A graph with its partial partitions. 

 
 
 

Table 1. Summarized information of partitioned NCI ontology. 
 

#Entities #Real links #Used links #Partitions Max part Runtime (min) 

3306 53170 3761 19 299 3 
 
 
 

Table 2. Generated partitions for NCI ontology. 
 

Organ 289  Vein 128 

Normal_Tissue 299  Heart_part 37 

Gastrointestinal_part 278  Head_and_Neck_part 86 

Body_Part 296  Ear_part 66 

Brain_part 290  Mature_B_Lymphocyte 88 

Muscle 266  Anterior_Supratentorial 30 

Body_Fluid_or_Substance 289  Hepatic_Tissue 8 

Artery 244  Intrahepatic_Bile_Duct 14 

Other_Anatomic_Concept 295  SumCluster 8 

Glandular_Cell 295    
 
 
 

Second approach is the partitioning method used in PBM 
that is one of the best ontology matching approaches. It 
has a parameter for determining most number of entities 
in a module; this parameter is set to 300 in the 
experiment. Comparison of results of partitioning NCI 
ontology by these three approaches is shown in Table 3.  

AGROVOC ontology 
 
AGROVOC is one of the thesauri of food task that was 
used in OAEI 2007 as a big task to evaluate approaches 
efficiency. This task was created by “Food and 
Agriculture Organization of the United Nations”. 
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Figure 2. Module graph of the NCI ontology. 

 
 
 

 
 

Figure 3. Sizes and densities of partitions of NCI ontology. 

 
 
 

Table 3. Comparision of partitining approaches on NCI. 
 

Module Pato PBM Proposed approach 

Number of modules 41 150 19 

Smallest module 4 2 8 

Largest module 268 151 299 

Mean of modules size 56 21.77 174 
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Figure 4. Sizes and densities of partitions of AGROVOC. 

 
 
 
AGROVOC owns 1452347 concepts, 28,439 of them are 
classes with 625008 links among them. In the inheritance 
graph of this ontology just 28403 of links are considered. 
By selecting δ=500 for partitioning, 445 clusters are 
realized that their information have been shown in “Figure 
4”. Based on the diagram, the density values of produced 
clusters is about 0.8 that it shows the conceptual 
closeness of entities in each cluster. Mean size of 
partitions in this partitioning is 65 which seems 
acceptable. 

 
 
Conclusion 
 
Partitioning ontologies is usually applicable for dividing 
large ontologies and acting on sub-ontologies to increase 
the performance of algorithms‟ execution time or even for 
making processing on such ontologies practical. Thus, 
partitioning algorithms must run as fast as possible. In 
this paper we proposed a structural-based ontology 

partitioning approach with 

 

 

𝑂(𝑛2)  time-complexity. This 
approach is completely automated and one of its 
advantages is its ability to produce a predefined number 
of partitions. In other words, it can produce clusters in 
each level of granularity which is beneficial in some 
cases. Evaluation results of the approach shows that it 
can produce meaningful clusters with relatively balanced 
sizes. 
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