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Redundancy-reliability allocation problems in multi-stage series-parallel systems under uncertain 
environments are addressed in this study. First, a multi-objective programming model is formulated for 
simultaneously maximizing system reliability and minimizing system total cost. Due to the nature of 
uncertainty in the problem, the fuzzy set theory and technique are used to convert the deterministic 
multi-objective programming model into a fuzzy nonlinear programming problem. A heuristic method is 
developed to get a set of satisfactory solutions for the fuzzy nonlinear programming problem. Then, a 
modified data envelopment analysis (DEA) model, is applied for completely ranking those satisfactory 
solutions considering some criteria of satisfactory, reliability, cost, volume and weight. A case study 
that is related to the electronic control unit installed on aircraft engine over-speed protection system is 
used to implement the developed approach. Results suggest that the developed fuzzy programming 
and DEA approach can effectively resolve the fuzzy and uncertain problem when design goals and 
constraints are not clearly confirmed at the initial conceptual design phase.  
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INTRODUCTION 
 
For a system design with low reliability requirement, the 
designer can adopt series-parallel-systems techniques to 
improve system reliability and redundancy allocation. 
However, without further consideration, series-parallel-
systems design techniques will increase system 
complexity, cost, weight, volume, and power dissipation. 
These constraint elements shall be considered when 
series-parallel-systems are applied. 

In practice, solution methods for series-parallel-
systems with redundancy-reliability allocation problems 
can be categorized into two methods: active redundant 
model and standby redundant model. An active 
redundant model adopts several parallel components, in 
which  each  component  shall  be  actively operated. The 

entire system will operate well if a specific number of 
components within this system operate normally. A 
standby redundant model adopts several parallel 
components as well. In order to solve reliability redundant 
optimization problems (Misra and Sharma, 1991) 
launched the research of using bound search techniques, 
which were integer programming methods. Li (1996) 
proposed a bound dynamic programming (BDP) method 
that could solve reliability redundant optimization 
problems.  

Li and Jia (1997) further used a partial bound 
enumeration (PBE) technique that could solve reliability 
redundant optimization problems. Baxter and Harche 
(1992) used exact algorithm to solve the optimal reliability
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allocation of series-parallel systems. Chern et al. (1991) 
also used exact algorithms and parametric non-linear 
integer programming methods to solve the application of 
the reliability optimization problems with multiple 
constraints for the series-parallel systems. Petrovic 
(1991) utilized heuristic method to improve decision 
support of system reliability by redundancy allocation. 
Sharma and Misra (1990) utilized heuristic method to 
optimize system reliability and developed an effective 
algorithm to solve integer programming problems of 
reliability optimization, respectively. Xu et al. (1990) 
utilized heuristic method by the allocation of reliability 
redundancy to solve optimal constraints of improving 
system reliability. Jiang and Chen (2003) presented a 
computational model of fuzzy reliability, focusing on 
solving the engineering problems with random general 
stress-fuzzy general strength. Kuo and Wan (2007) 
provided a comprehensive review on recent advances in 
optimal reliability allocation. 

In order to make sure that the whole system can be 
operated functionally, certain numbers of components are 
required to be operated normally. Besides, when some of 
parallel components fail, components in standby will be 
operated using switch devices. If the failure rate of 
switching devices is excluded, the system reliability of 
standby redundant model is higher than that of active 
redundant model. Although the system reliability of both 
models is high, these two models could cause higher 
cost, higher weight, and higher volume. Especially, when 
some switch devices are adopted by the standby 
redundant model, an additional cost will increase in 
accordance with the number of switch devices used.  

On the other hand, if the failure rate of switching 
devices is included, we need to further study the 
relationship among the whole system reliability, the 
contact reliability of switching devices, and the conditional 
dynamic/static system reliability. Ida et al. (1994) utilized 
meta-heuristic method by genetic algorithm (GA) to solve 
system reliability optimization with several failure modes. 
Yokota et al. (1996) utilized meta-heuristic method to 
solve system reliability optimization with several failure 
modes, mixed integer non-linear programming problems 
and its application, respectively. Levitin and Lisnianski 
(2001) presented a technique for solving a family of multi-
state system reliability optimization problems, such as 
structure optimization, optimal expansion, maintenance 
optimization and optimal multistage modernization. Liang 
and Smith (2004) used an ant colony meta-heuristic 
optimization method to solve the redundancy allocation 
problem. Yun and Kim (2004) addressed the problem in 
which redundancy is available at all levels in a series 
system and presented a mixed integer programming 
model. 

The objective of reliability maximization is always 
pursued while the system cost became higher, or the 
objective of system cost minimization is obtained while 
the  system  reliability  was sacrificed for traditional single 

 
 
 
 
objective optimization method. If multi-objective 
optimization method is adopted to solve reliability 
allocation trade-off problems of series-parallel systems, 
one could consider the optimization of system reliability 
and total system cost at the same time. Also one could 
consider the constrained factors of weight and volume. 
The system reliability requirement with the above design 
disciplines could be achieved. When the product 
reliability demonstration is carried out, one do not need to 
spend too much cost and time. Several objectives could 
be conflicting. The decision procedures were also very 
complicated, as it involves different levels of 
uncertainties, such as characteristics of expert 
information, qualitative statements and fuzzy, etc.  

Misra and Sharma (1991) utilized meta-heuristic 
method and an effective reliability design tool to solve 
integer programming problems; utilize multi-objective 
programming method to solve multi-objective redundancy 
optimization problems, respectively. Prasad and 
Raghavachari (1998) utilized heuristic method to solve 
optimal component allocation of series-parallel networks 
and utilized optimal allocation of inter-exchangeable 
component method to solve the optimal component 
allocation of series-parallel and parallel-series systems, 
respectively. Zadeh and Bellman (1990) designed a 
fuzzy-decision environment to provide different kinds of 
total solutions for design problems. Huang (1997) 
proposed fuzzy multi-objective optimization decision 
method, which could provide two or above goals of 
reliability optimization decisions. Elegbede et al. (2003) 
considered the allocation of reliability and redundancy to 
parallel-series systems, while minimizing the cost of the 
system. Coit et al. (2004) addressed system reliability 
optimization when component reliability estimates are 
treated as random variables with estimation uncertainty. 
Coit and Konak (2006) proposed a new multiple weighted 
objective heuristic for the redundancy allocation problem.  

In this study, an approach with fuzzy programming and 
DEA methods is developed for dealing with the design of 
engine protection systems under uncertain environments. 
First, a fuzzy multi-objective programming technique is 
utilized for solving series-parallel systems with 
redundant-design. A heuristic method is devised to 
generate a group of satisfactory solutions.  Secondly, a 
design performance index is defined and a modified DEA 
model is applied to completely rank those satisfactory 
solutions. Finally, the proposed approach is implemented 
in the over-speed protection systems of turbo engine. 
Real-world data is collected and analyzed to display the 
benefit of this study. 
 
 

Crisp reliability design model for series-parallel 
systems 
 

Figure 1 displays a diagram for an N-stage series-parallel 
system with redundancy-reliability allocation problems. In 
this  system,  several  parallel  and  identical components 

http://www.sciencedirect.com/science/article/pii/S0951832003000553
http://link.springer.com/search?facet-author=%22Way+Kuo%22
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Liang,%20Yun-Chia.QT.&searchWithin=p_Author_Ids:37275171100&newsearch=true
http://www.sciencedirect.com/science/article/pii/S0360835203001311
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Figure 1. Diagram for N-stages series-parallel systems. 

 
 
 
are arrayed in each stage. While the series-parallel 
system with redundancy can be applied to increase the 
system reliability, this technique may inevitably add more 
complexity, weight, volume, or cost to the design system. 
It would be better if a multi-objective programming model 
is developed in tackling this problem.  

When modeling the target problem, the objectives are 
two-fold. One is to determine optimal design reliability for 
each component and the other to select an optimal 
number of components within each stage. That is, the 
overall system reliability is maximized and the overall 
system cost is minimized. In addition, several constraint 
design criteria, such as minimum requirements for 
system reliability, system cost, system volume, and 
system weight, are considered in this model. In order to 
develop a mathematical design model for the engine 
protection systems, we define the following decision 
variables and parameters. 
 
 

Decision variable 
 

Ri＝represent the component reliability within the i-th 

stage; ni＝represent the number of components within 

the i-th stage; f1＝represent the overall system reliability; 

f2＝represent the overall system cost. 

 
 

Parameter 
 

Ci(Ri)＝represent the component cost within the i-th 

stage; wi＝represent the component weight within the i-th 

stage; vi＝represent the component volume within the i-th 

stage; R＝represent the lower limit for the overall system 

reliability; C＝represent the upper limit for the overall 

system cost; W＝represent the maximum limit for the 

system weight; V＝represent the maximum limit for the 

system volume; N＝represent the number of stages in 

the design system; Nhigh＝represent the maximum 

number of components within each stage; 

Nlow＝represent the minimum number of components 

within each stage; Rhigh＝represent the maximum  limit  of 

reliability within each stage; Rlow＝represent the minimum 

requirement of reliability within each stage. 
Then a multi-objective mathematical reliability design 

model may be given as follows: 
 

Maximize     
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i
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

/exp
1                                  (6) 

 

 Nlow≦  ni  ≦  Nhigh , Ni ,...,1                                                                         (7)    
 

Rlow ≦  Ri  ≦  Rhigh ,  Ni ,...,1                                                           (8)     
 
The objective Function (1) is used to maximize the overall 
system reliability for the engine protection systems, while 
the objective function (2) is used to minimize the overall 
system cost. Constraint (3) is used to set the minimum 
requirement for the system reliability. Constraint (4) is 
used to set the maximum limit for the system weight. 
Constraint (4)  indicates that as the number of component  
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increases the system weight is proportional to the 
multiplication of component weight within the i-th stage 
and the number of component factored by the term of 

i
exp( n / N )

.  

The term i
exp( n / N )

 is used to describe the 
incremental effect of added components on the total 
system weight. Constraint (5) is used to set the maximum 
limit for the system volume. The incremental effect of 
added components on the system volume is quadratic in 
polynomial terms, while the incremental effect of added 
components on the system weight is assumed to be 
exponential. Constraint (6) is used to set the maximum 
limit for the system cost, where Ci(Ri) is the unit cost for 
the component with Ri reliability in the i-th stage. 
Constraint (7) denotes the allowable range of component 
number for each stage, and Constraint (8) is used to 
specify the range of reliability for each component in each 
stage. 

In Constraint (6), the term Ci(Ri) represents the 
component cost within the i-th stage and is a function of 
component failure rate and in turn a function of 
component reliability Ri. Ci(Ri) can be formulated as: 

  i
iiiRiC
β

λ
, where αi and βi are constant and 

characteristics factors for each component in the i-th 
stage and λi is the failure rate of component in the i-th 
stage. This formula can be found in Kumar et al. (2009). 

Furthermore, by the relationship of Ri＝
)λ(exp ti

, we 

can obtain 
    iiRtiiRiC β)ln(α 

, where t is the active 
operation time. Hence, Constraint (6) can be 
reformulated as: 
 

     CNnn
R

t
ii

N

i i
i

i






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

/exp
ln

α

β

1           (9) 
 

The developed reliability design model is one type of 
multi-objective mixed integer nonlinear programming 
problem. This is a NP-hard problem. In addition, 
information about the reliability, cost, weight, and volume 
parameters in the model can be uncertain or incomplete 
in terms of data collection in the early design stage of 
system life cycle. It would be better to apply fuzzy set 
techniques to solve this problem. 
 
 
Fuzzy nonlinear programming model for series-
parallel systems 
 
The fuzzy set theory (Zadeh, 1985) is applied to construct 
a fuzzy nonlinear programming for solving the series-
parallel systems with redundancy-reliability allocation 
problems. First, those objective functions and constraints 
in the multi-objective programming model are treated as 
fuzzy objective functions and fuzzy constraints using  

 
 
 
 
membership functions to quantify uncertain parameters. 
The following notations for developing a fuzzy nonlinear 
model are provided. 
 
 
Notation 
 

＝fuzzy information; ∩＝fuzzy intersection; iF ＝the i-th 

fuzzy objective function (i＝1,…, k); jG ＝the j-th fuzzy 

constraint (j＝1,…, m); D ＝the fuzzy decision set; 

iμ ＝the i-th fuzzy membership function; i ＝ the degree 

of satisfaction for the i-th objective function; j
＝the 

degree of satisfaction for the j-th fuzzy constraint; Φ＝the 

fuzzy set for the decision space; Α(Φ)＝the overall 

satisfaction; RS＝the reliability goal which is set up by 

designer; R＝difference between reliability goal and 

minimal reliability limit;  CS＝the cost goal which is set up 

by designer; C＝difference between cost goal and 

maximal cost limit; ws＝the system weight; vs＝the 

system volume. 
The fuzzy set used to describe the membership 

functions can be an L-R trapezoidal fuzzy number 
denoted by (m1, m2, α, β)LR or an L-R triangular fuzzy 
number denoted by (m, α, β)LR where α and β are the left 
and right spreads. The triangular fuzzy number is simple 
and commonly easy to describe the fuzzy nature for 
many attributes. The membership function for the fuzzy 
reliability objective function and the degree of satisfaction 
of reliability function may be given as follows: The 
operational range varies from minimal reliability limit to 
reliability goal.  
 

RRSR

RRSRR

RSR

R

RSR
SR

Fi




















1

0

)(
1

1α 

           (10) 
 
The membership function for fuzzy cost objective function 
and the degree of satisfaction of cost function may be 
expressed as follows: The operational range varies from 
cost goal to maximal cost limit. 
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The membership function for the degree of satisfaction of 
weight constraint may be expressed as follows: The 
operational range varies from 0 to maximal weight limit. 
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The membership function for the degree of satisfaction of 
volume constraint may be expressed as follows: The 
operational range varies from 0 to maximal volume limit. 
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                            (13)       
                                      
Assume Φ is a fuzzy set of decision space and α(Φ) 
denotes the degree of overall satisfaction for the 
developed engine protection systems. The degree of 
overall satisfaction, α(Φ), within this decision space may 
be expressed as follows: 
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                                                                                     (14) 
 
If the fuzzy objective Functions (10) and (11) and the 
fuzzy Constraints (12) and (13) are known with certainty, 
the degree of satisfaction for those fuzzy functions will be 
available, and the overall satisfaction can be obtained via 
seeking the intersection area of those fuzzy functions. 
Mathematically, it is equivalent to find feasible solutions, 
optimal solution (R

*
)
 

and the maximal α(Φ) in the 
following fuzzy nonlinear programming problem: 
 
Maximize α(Φ)                                                              (15)    
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0 ≦ α( F
 ) ≦ 1                                           

                                                    (22)    

Liu          639 
 
 
 

0 ≦ α( G
 ) ≦ 1                                           

                                            (23) 
 
The objective Function (15) is used to maximize the 
degree of overall satisfaction for the design system. 
Constraint (16) is used to set the minimum satisfaction 
requirement for the reliability and cost objectives. 
Constraint (17) is used to set the minimum satisfaction 
requirement for the weight and volume functions. 
Constrain (18) is used to specify the degree of 
satisfaction of reliability function. Constraint (19) is used 
to specify the degree of satisfaction of cost function. 
Constraint (20) is used to specify the degree of 
satisfaction of weight function. Constraint (21) is used to 
specify the degree of satisfaction of volume function. 
Constraint (22) provides the range between 0 and 1 for 
the degree of overall satisfaction about the objective 
functions. Constraint (23) provides the range between 0 
and 1 for the degree of overall satisfaction. The 
developed model can allow one to achieve a maximum 
overall satisfaction value while satisfying multi-objective 
fuzzy objective functions and fuzzy constraints within a 
fuzzy decision space. The developed fuzzy programming 
model is one type of nonlinear problem, in which the 
fuzzy multi-objective programming problem is converted 
into a deterministic single objective problem. For the 
developed fuzzy programming model, an α–search 
heuristic method is devised to generate a group of 
satisfactory solutions. The procedure of the α-search 
heuristic method is given as follows: 

 
Step 0. Initialization:  

 
Set K=the maximal number of iterations, N= the number 
of stages, Rlow=lower bounds for reliability, Rhigh=upper 
bounds for reliability, △Ri=interval of increment for 
reliability, Nlow=minimal components within each stage, 

Nhigh=maximal components within each stage, Φ﹛﹜= 

solution set, Q=maximal number of elements in solution 
set. 

 
Step 1. Initialization:  
Provide an initial solution: k=1, Ri

k  
= Rlow, ni

k
=Nlow, 

i=1,…,N. Place them into the 
solution set Φ( ). 

 
Step 2. Validation:  
Compute and compare the overall satisfaction α

k
 (Φ) for 

the incumbent solution. If α
k
(Φ) > α

k-1
(Φ), replace the 

incumbent solution with previous solution in the solution 
set. If ni

k
 = Nhigh and Ri

k
 = Rhigh, i = 1,…,N, go to Step 4. 

Otherwise, go to Step 3. 

 
Step 3. Improvement:  
If Ri

k
 = Rhigh, then ni

k
 = ni

k
+1 and Ri

k
 = Rlow. Otherwise, Ri

k 
 

= Ri
k+1

 +△Ri, k = k+1. 
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Compute the values for:  
1. Reliability fuzzy set and its degree of satisfaction;  
2. Cost fuzzy set and its degree of satisfaction;  
3. Weight fuzzy set and its degree of satisfaction;  
4. Volume fuzzy set and its degree of satisfaction.  
Return to Step 2 
 
Step 4. Closing: 
Generate a group of satisfactory solutions.  
A computer programming language, Delphi 7.0, is used 
to code and compile the above procedure in the 
developed α–search heuristic. A graphic user-interface is 
also provided for simulating alternative solutions. 
 
 
Data envelopment analysis for selecting an efficient 
solution 
 
In this study, a complete ranking system for efficient 
decision making units is developed. The criteria 
considered include satisfactory, reliability, cots, volume, 
and weight. First, an efficient design indicator, I, is 
defined for the p

th
 decision-making unit (DMUp) as 

follows: 
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xvxvxv

yuyu
I

332211
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


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                                         (24) 
 
where y1p and y2p are output on the DMUp representing 
reliability and satisfactory, respectively; x1p , x2p and x3p 
are input on the DMUj, representing volume, weight, and 
cost respectively; u1 and u2 are weights associated with 
the output y1p and y2p; and vi v2 and v3 are weights 
associated with input x1p , x2p and x3p.  

For the p
th
 decision-making unit (DMUp), one can find 

the weights that maximize the ratio output per input 
through the following mathematical model: 
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where P is the number of DMU to be evaluated and   is 
a non-Archimedean small, positive number. This is a 
fractional programming problem. By linearization, the 
fractional programming problem can be transformed into 
a linear programming problem as follows:  
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The dual form is given as follows: 
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where 


 is an efficiency measure.  

If 
0,1 **  s

 and 0* s , DMUp is efficient. 
Otherwise, DMUp is inefficient. A DMU is denoted by 
strong efficient (SE) if its efficiency score equals 1 by the 
DEA model. Very often, the DEA model is weak in 
complete ranking of all DMUs because more SE DMUs 
can be generated from the DEA model. If SE DMUs are 
excluded from the reference set of all the other DMUs 
and allow the efficient frontier to be closer in relation to 
the inefficient DMUs, then we can find the most efficient 
SE DMU (Jahanshahloo et al., 2007).  

Hence, in order to obtain complete ranking for the 
entire DMUs, the non-SE DMUs should be re-evaluated 
through the following model: 
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Figure 2. Diagram for over-speed protection system of Turbo Engine. 
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where J = {1,2,…,P}, en JbJa  ,
, Jn is the set of non-

SE DMUs and Je is the set of SE DMUs. 

After calculating the measure ba,
 for all the non-SE 

DMUs, the efficiency of SE DMUs will be denoted by   
and will be calculated by: 
 

n

Jna ba

b ~
, 


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                                                       (37) 
 

where b is the evaluated SE DMU and n


 is the number 
of non-SE DMUs. The most efficient SE DMU can be 

found by examining the calculated . 

IMPLEMENTATION 
 
In this study, the developed approach is implemented to 
a design problem of over-speed protection system in 
turbo engines. The mission of this problem is to design a 
protection system during the over-speed operation of 
turbo engines. Figure 2 displays a functional block 
diagram for an over-speed protection system that is 
installed in turbo engines. This protection system consists 
of one electronic control valve and three mechanical 
valves, which provide over-speed protection for the turbo 
engine in a continuous way. Due to the incomplete or 
uncertain information about the design parameters during 
the early design phase, the proposed fuzzy programming 
model combined with DEA technique is utilized to provide 
solution methods. 

Table 1 provides the design data for this case study, 
which includes number of stages, reliability and cost goal, 
limits for reliability, cost, weight, and volume, and 
operational time. Table 2 provides the physical 
characteristics of redundant components for different 
stages. Figures 3, 4, 5, and 6 provide the membership 
function for reliability, cost, weight, and volume, 
respectively. The intersection area of these four 
membership functions and its individual fuzzy set can 
lead us to find out feasible solutions as long as we 
maximize the degree of overall satisfaction, α(Φ), which 
is shown in Figure 7. 

A computer programming language, Delphi 7.0, is used 
to code and compile the algorithm. A graphic user-
interface is illustrated in Figure 8. Table 3 then provides 
some results obtained from the application to the fuzzy 
nonlinear programming problem. If we consider all the 
enumerations of α(Φ) which is just greater than 0.995, 
then we can find out eight combinations of system 
reliability, system cost, system weight, and system 
volume. Each combination is associated with one value 
for   α(Φ).   When   the   information   about    the   design  
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Table 1. Design data of case study. 
 

Number of stages N = 4 

Reliability goal which is set up by designer R s = 0.99 

Cost goal which is set up by designer C s = 300 

Lower limit of reliability R = 0.90 

Upper limit of cost C = 400 

Upper limit of weight W = 500 

Upper limit of volume V = 250 

Operation time T = 1000 h 

 
 
 

Table 2. Physical characteristics of redundant components for each stage. 
 

Stage iα  iβ  iv  iw  

1
st
 1.0×10

-5
 1.5 1 6 

2
nd

 2.3×10
-5
 1.5 2 6 

3
rd

 0.3×10
-5
 1.5 3 8 

4
th
 2.3×10

-5
 1.5 2 7 

 
 
 

 

R
S0.990.9

0.0

0.5

1.0


F1

( R
S 
)

 

 

99.0

99.09.0

9.0

1
09.0

9.0
0

)(
1

1


















S

S

S

S

SF

R

R

R
R

R

 
 

Figure 3. Membership function for reliability. 

 
 
 
parameters is uncertain or incomplete for the series-
parallel systems with redundancy, the developed fuzzy 
goal programming technique can be applied to provide 
satisfactory solutions for decision makers. The results 
also suggest that fuzzy multi-objective programming can 
effectively resolve the fuzzy and uncertain problem when 
design goals and constraints are not still clearly 
confirmed at the initial conceptual design phase.  

Moreso, the DEA method is applied to rank those 
satisfactory solutions, with  satisfactory  and  reliability  as 

output; and cost, weight, and volume as input. Table 4 
shows the list of ranking from the efficient DMU to the 
least. There are two strong efficiency DMUs in this list, so 
the developed ranking DEA model is applied further to 
show the complete ranking list. Table 5 displays the 
complete ranking results. The most efficiency solution 
appears when α(Φ) equals 0.997084 with Rs=0.989816, 
C=300.087, W=224.753, and V=89.0.  

The highest value of α(Φ) does not necessarily imply 
the   best  combination  of  reliability,   cost,   weight,  and 
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Figure 4. Membership function for cost. 

 
 
 

 

 

w
s500

0.0

0.5

1.0


G 1

(w
s
)

 










5001

5000
)(

1

s

s

sG w

w
w

 
 
Figure 5. Membership function for weight. 
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Figure 6. Membership function for volume. 
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Figure 8. A graphic user-interface for the case study. 

 
 
 

Table 3. Satisfactory solutions obtained by the heuristic. 
 

Satisfactory solution 

with α(Φ)  0.995 

Characteristics for each satisfactory solution 

Reliability Cost Weight Volume 

0.995058 0.989886 300.368 257.993 101.0 

0.995257 0.989704 300.145 312.491 139.0 

0.995926 0.989885 300.280 333.641 152.0 

0.996449 0.989880 300.222 248.120 116.0 

0.996797 0.989909 300.219 267.037 115.0 

0.997025 0.989825 300.103 291.937 134.0 

0.997084 0.989816 300.087 224.753 89.0 

0.997818 0.989822 300.020 319.666 147.0 
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Table 4. Ranking list from the DEA model. 
 

DMU Efficiency Cost Weight Volume Reliability Satisfactory 

1 0.999088 300.368 257.993 101 0.989886 0.995058 

2 0.999496 300.145 312.491 139 0.989704 0.995257 

3 0.999198 300.280 333.641 152 0.989885 0.995926 

4 0.999559 300.222 248.120 116 0.989880 0.996449 

5 0.999552 300.219 267.037 115 0.989909 0.996797 

6 0.999794 300.103 291.937 134 0.989825 0.997025 

7 1 300.087 224.753 89 0.989816 0.997084 

8 1 300.020 319.666 147 0.989822 0.997818 

 
 
 

Table 5. Complete ranking list for the DEA model. 

 

Jn   DMU 7 DMU 8 

DMU 1 0.999088 1 0.999135 

DMU 2 0.999496 0.999609 0.999694 

DMU 3 0.999198 0.999198 0.999427 

DMU 4 0.999559 1 0.999615 

DMU 5 0.999552 1 0.999654 

DMU 6 0.999794 0.999978 0.999956 

b   0.9997938 0.9995802 

 
 
 

 

Stage1 Stage2 Stage4 

R1 = 0.95

Input Output

Stage3 

R1 = 0.95

R1 = 0.95

R2= 0.90

R2= 0.90

R2= 0.90

R3= 0.91

R3= 0.91

R4= 0.75

R4= 0.75

R4= 0.75

R4= 0.75

R4= 0.75

 
 
Figure 9. A reliability block diagram for the case study. 

 
 
 
volume for the design system. The reason for this is that 
the values for reliability and cost did not vary much with 
the change of α(Φ), while the values of weight and 
volume, changed significantly. Hence, system weight and 
system volume play the key role in determining the most 
efficient solution. In other words, the most satisfactory 
solution for the fuzzy programming problem using the α–
search heuristic method does not necessarily equal the 
most efficiency solution for the DEA model.  

Finally, a reliability block diagram for this case based 
on the outcomes of this study is shown in Figure 9. The 
results suggest that the developed two-stage technique 
provide higher quality solutions regardless of size and 
complexity of problems. When the information about the 
design parameters is uncertain or incomplete for the 
series-parallel systems with redundancy problem, the 
developed fuzzy-based DEA technique can be applied to 
provide an efficiency solution for the decision maker. 
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CONCLUDING REMARKS 
 
When design-in system reliability is low, series-parallel 
systems are adopted as a design guideline for improving 
system reliability. However, this design guideline will 
increase the total system cost and weight. Hence this 
design guideline seldom meets the practical requirement. 
In this study, fuzzy goal programming techniques are 
applied to deal with multi-stage series-parallel systems 
with redundancy problem. The developed fuzzy goal 
programming model can provide the most satisfactory 
solutions for determination of system/component 
reliability and number of components at each stage. A 
heuristic search method and the associated graphical 
user-interface are devised. Also, a DEA method is 
applied for completely ranking those selected satisfactory 
solutions.  

A case study that relates to the electronic control unit 
installed on aircraft’s engine over-speed protection 
system was used in implementing the developed 
approach. Results from this study suggests that the 
developed fuzzy multi-objective programming and DEA 
approach can effectively resolve the fuzzy and uncertain 
problem when design goals and constraints are not still 
clearly confirmed at the initial conceptual design phase. 
These models can also be applied efficiently and 
effectively for proper decision-making procedures when 
ill-structured situations occur.  
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