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One of the common industrial structures that are used widely in many harbors and factories, and 
buildings is overhead crane. Overhead cranes are usually operated manually or by some conventional 
control methods. In this paper, we propose a hybrid controller, that includes both position regulation 
and anti-swing control. According to Takagi-Sugeno fuzzy model of an overhead crane, a fuzzy 
controller designed with parallel distributed compensation and linear quadratic regulation. With the 
Takagi-Sugeno fuzzy modeling, the nonlinear system is approximated by the combination of several 
linear subsystems in the corresponding fuzzy state space region. Then by constructing a linear 
quadratic regulation sub-controller according to each linear subsystem, a parallel distributed fuzzy 
LQR controller is designed. Further, the stability of the overhead crane with the parallel distributed 
fuzzy LQR controller is discussed. Simulation results illustrated the validity of the proposed control 
algorithm and it is compared with a similar method parallel distributed fuzzy controller. 
 
Key words: Pattern parallel distributed compensation, Takagi_Sugeno fuzzy modelling, overhead crane, 
linear matrix inequality, linear quadratic regulation. 

 
 
INTRODUCTION 
 
Overhead cranes are widely used in industry 
transportation system such as factories, harbors, work-
shops, building and rubbish manipulation to transport all 
kinds of massive goods. The goal of controlling the 
overhead crane is transporting the payloads to the 
required position as accurately as possible without 
collision with other equipments. So, it is necessary to 
control the crane such that the swing angle of load, the 
position error of trolley and the control signal are 
minimized. 

Different control methods have been developed for 
reducing position error of trolley and swing angle of load. 
Linear and nonlinear control solutions are developed in 
Wang et al. (2006), Karkoub and Zribi (2002), Goritov 
and Korikov (2001) and Yu et al. (1995) to design feed 
back  and   feed-forward  controllers.  Some  fuzzy-based 
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solutions are also developed in Benhidjeb and Gissinger 
(1995), Liu et al. (2003), Liu et al. (2005b), and 
Orbisaglia et al. (2008). Anti-swing control methods 
based on sliding mode control are proposed in Liu et al. 
(2003, 2005a, b), Orbisaglia et al. (2008), Bartolini et al. 
(2000), and Corradini and Orlando (2007). Furthermore, 
gain scheduling (Corriga et al., 1998), input shaping 
control (Singhose et al., 2000, 1994), neural network and 
state feed-back control (Moreno et al., 1998), and 
cerebellar model articulation controller (Rodriguez et al., 
2007; Albus, 1975) have been used to control swing 
angle of an overhead crane. In some studies, it was 
assumed that the mass of hook is negligible to simplify 
the modeling and control of system. But, in this study we 
did not ignore the mass of the hook and the overhead 
crane was looked as a double-pendulum-type system. 

In this study, an alternative approach to nonlinear 
optimal control based on fuzzy logic was proposed to 
control the trolley position and load swinging angle of an 
overhead crane. The proposed optimal fuzzy control is 
based on a quadratic performance function (Tanaka  and 



 
 
 
 
Wang, 2001). In this method, the controller is designed 
by solving a minimization problem that minimizes the 
upper bound of a given quadratic performances function 
(Tanaka and Wang, 2001). One of the advantages of this 
method is that the design conditions are represented in 
terms of LMIs (Tanaka and Wang, 2001). The stability 
analysis and control design problems can be reduced to 
linear matrix inequality (LMI) problems (Tanaka and 
Wang, 2001).  

In this study, the modeling of crane system is 
introduced, the related mathematical backgrounds are 
presented, a T-S fuzzy model is created to approximate 
the overhead crane, and also a parallel distributed fuzzy 
LQR controller is designed.  
 
 

DYNAMIC MODEL OF OVERHEAD CRANE  
 

A double-pendulum-type overhead crane with a 
suspended load is shown in Figure 1. It is made up of a 
trolley moving along a horizontal axis by applying a 
force, F (Chang, 2007). A cable hangs below the trolley 
and supports a hook and the rigging and the payload are 
modeled as another cable and a mass point. 

Denoting with m the trolley mass, 
1

m  the hook mass, 

2
m  the load mass, 

1
l  the primal cable length, 

2
l  the cable 

length that have modeled the rigging, g the gravitational 
acceleration, x the position of the gantry along horizontal 
axis, 

1
θ  the swing angle of the primal cable, 

2
θ  the swing 

angle of the second cable respect the vertical and F the 
force applied at the gantry, the dynamic equation of the 
overhead crane system in the x-y plane will be derived 
as follows (Weiping et al., 2005): 
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MATHEMATICAL BACKGROUNDS  

 
Parallel distributed compensation  

 
T-S  fuzzy  modelling  technique  is  a  useful  method  to  approximate 
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Figure 1. Model of a double-pendulum-type overhead crane. 

 
 
 
complex nonlinear systems (Tao et al., 2010). The state space of the 
nonlinear system is fuzzily partitioned into fuzzy regions. In each fuzzy 
region, the nonlinear system is approximated by a linear subsystem to 

reach a T-S fuzzy model. Consider the nonlinear system, ),( uxfx =& , 

where f is a nonlinear function. The th
i  rule of T-S fuzzy models is of 

the following forms (Tanaka and Wang, 2001): 

 
 
Model rule i: 
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The state equation of the system with a T-S fuzzy model is inferred as 
follows: 
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Control rule i: 

 

If )(
1

tz  is 1iM  and … and )(tz
p  is ip

M  

 
Then  
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The overall fuzzy controller is represented by  
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Parallel distributed fuzzy controller design 

 

According to control law (Equation 5), the goal is to find iF  

( ri ,...,1= ). We can define iF  using LMIs.  

Stable fuzzy controller design: Find 0>X  and iM ( ri ,...,1= ) 

satisfying (Tanaka and Wang, 2001). 
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Where XFM ii =  and 
1−= PX  such that P  is a common positive 

definite matrix that its existance guarantees the stability of controller. 

The above conditions are LMIs with respect to X  and iM . The 

feedback gains iF  can be obtained as 
1−= XMF ii .  

 
 
Quadratic performance function 

 
The control objective of optimal fuzzy control is to minimize certain 
performance functions. A fuzzy controller design to minimize the 
upper bound of the quadratic performance function is presented as 
follows (Tanaka and Wang, 2001): 
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matrix . 

 
 
Optimal fuzzy controller design 

 
In the course of this study, the optimal fuzzy controller was introduced. 

 
 
 
 
In the control design procedure, a “sub-optimal” controller since 

)0()0( PxxT  will be minimized instead of J . The following theorem 

summarizes the control design condition for such scheme (Tanaka 
and Wang, 2001): 
 
Theorem 1.  The feedback gain to minimize the upper bound of the 

performance function can be obtained by solving the following LMIs. 
From the solution of the LMIs, the feedback gains are obtained as 

1−= XMF ii  for all i . Then the performance function satisfies 

λ<< )0()0( PxxJ T  (Tanaka and Wang, 2001).  
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DESIGN OF A PARALLEL DISTRIBUTED FUZZY CONTROLLER 

FOR OVERHEAD CRANE 

 
Using Equations 1 and 2 by choosing, 
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SIMULATION RESULTS 
 
In the simulations, the basic initial state is: mx 30−= , 

secm 0=x& , radpi  18
1

=θ , sec 0
1

rad=θ& , radpi  15
2

=θ , 

sec 0
2

rad=θ& . According to 8 rules, 8 subsystems are as 

follows: 
 



























−−

−

−−

=

0062.09105.61036.00535.1200

100000

0830.01871.21124.08908.400

001000

0772.06710.01030.03069.3400

000010

*

1
A

,  

 



























−−−

−−

−

=

0062.09105.61036.00535.1200

100000

0830.01871.21124.08908.400

001000

0772.06710.01030.03069.3400

000010

*

2
A ,  

 



























−

−−

−

=

0062.09105.61083.00535.1200

100000

0830.01871.20853.08908.400

001000

0772.06710.00451.03069.3400

000010

*

3
A ,  

 
 
 
 



























−−

−−−
=

0062.09105.61083.00535.1200

100000

0830.01871.20853.08908.400

001000

0772.06710.00451.03069.3400

000010

*

4
A ,  

 



























−−−

−

−−−

=

0152.09105.61498.08115.1300

100000

0830.09422.21097.00141.500

001000

0482.01699.00779.07932.3300

000010

*

5
A ,  

 



























−−

−−

−−

=

0152.09105.61498.08115.1300

100000

0830.09422.21097.00141.500

001000

0482.01699.00779.07932.3300

000010

*

6
A ,  

 



























−−

−−

−−

=

0152.09105.61385.08115.1300

100000

0830.09422.20879.00141.500

001000

0482.01699.00418.07932.3300

000010

*

7
A

,  

 



























−

−−−

−

=

0152.09105.61385.08115.1300

100000

0830.09422.20879.00141.500

001000

0482.01699.00418.07932.3300

000010

*

8
A

,  

 



























−

−
====

0043.0

0

0207.0

0

0534.0

0

*

4

*

3

*

2

*

1
BBBB , 



























−
====

0105.0

0

0207.0

0

0333.0

0

*

8

*

7

*

6

*

5 BBBB . 

 

Using LMI optimization algorithm, with 
















=

100

010

001

W , 

1=R  and 7=s , we obtain 



 
 
 
 



























−

−−−−−

−

−

−

−

×=

3337.76266.57607.126671.424576.01103.0

6266.58266.276997.203167.833520.00732.0

7607.126997.205454.484248.1252548.13071.0

6671.423167.834248.1257916.4127459.39246.0

4576.03520.02548.17459.30603.00170.0

1103.00732.03071.09246.00170.00068.0

10
3

P

, 

 



























−−−

−−−

−−−

−−−

−−−

−−−

×= −

3232.01243.00592.00664.04131.27709.2

1243.03686.00662.00836.05770.36078.4

0592.00662.0244.00354.02698.14436.1

0664.00836.00354.02561.09016.14447.2

4131.25770.32698.19016.1100150

7709.26078.44436.14447.2150260

10 5

0
Q

,  

 
and 
 

T

F



























−

−

−

−

−

×=

1816.23

3859.40

4946.90

4659.232

2292.2

5368.0

10
1 , 

T

F



























−

−

−

−

−

×=

4833.22

1553.38

2196.86

0268.222

1313.2

5126.0

102 ,  

 
T

F



























−

−

−

−

−

×=

0187.23

0714.40

0873.90

8056.230

2160.2

5336.0

103 , 

T

F



























−

−

−

−

−

×=

0479.22

6575.37

1333.86

5230.219

1101.2

5073.0

10
4 ,  

 
T

F



























−

−

−

−

−

×=

8495.17

6407.32

7448.76

8217.188

8159.1

4365.0

105 , 

T

F



























−

−

−

−

−

×=

8658.18

6704.33

7415.79

9510.196

8992.1

4567.0

106 , 

 
T

F



























−

−

−

−

−

×=

9641.17

8210.32

0761.77

8098.189

8261.1

4390.0

107 , 

T

F



























−

−

−

−

−

×=

2134.19

3683.34

7152.80

3477.200

9298.1

4643.0

108 , 

 
and 8

106532.6 ×=λ , it can be shown that stability 

conditions of theorem 1 are satisfied. 
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Figure 2. System dynamics of the overhead crane with PDC and 

parallel distributed fuzzy LQR controller. 

 
 
 

 
 

Figure 3. Control signals of PDC and parallel distributed fuzzy 
LQR controller. 

 
 
 

Figure 2 shows the double-pendulum-type overhead 
crane dynamics using parallel distributed fuzzy LQR 
controller compared with parallel distributed fuzzy 
controller and the control signals u(t) are shown in Figure 
3. As it can be seen from Figure 2 in comparison with the 
other studies on double-pendulum-type overhead crane 
(Weiping et al., 2005; Liu et al., 2005a) that the system 
dynamics converge to desired values in about 30 s, in 
our proposed method this time has been decreased to 
less than 15 s and it shows that by using this method we 
will reach faster performance. 
 
 
CONCLUSION 
 
In this paper, T-S fuzzy modeling of a double-pendulum-
type overhead crane is used and a parallel distributed 
fuzzy LQR controller is designed to control position 
regulation and swing angle. With the proposed controller, 
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we reach the desired values of position error and swing 
angle. The simulation results indicates the effectiveness 
of the designed stable controller.  
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