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INTRODUCTION 
 
Many problems in applied science, physics and 
engineering areas are modeled mathematically by 
parabolic differential equations. In this work, we consider 
the nonlocal boundary value problem for one dimensional 
heat equation:  
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Equation (1), at the point ( )k n
t x, , we obtain the following 

Rothe difference scheme which is accurate of order 
2

( )O hτ + :  
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Here 
k

n
U  denotes the numerical approximation to the 

exact solution ( )k nu t x,  where 

0 1kt k k N Nτ τ= , ≤ ≤ , =  and 0nx nh n M= , ≤ ≤ ,  

1Mh = .   
 
We can arrange the scheme (2) and obtain the following 
system:  
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The difference scheme (3) can be written in matrix form:  
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1 1n M≤ ≤ − . Here A  and B  are the matrices of the 
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Using the idea of the modified Gauss-elimination method, 
we can convert the Equation (4) into the following form:  
  

1 1 1
1 2 1 0

n n n n
U U n Mα β+ + += + , = − ,..., , , .           (5) 

 
This way, the two-step form of the difference scheme in 
(4) is transformed to one-step method as in (5). Now, we 

need to determine the matrices 
1n

α +  and 
1n

β +  satisfying 

the last equality. Since 
0 1 1 1
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select 1 ( 1) ( 1)
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N
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Combining   the   equalities    
1 1 1n n n n

U Uα β+ + += + ,   and 

 
 
 
  

1n n n n
U Uα β− = +  and the matrix Equation (4), we have  
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So, we obtain the following pair of formulas:  
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where 1 1n M≤ ≤ − .   
 
We note that the stepwise stability is proved in 
(Ivanauskas et al., 2009) for Bitsadze-Samarskii type 
nonlocal problems. Asymptotic stability of numerical 
methods are studied in (Tian, 2008) for linear delay 
parabolic differential equations. The stability of the both 
schemes is proved by analyzing the behavior of the each 
iteration matrix that is called the matrix stability. To show 
the matrix stability of this method, we give some remarks 
and lemmas. 
 
 
Remark 1 
 
If X, Y, Z, T are square block matrices and the matrices 

X  and S  are invertible, then  
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 where S  is the Schur (Duncan, 1944) complement of 

the block inversion and ( )1S T ZX Y−= − .   

 
 
Remark 2 
 

The symbol .  denotes the infinity norm which is 
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Remark 3 
 

n n
Z ×  is called a strictly diagonally dominant (Morača, 

2008), if ( )
i i i
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i

r Z  is the sum 

of the absolute value of nondiagonal elements on the i-th 

row of Z .   
 
 
Remark 4 
 

If 
n n

Z ×  is strictly diagonally dominant matrix then it is not 

singular (Savioli et al., 1997) and 
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STABILITY OF THE FIRST ORDER METHOD 
 
Lemma 1 
 

If A  and B  are matrices given in (4) then 
1 1

2
B A− ≤ .    

 
 
Proof 

 

Let matrix B  be partition be into subblocks to find its 
inverse that is 
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Since c b> ,  the matrix S  is strictly diagonally 

dominant. From Remark 4, it follows that 
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Theorem 1 
 
The matrix Equation (5) which we use to solve the 
differential Equation (1) is unconditionally stable.   
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If we combine the last inequality and Lemma 2, then we 
have  
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Since 1nα ≤  and 
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B A− ≤ , we have 
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Therefore 
1 1nα + ≤  for all 0 n M≤ ≤ .   

 
 
THE CRANK-NICHOLSON METHOD 
 
To solve the problem (1), we can also use the Crank-
Nicholson difference scheme which is accurate of order 
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We can arrange the scheme (12), and obtain the 
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The difference scheme (13) can be written in matrix form:  
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Using the aforementioned approach, we can convert the 
Equation (14) into the following form:  
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Table 1. The errors for the solutions of Example 1 for some values of M and N. 
 

M #space node N #time node The error by Rothe The error by C-N 

6 40 0.000665509259259 0.00003906273582 

7 50 0.000516451478552 0.00002448991067 

8 70 0.000376674107145 0.00001275524756 

9 90 0.000287896492744 0.00000762113037 
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where [ ]K L,  is the matrix obtained from A  by deleting 
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Theorem 2  
 
The matrix Equation (15) which we use to solve the 
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By following the steps in the proof of the 

Theorem 1,  it is seen that the norms of the iteration 

matrices are less than unity, that is,
1 1nα + ≤  for all 
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NUMERICAL ANALYSIS 
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2

2 2

2

( ) ( )
2 2 1 2 (0 10 1)

(0 ) (1 ) ( 1) 0 1                                   

( 0) 0 ( 1) 0 0 1                                          

u t x u t x
tx tx t x t

t x

u x u x x x x

u t u t t

∂ , ∂ ,
− = − − + , < < , < < ,

∂ ∂


, = , + − , ≤ ≤ ,
 , = , , = , ≤ ≤ .

  (16) 

 
Exact solution of this problem is 

2
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The solutions of this problem at 1 2x = /  are compared 

in Figure 1 and the data given in Table 2. The graph of 
the solution by the Crank-Nicholson scheme is given in 
Figure 2 
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Exact solution of this problem is 

2 2
( ) ( 1)sin( )U t x t x x, = + − . The errors when solving 

this problem are listed in the Table 3 for various values of 

time and space nodes. The solutions at 1 2x = /  of this 

problem are given in Table 4. The graph of the solution 
by the first order method is given in Figure 3.  
 
 
CONCLUSION AND FUTURE WORK 
 
Unconditional stability of the first order difference scheme 
for the nonlocal boundary value problems for parabolic 
differential equation is proved. A useful sufficient 
condition is obtained for the stability of the Crank 
Nicolson difference scheme for the nonlocal boundary 
value problems. Numerical results are provided to 
illustrate the accuracy and efficiency of these schemes.  

This method gives a very practical way of analyzing the 
stability of nonlocal boundary value problems for 
parabolic differential equations.  

In the future, it may be studied on the matrix stability of 
fractional nonlocal boundary value problems for parabolic 
differential equations. 
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Figure 1. The solutions for the problem (16), when N=20, M=4 at 1 / 2x =  and 0 0.4t≤ ≤ . 

 
 
 

Table 2. The solutions for the problem (16), when N=20, M=4 at 1 2x = / . 

 

k
t Exact solution Solution by Rothe Solution by C-N 

0.00 -0.125000 -0.12363281250000 -0.12515625000000 

0.05 -0.124375 -0.12300781250000 -0.12453125000000 

0.10 -0.122500 -0.12113281250000 -0.12265625000000 

0.15 -0.119375 -0.11800781250000 -0.11953125000000 

0.20 -0.115000 -0.11363281250000 -0.11515625000000 

0.25 -0.109375 -0.10800781250000 -0.10953125000000 

0.30 -0.102500 -0.10113281250000 -0.10265625000000 

0.35 -0.094375 -0.09300781250000 -0.09453125000000 

0.40 -0.085000 -0.08363281250000 -0.08515625000000 

 
 
 

 
 
Figure 2. The solutions by the Crank-Nicolson method when N=90, M=9. 
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Table 3. The errors for the solutions of the problem (17) for some values of M  and N . 

 

M   #space node N   #time node The error by Rothe The error by C-N 

9 90 0.0002255180078 0.0001383289906 

11 130 0.0001576646963 0.0000894840438 

15 250 0.0000841576084 0.0000462926435 

25 650 0.0000320973542 0.0000162142703 

30 1000 0.0000212795923 0.0000112644031 

 
 
 

Table 4. The solutions of the problem (17), when N=1000, M=30 at 1 2x = / . 

 

k
t  Exact solution Solution by Rothe Solution By C-N 

0 0.24740395930000 0.24741861480366 0.24739269489694 

0.1 0.24987799890000 0.24989738756506 0.24987147341118 

0.2 0.25730011770000 0.25731974802291 0.25729383376890 

0.3 0.26967031560000 0.26968984151623 0.26966392653856 

0.4 0.28698859280000 0.28700781198754 0.28698189629827 

0.5 0.30925494910000 0.30927371304064 0.30924779672858 

0.6 0.33646938460000 0.33648756475956 0.33646164784626 

0.7 0.36863189940000 0.36864937467387 0.36862345713749 

0.8 0.40574249330000 0.40575914560781 0.40573322736750 

0.9 0.44780116630000 0.44781687861759 0.44779095959343 

1 0.49480791860000 0.49482257410356 0.49479665419710 

 
 
 

Time node Space node 
 

 
Figure 3. The solutions of the problem (17) by the Rothe method, when N=90, M=9. 



 
 
 
 
REFERENCES 
 
Duncan WJ (1944). Some devices for the solution of large sets of 

simultaneous linear equations. Philos. Mag. Ser., 7(35): 660-670 
Ivanauskas F, Meškauskas T, Sapagovas M (2009). Stability of 

difference schemes for Mathematics and Computation, 215: 2716-
2732.  

Tian H (2008). Asymptotic stability of numerical methods for linear delay 
parabolic differential equations. Computers and Mathematics with 
Appl., 56:1758-1765  

Morača N (2008). Bounds for norms of the matrix inverse and the 
smallest singular value.  Lin. Algebra Appl., 429: 2589-2601.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Karatay et al.        827 
 
 
 
Savioli GB, Jacovkis PM, Bidner MS (1997). Stability analysis and 

numerical simulation of 1-D and 2-D radial flow towards an oil well. 
Comput. Math. Appl., 33(3): 121-135  

Smith GD (1993). Numerical Solution of Partial Differential Equations: 
Finite Difference Methods. Oxford Univ. Press. 

Kailath T (1980). Linear Systems. Englewood Cliffs. NJ: Prentice-Hall.  


