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The modified orthogonal matching pursuit (OMP) algorithm based on sensing dictionary, shows 
significant improvement for the performance of sparse recovery, especially in the case of highly 
coherent dictionary. Assuming a signal to be decomposed, a good sensing dictionary should depend not 
only on the ordinary dictionary but also the observed data. In this paper, a re-weighted algorithm for 
designing data dependent sensing dictionary is proposed by introducing the effective posteriori 
knowledge obtained from the observed data. Simulation results are presented to demonstrate the 
superior performance of data dependent sensing dictionary designed by the proposed algorithm. 
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INTRODUCTION 
 
Consider a redundant dictionary Φ  composed of N  

vectors 1M

i
Cφ ×∈  ( {1,..., }i N∈Ω = ) with M N< . In 

general, these vectors are normalized and called atoms. 

Assume a signal 1My C ×∈  can be exactly represented 

as a linear combination of a small number of atoms over 

this dictionary, that is, 
opt opt

y x xΛ= Φ = Φ , where 
optΛΦ  

is a sub-dictionary whose columns are the optimal atoms 

with the index set 
opt

Λ . If opt
KΛ = , y is called K  

exact-sparse signal, where K<<N and ⋅  returns the 

cardinality of a set. The goal of sparse recovery is to find 
the sparsest solution to the inverse problem y x= Φ . 

Unfortunately, the problem is non-deterministic 
polynomial-time hard (Natarajan, 1995) and some 
suboptimal methods have been developed to obtain the 
sparsest solution. 
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One such method is orthogonal matching pursuit (OMP) 
(Pati et al., 1993). The simplicity of implementation of this 
algorithm makes it attractive for sparse signal recovery 
(Gribonval and Krstulovic, 2006; Gribonval and 
Vandergheynst, 2006). A sufficient condition for OMP to 
identify the correct atom is 
 

†

1,1
1,

op t op tΛ Λ
Φ Φ <                             (1)  

 

where †  denotes the pseudo-inverse operation, 
opt

Λ is 

the complementary of 
opt

Λ  in Ω  and 
1,1

⋅  denotes the 

maximum 1l  norm of any column of its argument (Tropp, 

2004). The cumulative coherence of the redundant 
dictionary is given by 
 

1 ( ) m ax m ax , ,i j
J k i J

j J

kµ φ φ
= ∉

∈

= ∑                       (2) 

 

Where ,⋅ ⋅  denotes the absolute value of Hilbert inner  



 
 
 
 
 
product, a more useful condition can be obtained. Tropp 

has proven that (1) is satisfied, if 
1 1
( ) ( 1) 1K Kµ µ+ − <  

holds and OMP can be guaranteed to recover the optimal 
representation of K exact-sparse signal in this case (Tropp, 
2004). But in most situations, redundant dictionaries for 
the decomposition of practical signals may be highly 
coherent and OMP may fail to identify the correct atoms in 
these cases. Recently, Schnass and Vandergheynst 
modified OMP algorithm and proposed a method based 
on alternating projection (AP) to design sensing dictionary 
(Schnass and Vandergheynst, 2008). 

However, the sensing dictionary obtained by this 
method only depends on the ordinary dictionary and does 
not take into account any additional information about the 
observed data. In this paper, we concentrate on the 
problem of designing sensing dictionary for the modified 
OMP algorithm. A re-weighted method for designing a 
data dependent sensing dictionary is proposed by 
introducing effective posteriori knowledge obtained from 
the observed data. 
 
 
The modified OMP algorithm 
 
In order to guarantee OMP algorithm to identify the correct atoms for 
highly coherent dictionary, Schnass and Vandergheynst introduced 
the concept of sensing dictionary and modified the ordinary OMP 
algorithm (Schnass and Vandergheynst, 2008). This modified OMP 
algorithm selects an atom at each iteration through solving the 

optimization arg max ,i
i

rψ
∈Ω

 rather than arg max ,
i

i
rφ

∈Ω
, 

where ( 1,..., )
i

i Nψ =  are the columns of an appropriate sensing 

dictionary, Ψ  and r  denotes the residual produced at the last 
iteration. It is easy to see that, this algorithm reduces to the ordinary 

OMP, if the sensing dictionary is selected as Ψ = Φ  for sufficiently 
incoherent dictionary. Schnass and Vandergheynst generalized the 
sufficient condition (1) to the case of highly coherent dictionary and 
proved that, the modified OMP can exactly recover the correct 
atoms if (Schnass and Vandergheynst, 2008) 
 

* 1 *

1,1
( ) 1,

opt opt opt opt

−

Λ Λ Λ Λ
Φ Ψ Φ Ψ <                            (3) 

 
where ∗  represents the complex conjugate transpose. Define the 
cross cumulative coherence  
 

1
( ) max max , ,

i j
J k i J

j J

kµ ψ φ
= ∉

∈

= ∑%                              (4) 

 
it has been proved that, the modified OMP can identify a correct 
atom at each step if 
 

1 1( ) ( 1) ,K Kµ µ β+ − <% %                                    (5) 

 

holds, where the minimal coherence β  is defined as 

min ,
i i

i
β ψ φ=  (Schnass and Vandergheynst, 2008). Compared 

to (2), the inequality (5) shows that, the  modified  OMP  can  be 
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guaranteed to recover K  exact-sparse signal with a larger K , if 
cross cumulative coherence is smaller than the cumulative 

coherence and β  is close to one. Motivated by these results, 

Schnass and Vandergheynst formulated the problem of finding a 

sensing dictionary, as looking for a matrix Ψ , such that the gram 

type matrix 
*

G = Ψ Φ  is closest to a structural constraint 

Hermitian matrix, and designed sensing dictionary as the solution to 
the following optimal problem (6) 
 

2
*

*

argmin   s.t. 

{ : , 1    },

M N F
C

N N

ii ij

H

H C H H H and H for i jχ µ

×Ψ∈

×

− Ψ Φ

∈ = = ≤ ≠�

,
    (6) 

 

where ( ) / ( 1)N M M Nµ = − −  and 
F

⋅  denotes the 

Frobenius norm. The algorithm based on AP, alternately solves the 
two basic matrices nearness problems. 
 

(1) Given the matrix
*G = Ψ Φ% % , finding a matrix H%  such 

that arg m in
FH

H H G
χ∈

∈ − %% .  

(2) Given the Hermitian matrix H% , finding a matrix Ψ%  such 

that *
arg m in

M N F
H

×Ψ ∈

Ψ ∈ Ψ Φ −
�

% % . 

 
By alternately finding structural constraint Hermitian matrix and 
sensing dictionary, this algorithm can construct a sensing dictionary 
conveniently. 
 
 

Data dependent sensing dictionary design 
 

To construct a good sensing dictionary, at first we reveal the 
relationship between the recovery condition and local measurement 
of cross cumulative coherence. Similar to (4), the local 
measurement of cross cumulative coherence corresponding to the 
optimal atoms is defined by 
 

1 1( , ) ( , , )

m a x m a x , ,    .

o p t

o p t

o p t

i j
J k i J

j J
J

k k

fo r k K

µ µ

ψ φ

Λ

= ∉
∈⊆ Λ

Λ = Ψ Φ

= ≤∑

% %

 (7) 

 
The left-hand side of (3) can be bound as 
 

* 1 * * 1 *

1,11,1 1,1

* 1

1
1,1

( ) ( )

( ) ( , ).

opt opt opt opt opt optopt opt

opt opt optKµ

− −

Λ Λ Λ Λ Λ ΛΛ Λ

−
Λ Λ

Φ Ψ Φ Ψ ≤ Φ Ψ Φ Ψ

= Φ Ψ Λ%

   (8) 

 

Based on the definition of β  and 
1 ( , )o p tkµ Λ% , we can get 

 
*

1,1
,

,

,

1

max( , 1 , )

max( 1 , ) max ,

1 max ,

1 ( 1, ) ,

opt opt
opt

opt

opt opt
opt

opt
opt

K i i i j
i

j i j

i i i j
i i

j i j

i j
i

j i j

opt

I

K

ψ φ ψ φ

ψ φ ψ φ

β ψ φ

β µ

Λ Λ
∈Λ

≠ ∈Λ

∈Λ ∈Λ
≠ ∈Λ

∈Λ
≠ ∈Λ

Φ Ψ − = − +

= − +

≤ − +

≤ − + − Λ

∑

∑

∑

%

  (9) 
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where KI  denotes the identity matrix of size K K× . Using the 

convergent property of Neumann series, it is easy to get 
1 1

1,11,1
( ) (1 )

K
I A A

− −+ ≤ −  whenever 
1,1

1A <  [5]. 

Accordingly, if 
1
( 1, )

opt
Kµ β− Λ <% , we can obtain 

  

2
* *min , s.t.  1    ,

M N i i
FC

W for iψ φ
×Ψ∈

ΨΦ = ∈Ω                (10) 

 
From (3), (8) and (10), we get the sufficient condition for the 
modified OMP 
 

1 1
( , ) ( 1, ) .

opt opt
K Kµ µ βΛ + − Λ <% %                          (11) 

 
These results show that, the exact recovery condition for the 
modified OMP is formulated with less restrictive condition, computed 
only on the optimal atoms. The aforestated derivation reveals that, a 
good sensing dictionary should satisfy the condition that the minimal 

coherence β  is large enough, while the local measurement of 

cross cumulative coherence with respect to the optimal atoms 

1
( , )

opt
kµ Λ%  grows slowly. 

It is of no use to consider the cross cumulative coherence 
corresponding to these atoms that do not participate in the 
representation of sparse signal. Therefore, a good sensing 
dictionary for the modified OMP should be data dependent, since 
the set of optimal atoms is dependent on the observed data. We 
here weight the atoms of the ordinary dictionary by introducing 
effective posteriori knowledge obtained from the observed data and 

construct the sensing dictionary Ψ  as the solution to the following 
optimization 
 

2
* *min , s.t.  1    ,

M N i iFC

W for iψ φ
×Ψ∈

Ψ Φ = ∈Ω                (12) 

 

where 
1

{ ,..., } ( [0,1])
N i

W diag w w w= ∈  is the weighting 

matrix, which provides a way to introduce posteriori knowledge. This 
method modifies the algorithm in (6) by using a weighting matrix and 
linear constraints. Based on the definition of matrix norm, we can get 
 

2 2
* *

2
1

min min ,
M N M N

N

i
FC C

i

W W ψ
× ×Ψ∈ Ψ∈

=

Ψ Φ = Φ∑                 (13) 

 
Using (12) and (13), we obtain the column vectors of sensing 
dictionary as 
 

1

* 1
, 1,..., ,i

i

i i

R
i N

R

φ
ψ

φ φ

−

−
= =                                 (14) 

 

Where 
2 *

R W= Φ Φ . 

 
The problem which remained in the study’s method, is how to obtain 
the effective posteriori knowledge by using the observed data. Note 

that, the correlation between each atom 
i

ψ  of sensing dictionary 

and the observed signal  y  suggests  the  probability  for  the 

 
 
 
 

corresponding atom 
i

φ  to appear in the optimal atoms, one 

possible choice for the weighting matrix is 
*

{ }W diag y= Ψ . In 

order to get more effective weights, we alternately update the 
weights and sensing dictionary at each step. This yields a 
re-weighted algorithm which can be summarized as: 
 

(1) Initialize. Set 
*

{ }W diag y= Φ . 

(2) Repeat until the stopping criterion is satisfied. 

(a) Calculate R :
2 *

R W= Φ Φ ; 

(b) Update Ψ : 

1

* 1

i

i

i i

R

R

φ
ψ

φ φ

−

−
=  for 1,...,i N= ; 

(c) Update W : 
*

{ }W diag y= Ψ . 

 
As discussed earlier, this algorithm combines the characteristics of 
both optimization and knowledge-based methods. Different from the 
method proposed by Schnass and Vandergheynst (Schnass and 
Vandergheynst, 2008), the sensing dictionary obtained by this 
algorithm does not only depend on the ordinary dictionary but also 
the observed data. In additional, consider that linear constraints 

*
1 ( )

i i
iψ φ = ∈ Ω  are imposed on our algorithm, the sensing 

dictionary obtained by this algorithm satisfies 1β = . 

 
 
SIMULATION RESULTS 
 
To illustrate the performance of data dependent sensing 
dictionary obtained by this proposed algorithm, simulation 
results are presented here. We consider a complex 
random dictionary with the dimensions 60M =  and 

120N = . The entries of this dictionary were drawn 

independently from standard complex Gaussian 
distribution and the atoms are normalized. In our 
experiments, we fix the number of iteration for the 
modified OMP as the support size K . The number of 
iteration for the AP algorithm and the proposed method 
are 40 and 10, respectively. Figure 1 presents local 
measurement of (cross) cumulative coherence via 
different support size. Beta denotes the minimal 
coherence β  for the AP algorithm. As shown in this plot, 

we have 1 1( , ) ( 1, ) 1opt optK Kµ µΛ + − Λ >  for 3K ≥ , which 

means that, the ordinary OMP can only be guaranteed to 
exactly recover K-sparsity signal with 2K ≤ . With 
sensing dictionary obtained by the AP algorithm in 
(Schnass and Vandergheynst, 2008), the modified OMP 
can be guaranteed to recover sparse signal of up to three 
atoms since (11) is satisfied when 3K = . 

Using the sensing dictionary obtained by the proposed 
algorithm, the modified OMP can be guaranteed to exactly 
recover sparse signal of up to thirteen atoms due to 

1 1(13, ) (12, )opt optµ µ βΛ + Λ <% % . This result show that, the 

modified OMP based on data dependent sensing 
dictionary, can be guaranteed to identify correct atoms at
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Figure 1. Local measurement of (Cross) cumulative coherence via different 
support size. 
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Figure 2. Probability of exact recovery via different support size. 

 
 
 
each step for larger support size K , since the local 
measurement of cross cumulative coherence is 
significantly lower than the cross cumulative coherence. 

In our second experiment, we compare the performance 
of exact recovery of these methods and simulation results 

are obtained over 500 independent Monte-Carlo trails. 
Figure 2 shows the probability of exact recovery via 
different support size. It is observed that the performance 
of the modified OMP algorithm based on data dependent 
sensing dictionary is better than other methods. 
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Conclusion 
 
In this paper, we provided a re-weighted algorithm for 
designing data dependent sensing dictionary by 
introducing posteriori knowledge obtained from the 
observed data. Through alternately updating sensing 
dictionary and revising weights, the proposed algorithm 
can effectively design a data dependent sensing 
dictionary. 
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