International Journal of the Physical Sciences Vol. 6(35), pp. 7850 - 7856, 23 December, 2011

Available online at http://www.academicjournals.org/lJPS
DOI: 10.5897/IJPS11.1587
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

Anti-swing control of a double-pendulum-type overhead
crane using parallel distributed fuzzy LQR controller

Mahdieh Adeli'*, Hassan Zarabadipour' and Mahdi Aliyari Shoorehdeli’

1Deg)artment of Electrical Engineering, Imam Khomeini International University, Qazvin, Iran.
Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran.

Accepted 16 November, 2011

One of the common industrial structures that are used widely in many harbors and factories, and
buildings is overhead crane. Overhead cranes are usually operated manually or by some conventional
control methods. In this paper, we propose a hybrid controller, that includes both position regulation
and anti-swing control. According to Takagi-Sugeno fuzzy model of an overhead crane, a fuzzy
controller designed with parallel distributed compensation and linear quadratic regulation. With the
Takagi-Sugeno fuzzy modeling, the nonlinear system is approximated by the combination of several
linear subsystems in the corresponding fuzzy state space region. Then by constructing a linear
quadratic regulation sub-controller according to each linear subsystem, a parallel distributed fuzzy
LQR controller is designed. Further, the stability of the overhead crane with the parallel distributed
fuzzy LQR controller is discussed. Simulation results illustrated the validity of the proposed control
algorithm and it is compared with a similar method parallel distributed fuzzy controller.

Key words: Pattern parallel distributed compensation, Takagi_Sugeno fuzzy modelling, overhead crane,

linear matrix inequality, linear quadratic regulation.

INTRODUCTION

Overhead cranes are widely used in industry
transportation system such as factories, harbors, work-
shops, building and rubbish manipulation to transport all
kinds of massive goods. The goal of controlling the
overhead crane is transporting the payloads to the
required position as accurately as possible without
collision with other equipments. So, it is necessary to
control the crane such that the swing angle of load, the
position error of trolley and the control signal are
minimized.

Different control methods have been developed for
reducing position error of trolley and swing angle of load.
Linear and nonlinear control solutions are developed in
Wang et al. (2006), Karkoub and Zribi (2002), Goritov
and Korikov (2001) and Yu et al. (1995) to design feed
back and feed-forward controllers. Some fuzzy-based
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solutions are also developed in Benhidjeb and Gissinger
(1995), Liu et al. (2003), Liu et al. (2005b), and
Orbisaglia et al. (2008). Anti-swing control methods
based on sliding mode control are proposed in Liu et al.
(2003, 20054, b), Orbisaglia et al. (2008), Bartolini et al.
(2000), and Corradini and Orlando (2007). Furthermore,
gain scheduling (Corriga et al., 1998), input shaping
control (Singhose et al., 2000, 1994), neural network and
state feed-back control (Moreno et al., 1998), and
cerebellar model articulation controller (Rodriguez et al.,
2007; Albus, 1975) have been used to control swing
angle of an overhead crane. In some studies, it was
assumed that the mass of hook is negligible to simplify
the modeling and control of system. But, in this study we
did not ignore the mass of the hook and the overhead
crane was looked as a double-pendulum-type system.

In this study, an alternative approach to nonlinear
optimal control based on fuzzy logic was proposed to
control the trolley position and load swinging angle of an
overhead crane. The proposed optimal fuzzy control is
based on a quadratic performance function (Tanaka and



Wang, 2001). In this method, the controller is designed
by solving a minimization problem that minimizes the
upper bound of a given quadratic performances function
(Tanaka and Wang, 2001). One of the advantages of this
method is that the design conditions are represented in
terms of LMIs (Tanaka and Wang, 2001). The stability
analysis and control design problems can be reduced to
linear matrix inequality (LMI) problems (Tanaka and
Wang, 2001).

In this study, the modeling of crane system is
introduced, the related mathematical backgrounds are
presented, a T-S fuzzy model is created to approximate
the overhead crane, and also a parallel distributed fuzzy
LQR controller is designed.

DYNAMIC MODEL OF OVERHEAD CRANE

A double-pendulum-type overhead crane with a
suspended load is shown in Figure 1. It is made up of a
trolley moving along a horizontal axis by applying a
force, F (Chang, 2007). A cable hangs below the trolley
and supports a hook and the rigging and the payload are
modeled as another cable and a mass point.

Denoting with m the trolley mass, m, the hook mass,

m, the load mass, /, the primal cable length, i, the cable

length that have modeled the rigging, g the gravitational
acceleration, x the position of the gantry along horizontal
axis, 6, the swing angle of the primal cable, 6, the swing

angle of the second cable respect the vertical and F the
force applied at the gantry, the dynamic equation of the
overhead crane system in the x-y plane will be derived
as follows (Weiping et al., 2005):

M (q)g+C(q,9)qg+G(q)=71 (1)

where ¢=[x.6.6,1", T=[F00]"

m+m, +m, (m, +m,)l, cos 6, m,l, cos @,
M (q) =| (m, +m,)l, cos 6, (m, +m)I} m,l 1, cos(8, —6,) |,
m,l, cos 6, m,l,1, cos(6, —6,) m,l?

0 —(m, +m,)6,sin 6, —m,1,6, sin 6,
C(g,4) =10 0 m, 11,6, sin(6, - 6,)
0 —m,l1,6,sin(6, —6,) 0

G(g)=[0 (m, +m,)gl sin6 m,gl, sinb,]
MATHEMATICAL BACKGROUNDS

Parallel distributed compensation

T-S fuzzy modelling technique is a useful method to approximate
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Figure 1. Model of a double-pendulum-type overhead crane.

complex nonlinear systems (Tao et al., 2010). The state space of the
nonlinear system is fuzzily partitioned into fuzzy regions. In each fuzzy
region, the nonlinear system is approximated by a linear subsystem to
reach a T-S fuzzy model. Consider the nonlinear system, x= f(x,u),

where f is a nonlinear function. The i rule of T-S fuzzy models is of
the following forms (Tanaka and Wang, 2001):

Model rule i:
IF z,(¢t) is M, and...and z,(t) isM,,,

Then

(1) = A'x(t) +B,?'”(f)’,- =12,..r. @
y(#) =Cx(t)

The state equation of the system with a T-S fuzzy model is inferred as
follows:

D wiZO)A X0 +Bu(n) o
B , 3
D wiz()

Where z(t) = |z()  22(0)

x(t)=
z,0).

P
W(Z(t)):mizj @ and the fuzzy controller via PDC is as follows:
J=
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Control rule i:

@) is My ang .. ana 2,(0) s M,
Then
ut)=—Fx), i=12,...r. (4)

The overall fuzzy controller is represented by

Z:IW,-(z(t NE (1)
- (5)
D W)

u(t)=

Parallel distributed fuzzy controller design

According to control law (Equation 5), the goal is to find F;
(i=1,.,r). We can define F; using LMIs.

Stable fuzzy controller design: Find X >0 and M; (i=1..,r)
satisfying (Tanaka and Wang, 2001).

-xAl —Ax+M!Bl +BM; >0, (6)

- XAl —AX - XAT ~A;X +M Bl +BM ;
+M[ B} +B;M;>0

Where M;=F,X and X = P! such that P is a common positive

definite matrix that its existance guarantees the stability of controller.
The above conditions are LMIs with respect to X and M; . The

feedback gains F; can be obtained as F; = M; X -

Quadratic performance function

The control objective of optimal fuzzy control is to minimize certain
performance functions. A fuzzy controller design to minimize the
upper bound of the quadratic performance function is presented as
follows (Tanaka and Wang, 2001):

J=[ 6" oW+ ORun Yt ®

w,(2()
D wiz@)

positive definite weight matrix and W is a positive semi-definite weight
matrix .

Where y(1)="" h(z()Cx(t) , h(z(1)= , Ris a

Optimal fuzzy controller design

In the course of this study, the optimal fuzzy controller was introduced.

In the control design procedure, a “sub-optimal” controller since
x"(0)Px(0) will be minimized instead of J . The following theorem

summarizes the control design condition for such scheme (Tanaka
and Wang, 2001):

Theorem 1. The feedback gain to minimize the upper bound of the
performance function can be obtained by solving the following LMIs.
From the solution of the LMIs, the feedback gains are obtained as

F=M,X"" for al i . Then the performance function satisfies
J <x"(0)Px(0) < A (Tanaka and Wang, 2001).

minimize A
X.My...M, .0

subject to
X>0, 0,20,
A HQ
* O, (9)
x(0) X
U, +(s=1Q, <0, (10)
V,=20,<0,  i<jsthh 79, (11)
where s>1,
XA + A X r r
. .| XC! -M,
-BM,-M]B]
U, = C,X -wt o0 |,
-M, 0 -R"
[ xa”+ax |
~BM, -MB] xcT -MT xcT -MT
+XAT+A X ! ! !
Vo= -BM,-M]B! ,
! C.X -w' 0 0 0
-M, 0 -RrR" 0 0
C,X 0 0o -w' 0
-M, 0 0 0 -R"

Q, =block —diag(Q, 0 0),
Q, =block —diag(Q, 0 0 0 0).

DESIGN OF A PARALLEL DISTRIBUTED FUZZY CONTROLLER
FOR OVERHEAD CRANE

Using Equations 1 and 2 by choosing,

z,=cos( X, —X5)



z, =X, sinX, - X,)
z,=X,sin(X.)

z, =sinc(X,)

zs =cos(X;)

Z, =cos(Xy)

Z, =sinc(X, — X5)
z, =X, sin(X;)

Zy =sinc(X5)

we have,
‘x| o1 0 0o o ofx][o0]
X 2 0 0 A23 A24 A25 A26 X 2 BZ
X3_000100X3+0
Xv4 0 0 A43 A44 A45 A46 X4 B4
X,/ |00 0 0 0 1 |X,]1|0
_X6_ _0 0 A63 A64 Ass A66__X6_ _Ba_
X
X,
1 000O0O
X3
y=[00 1000 *)
0000T1O0|.°
_X5
_X6_

(12)

Where lezx, XZZ).C, Xv3:01, X4:é1, )(5:@, Xézéz and,

1
Ay = (D224 +01)2,242 +0,2,25%; +D3%67,)

1

A24 :@(blzg +b2Z122.3 +b7ZzZ5 +bl 1Z1Z2Z6) )
1

= :E’l(bl()zlzsz‘) 0262 ~0y2i252 —bizezy)
1

A26 :%(b3z3 +b4Z12Z3) ,

1 >
Ay :%(szét 2% TGLZT T013%6%)
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1 >
A, :@(Cszszx 632,262 62, +C13%:%) ,
1
A =@(C421Z9 €922 +C1025%6% — 2% —C11Z5%6%7)
1
Ay :@(CGZSZS) ,
1
Ay =d_(d4Z1Z4 +dyz,2,25+dz; +d5Z52Z7) ,
en
1
A, :E(dﬂzzsz() +dy2,2523 +d y 262 +d32,2,)
_ 1 d 2 d 2
A —@(dzzg +d 252~z —dsz5%,)
1
Ay :@(dmzlzﬂs +d,2:%)
1 2
B, =E(b5 +hz),
1
B, = den(C7Z5 +C1025%)
1
B, :@(dl 213 Tdize),
Where den=a,—d,z] +c5z2 +a,2,2,2 —d,yze and according to

basic parameters m=5Kg , m =2Kg , m,=5Kg , |, =2m and
I, =1m , the coefficient values are, a, =1680, a,=—c, =d,=1200,

b=—d,=d,=—d,,=1960 , b, =—b, =—1400 :
by=b,=c,=c,=—d, =d,,=—d,;,=700 , b =b,=-500
by=d,=-d,=140 ,  b,=—-100 ,  b,=48020
by =b,=-b, =2c, ==2¢,, =—6860 , b,=-2000 , ¢, =—600
c,=-8232 , ¢,=5880 , ¢,=-980 , ¢,=-350 , ¢, =-70 ,

¢, =¢, =250, ¢, =50, d,=3360, d,=—d, =—16464, d, =9604,
d, =—1372.

Without impressive loss of accuracy, we can assume that z,, z,,
Z¢, Z;, %3 Zoand den are constant because their variations are
low. So, according to z,, z, and z, and their maximum and

minimum values we will have 2° =8 rules. The fuzzy model has the
following 8 rules,

Model rule 1:
If z, is “minimum” and z, is “minimum” and z, is “minimum”,

Then i(t) = A 'x(t) + B u(t)

Model rule 2:
If z, is “minimum” and z, is “minimum” and z, is “maximum”,

Then i(t) = A,x(t) + Byu(t)

Model rule 3:
If z, is “minimum” and z, is “maximum” and z, is “minimum”,
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Then i(t) = A;x(t) + Byu(t)

Model rule 4:
If z, is “minimum” and z, is

Then i(t) = A;x(t) + B,u(t)

Model rule 5:
If z, is “maximum” and z, is

Then x(t) = A;x(t) + Biu(t)

Model rule 6:
If z, is “maximum” and z, is

Then i(t) = A.x(t) + Bou(t)

Model rule 7:
If z, is “maximum” and z, is

Then i(t) = A x(t) + Byu(t)

Model rule 8:
If z, is “maximum” and z, is

Then i(f) = A;x(t) + Byu(t) .
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“‘maximum” and z, is “maximum”,

“minimum” and z, is “minimum?”,
“minimum” and z, is “maximum”,
is “minimum?”,

“maximum” and z,

“‘maximum” and z, is “maximum”,

SIMULATION RESULTS

In the simulations, the

basic initial state is: x=-30m,

x=0m/sec , 6 =pi/l8rad , 6,=0rad/sec , 6, =pi/l5rad ,

6, =0rad/sec. According
follows:

to 8 rules, 8 subsystems are as

01 o0 0 0 0
0 0 343069 —-0.1030 06710 —-0.0772
400 0 1 0 0
10 0 —48908 01124 21871 00830,
00 0 0 0 1
_0 0 120535 -0.1036 —69105 0.0062_
[0 1 0 0 0 0 ]
0 0 343069 —0.1030 0.6710 0.0772
4|00 0 1 0 0
2710 0 -4.8908 0.1124 2.1871 -0.0830]"
00 0 0 0 1
[0 0 120535 -0.1036 —6.9105 —0.0062 |
[0 1 0 0 0 0
0 0 343069 0.0451 0.6710 —0.0772
100 0 1 0 0
4= 0 0 —4.8908 —0.0853 2.1871 0.0830 |’
00 0 0 0 1
[0 0 120535 0.1083 -6.9105 0.0062 |

01 0 0 0 0
0 0 343069 0.0451 0.6710  0.0772
Lo|00 0 1 0 0
* 10 0 —4.8908 —0.0853 2.1871 —0.0830|’
00 0 0 0 1
|0 0 12.0535 0.1083 -6.9105 —0.0062
[0 1 0 0 0 0
0 0 337932 —0.0779 —0.1699 —0.0482
. |00 0 1 0 0
4210 0 —50141 01097 29422 00830 |
00 0 0 0 1
|0 0 138115 —0.1498 —6.9105 —0.0152]
0 1 0 0 0 0
0 0 337932 —0.0779 —0.1699 0.0482
. _[00 0 1 0 0
%=10 0 —50141 01097 29422 -00830]"
00 0 0 0 1
[0 0 138115 -0.1498 —6.9105 0.0152 |
01 o0 0 0 0 |
0 0 337932 00418 -0.1699 -0.0482
. |00 0 1 0 0
4= 0 0 -5.0141 -0.0879 29422 0.0830 |-
00 0 0 0 1
10 0 138115 0.1385 —69105 -0.0152
01 0 0 0 0 |
0 0 337932 00418 -0.1699 0.0482
.00 o0 1 0 0
A= 0 0 —-5.0141 —0.0879 29422 -0.0830);
00 0 0 0 1
10 0 138115 0.1385 —69105 0.0152 |
0 C o
00534 0.0333
BB B B = 0 R
1 2T TR 00207 B.=B,=B,=B; = —0.0207|"
0 0
| —0.0043] | 0.0105 |
10
Using LMI optimization algorithm, with w={0 1
00

R=1 and s=7, we obtain

—_ o O



P=10"x

[ 00068 00170 09246 03071 —0.0732 0.1103 ]
0.0170 00603 3.7459 12548 -0.3520 0.4576
09246 37459 4127916 1254248 —83.3167 426671
03071 1.2548 1254248 485454 —20.6997 127607
-0.0732 -0.3520 —83.3167 —20.6997 27.8266 —5.6266
| 0.1103 04576  42.6671 127607 —5.6266 73337 |
0,=10"x

[ 260 —150 24447 —14436 4.6078 —2.7709]
-150 100  -1.9016 1.2698 —3.5770 2.4131
24447 -19016 02561 —0.0354 0.0836 —0.0664],
—-1.4436 1.2698 -0.0354 0244 —0.0662 0.0592
46078 -3.5770 0.0836 -0.0662 03686 —0.1243
|-2.7709 24131 —0.0664 0.0592 -0.1243 03232 |

and
[ 05368 | [ —05126 |
—22292 ~2.1313
F =10x -2324659| - 1-2220268
—90.4946 | * 7 —86.2196 | °
403859 38.1553
| —23.1816 | | —224833 |
[ -0.5336 | [ -05073 ]
~22160 ~2.1101
o 0x ~23080%6| . _ 0 1-2195230
} -900873 | * * -86.1333 | *
40.0714 37.6575
| —23.0187 | | —22.0479 |
[ —04365 ] [ 04567 ]
~1.8159 ~1.8992
£ —10x -1888217) 11969510
—-767448 | * ¢ —~79.7415 | °
32.6407 33.6704
| —17.8495 | | 188658 |
[ —04390 [ —04643 7
-1.8261 -1.9298
-1898098 —-2003477
E=104 rome1] . 571 sa7152]
328210 343683
| —17.9641 | | —192134

and 1=6.6532x10° , it can be shown that stability
conditions of theorem 1 are satisfied.
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Figure 2. System dynamics of the overhead crane with PDC and
parallel distributed fuzzy LQR controller.
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Figure 3. Control signals of PDC and parallel distributed fuzzy
LQR controller.

Figure 2 shows the double-pendulum-type overhead
crane dynamics using parallel distributed fuzzy LQR
controller compared with parallel distributed fuzzy
controller and the control signals u(t) are shown in Figure
3. As it can be seen from Figure 2 in comparison with the
other studies on double-pendulum-type overhead crane
(Weiping et al., 2005; Liu et al., 2005a) that the system
dynamics converge to desired values in about 30 s, in
our proposed method this time has been decreased to
less than 15 s and it shows that by using this method we
will reach faster performance.

CONCLUSION

In this paper, T-S fuzzy modeling of a double-pendulum-
type overhead crane is used and a parallel distributed
fuzzy LQR controller is designed to control position
regulation and swing angle. With the proposed controller,
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we reach the desired values of position error and swing
angle. The simulation results indicates the effectiveness
of the designed stable controller.
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