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In this work, a first order and second order difference schemes, namely Rothe and Crank-Nicholson,
respectively, for solving nonlocal boundary value problems for parabolic differential equations are
presented. The stability of the difference schemes are proved by using the matrix stability approach.
Numerical results are provided to illustrate the accuracy and efficiency of the schemes.
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INTRODUCTION

Many problems in applied science, physics and
engineering areas are modeled mathematically by
parabolic differential equations. In this work, we consider
the nonlocal boundary value problem for one dimensional
heat equation:

8u(t,x) 0 M(lz,x) :f(t,x), (O<x<l,0<l<l), (1)
ot ox

u(0,x) =u(l,x)+ p(x), 0<x <1,
u(t,0)=0, u,1)=0, 0<r<1.

Using the backward difference approximation for the time

Wt and  the centered difference

derivative =

. . . . . %u(t,x) .
approximation for the spatial second derivative %X) in
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Equation (1), at the point (i,.x, ), we obtain the following
Rothe difference scheme which is accurate of order
0(T+h2) :

U0 ¢,
T i
U =0, =Q0<k<N,
U’ =gx ) 1<n<M-1.

=ft.x) 1<k<NI<n<M-1 (2

Here U,’f denotes the numerical approximation to the
ut,,x,) where

L, =kt, 0<k<N, Nt=1 and X, =nh, 0<n<M,
Mh=1.

exact solution

We can arrange the scheme (2) and obtain the following
system:
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1 o (12 1
[pre e e

:f(ern)’ ISkSM ]S’/EM_L (3)
U, =U,, =0, 0<k<N,
U'-U"=p(x), 1<n<M-1.

The difference scheme (3) can be written in matrix form:

1€£n<s<M -1,

n+l

U,=0, U, =0.

AU, +BU +AU, =¢,
(4)

where ¢, =[00.0..07....0) [. 0=0,,,,4. 8 = p(x,),
1<n<M-1, and ¢n =f(t,x,), 1<k<N,

1<n<M—-1. Here A and B are the matrices of the
form:

A= a and

L aJ(N+1)><(N+1)

L Jd(N+DX(N+1)

c=i+Z=N+2M* U, =[U}U,U.,

n’>>~ n’

Using the idea of the modified Gauss-elimination method,
we can convert the Equation (4) into the following form:

U =a, U n=M-1,...2,1,0. (5)

n+1 n+1 n+l?

This way, the two-step form of the difference scheme in
(4) is transformed to one-step method as in (5). Now, we

need to determine the matrices «,,, and f,,, satisfying

n+l

the last equality. Since U,=aU,+ 5 =0, we can
select ¢ :0(N+1)><(N+1) and S, :0(N+l)xl'
Combining the equalies U, =« U, +p,. ., and

U, , =aU, + [, and the matrix Equation (4), we have

(A+Ba +Aaa ) n+1+(Bﬁn+l+Aaﬁn+l+Aﬁn):¢n‘ (6)

n+l n-n+l

Then, we write

n+l n""n+l

{A+Ba +Aa,a, =0
Bﬁn+1+A nﬁn+l+Aﬂn :¢n’

where 1<n<M -1.

So, we obtain the following pair of formulas:

o, =—(B+Ax,) "' A,
B =B+Aa)" (4, —AB)

where 1<n<M -1.

We note that the stepwise stability is proved in
(lvanauskas et al., 2009) for Bitsadze-Samarskii type
nonlocal problems. Asymptotic stability of numerical
methods are studied in (Tian, 2008) for linear delay
parabolic differential equations. The stability of the both
schemes is proved by analyzing the behavior of the each
iteration matrix that is called the matrix stability. To show
the matrix stability of this method, we give some remarks
and lemmas.

Remark 1

If X, Y, Z T are square block matrices and the matrices
X and S are invertible, then

x v]"

zZ T|
where S is the Schur (Duncan, 1944) complement of
the block inversion and § = (T —ZX 'Y ).

X'+ Xx7'vS'zx ' —x-ys-t

(7)
_S—IZX—I S—l

Remark 2

The symbol || denotes the infinity norm which is

n

= max Z

1<i<n ]:1

A

nxn

=|A

nxn

a;




where A= [al.j]

nxn*

Remark 3

Z .. is called a strictly diagonally dominant (Moraca,
2008), if |Z,,|>r(Z), 1<i<n, where r,(Z) is the sum

of the absolute value of nondiagonal elements on the ith
row of Z .

Remark 4

If Z  is strictly diagonally dominant matrix then it is not

nxn

singular (Savioli et al., 1997) and

- 1
[z <

" min(Z,, - r(2)

1<i<n

STABILITY OF THE FIRST ORDER METHOD

Lemma 1

If A and B are matrices given in (4) then HB’IAH <i.

Proof

Let matrix B be partition be into subblocks to find its
inverse that is

- 4-1

T T

N T
where X =1 =[l], Y =1[0,...,0,—1],
Z =[b,0,...,0],

c
c
T= .
b c

Then,
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XXX xSt
h —S-17X-1 S-1

B—l

—S-171 S

1+1Y57' 71 —nfs?

where S is the Schur complement of this block inversion
and S=T-ZX'Y=T-ZY. Hence, block matrix

multiplication gives B'A= g —;/;;Sll
HB"AH:max{H—YaS*l ,aS*IH}:HaS’l , since YaS™'

is exactly the last row of aS™".

On the other hand,

c b
0
s|” € -1 o - 0 -1]-
b c 0
c b
b ¢
b ¢

Since |c|>|b|, the matrix S s strictly diagonally

dominant. From Remark 4, it follows that HS_IHSW-

Therefore,

Bt Al|=flas < al|s = » 2|5 ]
<ML _pyo 1

e|- o] (N+2M*)-N

_ L
=

so B4 <1.

Lemma 2.

If Ha'nHSI and HB’IAHS% then (I+a,B™'A) is strictly

diagonally dominant and H(I +a,B'A)" H < W .

Proof

Since |@,|<1 and HB"AH <1 we have
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HaﬂB’lAH <|e, HHB’IAH <L, Therefore I+a,B'A is
strictly diagonally dominant. Put Z =1+, B™'A .. Define

r(Z) as in Remark 4. Then, using the Remark 4, we
have

(easar| =2 <
l’I]lIl

~1(2)}
1

1-|e, B4
1

a

n

B—IAH '

Theorem 1

The matrix Equation (5) which we use to solve the
differential Equation (1) is unconditionally stable.

Proof
«, ., is the iteration matrix of the system
Un n+lUn+l n+l (1 0)

and to prove the stability we will show that |¢,,,[ <1 for

al 0<n<M -1, as in (Smith, 1993). We prove it by
induction.

Since o =0 then lor|<1. Moreover,
o, =—(B+Aa)'A=—(B+A 0)'A=-B'A, from
Lemma 1 we already know |@,| = H—B’IAH <1 <I.

Now, assume |e,|<1. On the other hand, from the
Kailath theorem (Kailath, 1980), we can write

(B+Ax)"' =B -B'A(I+aB"'A'aB". Then

we obtain,

o

n+1

=|-(B+Aa,)" 4|
=| B -B"au + a”B-lA)-la”B—l}AH

=|B'A-B'A(U +a, B A)" anB‘lAH

< B‘IAH + HB‘IAHH(I +a B

B‘IAH

45 4+apa 4l
B AHE A sy
54 Hall' 4l +a5 a1}

If we combine the last inequality and Lemma 2, then we
have

g A ]
ar A«[ 1‘2“34\} o f’“[ agulw\} "

Since |a,[<1 and HB"AHS

<lforal 0<n<<M.

<l.

%, we have |a,

n+l

Therefore |

n+1

THE CRANK-NICHOLSON METHOD

To solve the problem (1), we can also use the Crank-
Nicholson difference scheme which is accurate of order

ot +h*):

U0 [y, -+, Ui
— + f(t — x)
T V4 It
1<kLSN1<h<M—1 (12)
U =0, =00<k<N,

U Y =ps) 1<n<M-1

We can arrange the scheme (12), and obtain the

following system:
N L TR AT

{ 77 Tl EN (13)

4=U,=0 0sksN,
U4 =) 1snsM-L.

The difference scheme (13) can be written in matrix form:

=¢, 1<n<M-],
- (14)
U, =0, U, =0.

n+l

{AU +BU +AU



where ¢, =[g7.4.07....0) [, 0=0,.,4. 8] = p(x,),

1Sn<M-1 and ¢ =f@¢ -%,x), 1<k<N,
1<n<M-1.
Here A and B are the matrices of the form:

"o _

a a
A= a a

L a a_(N+l)><(N+l)

_1 0

b c
B = b ¢

L b ¢ J(N+Dx(N+1)
where
a=—sr=—2 b=—ltl=—N+M’, c=1+L=N+M

Using the aforementioned approach, we can convert the
Equation (14) into the following form:

U=a, U, +

n+1~" n+l n+l?

n=M-1,...,2,1,0. (15)

Lemma 3

If A and B are matrices given in (14) and if N >M?,
then HB’IAH <1,

Proof

The matrix B was partition into sub blocks to find its
inverse that is

-1
o[ XY
AN

where

X=1_=[], Y=[0...0,-1], Z=[b.0.....0],
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C
b ¢
T = b c
Then,
B X+XSZXT XS 1+sZE s
—S-ZX S -siz1 S

where S is the Schur complement of this block inversion
and S =T-ZX 'Y =T-ZY.

Hence, block matrix multiplication gives
~-YS7'K -YS7'L

B'A= 1 |, where K and L are
STK STL

submatrices of A and

a a
0 a a
K= , L= )
0 a a

|5" 425K 2} "] s ="K +fs

since —YS™'K is exactly the last row of S™'K and

—YS™'L is exactly the last row of S™'L. On the other
hand,

s

c b
b 0
s|” € -1 o - 0 -1]-
b c 0
c b
b ¢
b ¢

Since |c|>|b|, the matix S s strictly diagonally

dominant. From Remark 4 it follows that HS_IH SW-

Therefore,
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Table 1. The errors for the solutions of Example 1 for some values of M and N.

M#space node N #time node The error by Rothe

The error by C-N

6 40 0.000665509259259  0.00003906273582
7 50 0.000516451478552 0.00002448991067
8 70 0.000376674107145 0.00001275524756
9 90 0.000287896492744 0.00000762113037

|57 <|s & Li| <[ 2
1

<
el =[5}

(21al)

1 2M* M

:(M2+N)—(M2—N) 2 2N’

where [K, L] is the matrix obtained from A by deleting
ts first row. So |B~'A| <% if N2 M>.

Theorem 2

The matrix Equation (15) which we use to solve the
differential Equation (1) is stable, if N > M >.

Proof

Assume N > M ?, then by using the Lemma 3, we obtain
HB"AHS%. By following the steps in the proof of the

Theorem 1, it is seen that the norms of the iteration
matrices are less than unity, that is, a,Hl\Sl for all

0<n<M.

NUMERICAL ANALYSIS

Example 1

ault,x) ou(t,x)
or o’
(0, x) =u(l, x)+x(x—1),0<x <1,
u(?,0)=0, ur,1)=0, 0<r<1L.

=2t —20¢ —1+2¢°, (0<x<10<t<1), (16)

Exact solution of this problem is
U(t,x)=(t>—1/2)x(1—x). The errors when solving
this problem are listed in Table 1 for various values of

time and space nodes. The errors are calculated by the

k
formula m‘”(fk’xn)_Un
0<n<M
0<k<N
The solutions of this problem at x=1/2 are compared
in Figure 1 and the data given in Table 2. The graph of
the solution by the Crank-Nicholson scheme is given in
Figure 2

Example 2.

9 DDy o 126

A7 Ha (1) O<<10e<)
uQ)=(L)—snoGeD), O<x<l,
ut0=Q ue)=0Q O<r<L
(17)
Exact solution of this problem is

U(t,x)= (> +1)sin(x—x*). The errors when solving
this problem are listed in the Table 3 for various values of
time and space nodes. The solutions at x=1/2 of this

problem are given in Table 4. The graph of the solution
by the first order method is given in Figure 3.

CONCLUSION AND FUTURE WORK

Unconditional stability of the first order difference scheme
for the nonlocal boundary value problems for parabolic
differential equation is proved. A useful sufficient
condition is obtained for the stability of the Crank
Nicolson difference scheme for the nonlocal boundary
value problems. Numerical results are provided to
illustrate the accuracy and efficiency of these schemes.

This method gives a very practical way of analyzing the
stability of nonlocal boundary value problems for
parabolic differential equations.

In the future, it may be studied on the matrix stability of
fractional nonlocal boundary value problems for parabolic
differential equations.
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Figure 1. The solutions for the problem (16), when N=20, M=4 at x=1/2 and 0<t<0.4.

Figure 2. The solutions by the Crank-Nicolson method when N=90, M=9.

Table 2. The solutions for the problem (16), when N=20, M=4 at x =1/2 .

k

Exact solution

Solution by Rothe

Solution by C-N

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

-0.125000
-0.124375
-0.122500
-0.119375
-0.115000
-0.109375
-0.102500
-0.094375
-0.085000

-0.12363281250000
-0.12300781250000
-0.12113281250000
-0.11800781250000
-0.11363281250000
-0.10800781250000
-0.10113281250000
-0.09300781250000
-0.08363281250000

-0.12515625000000
-0.12453125000000
-0.12265625000000
-0.11953125000000
-0.11515625000000
-0.10953125000000
-0.10265625000000
-0.09453125000000
-0.08515625000000

Crank-Nicolson Sol

02 g4

4] Q

0.4

825
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Table 3. The errors for the solutions of the problem (17) for some values of M and N .

M #space node

N #time node The error by Rothe

The error by C-N

9
11
15
25
30

90
130
250
650

1000

0.0002255180078
0.0001576646963
0.0000841576084
0.0000320973542
0.0000212795923

0.0001383289906
0.0000894840438
0.0000462926435
0.0000162142703
0.0000112644031

Table 4. The solutions of the problem (17), when N=1000, M=30at x=1/2.

k

Exact solution

Solution by Rothe

Solution By C-N

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.24740395930000
0.24987799890000
0.25730011770000
0.26967031560000
0.28698859280000
0.30925494910000
0.33646938460000
0.36863189940000
0.40574249330000
0.44780116630000
0.49480791860000

0.24741861480366
0.24989738756506
0.25731974802291
0.26968984151623
0.28700781198754
0.30927371304064
0.33648756475956
0.36864937467387
0.40575914560781
0.44781687861759
0.49482257410356

0.24739269489694
0.24987147341118
0.25729383376890
0.26966392653856
0.28698189629827
0.30924779672858
0.33646164784626
0.36862345713749
0.40573322736750
0.44779095959343
0.49479665419710

DSK

(AT SR

035“

Q] e

025 |

02 T

015 —f....-

Figure 3. The solutions of the problem (17) by the Rothe method, when N=90, M=9.
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