
International Journal of the Physical Sciences Vol. 6(24), pp. 5648-5658, 16 October, 2011
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS11.102
ISSN 1992 - 1950 ©2011 Academic Journals

Full Length Research Paper

Reducing multiplication operation and independent
processing for monocular simultaneous localization
and mapping (SLAM) feature state covariance matrix

computation

Mohd. Yamani Idna Idris1*, Hamzah Arof2, Noorzaily Mohamed Noor1, Emran Mohd Tamil1,
Zaidi Razak1 and Ainuddin Wahid1

1
Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia.

2
Faculty of Engineering (Electrical), University of Malaya, Kuala Lumpur, Malaysia.

Accepted 14 September, 2011

Monocular simultaneous localization and mapping (SLAM) research is a study which concentrates on
how to derive position and motion estimates information from tracked features using a single camera.
Before the features can be processed by standard extended Kalman filter (EKF), they have to be
initialized. In the initialization process, the state covariance matrix calculation is found to be the most
time consuming process. This is proven by software profiling method which is used to identify which
section of program demand high processing computation. The execution time is further increased when
the number of features is increased. This is due to the fact that the matrix multiplication involved in
obtaining the state covariance becomes larger when more features are added. In this paper, the author
proposed a new method to reduce the computation time by altering the state covariance matrix formula
by reducing the multiplication operation involved. The proposed method also manipulates the
conventional approach to produce multiplication process which is independent. The independency will
enable future researcher to consider parallel design which would further accelerate the execution time.

Key words: Simultaneous localization and mapping (SLAM), parallel design, matrix multiplication, landmark
initialization, inverse depth parameterization.

INTRODUCTION

Autonomous unmanned vehicles are predicted to be part
of future urban civil and military applications [Albaker and
Rahim, 2011]. One of the important areas for designing
an autonomous vehicle is called simultaneous localiza-
tion and mapping (SLAM). SLAM is a process where a
mobile robot can build a map of an environment and
concurrently use this map to compute its own location. To
achieve SLAM goals, prior researchers have employed
several types of range sensors such as sonar and laser
sensors to be included in SLAM system. However, the
range sensors are facing several disadvantages due to
their high cost and data association difficulty

*Corresponding author. E-mail: yamani@um.edu.my,
yidris@gmail.com. Tel: (603) 79676414.

[Durrant-Whyte and Bailey, 2006]. In the recent years,
vision has become more appealing to the SLAM
community. This is evidenced by a number of vision
SLAM algorithms and methods as reviewed [Idris et al.,
2009]. Vision sensor has been chosen due to its ability to
reduce range sensors data association difficulty by
providing vast amount of information. In addition, vision
sensor is found to be compact, accurate, noninvasive,
cheap, well under-stood and ubiquitous [Davision, 2007].
A SLAM system which use single vision sensor is called
Monocular SLAM. The single camera approach is
suitable for system which requires no lengthy calibration
steps. Though appears attractive, Monocular SLAM is a
Bearing-Only SLAM which only measures the bearing of
image features. The problem with Bearing Only SLAM is
that the depth information is not as straight forward as
acquired by the range sensors. Depth using vision sensor

Idris et al. 5649

Figure 1. Monocular SLAM series of process.

can be estimated by using a feature parallax where a
parallax is a measured angle of an object or captured
rays viewed from two different lines of sight. In
determining the depth information, the robustness of the
new features initialization process has been found to be
the most important problem in Bearing Only SLAM
[Munguía and Grau, 2010]. This initialization problem is
commonly addressed by using delayed and undelayed
approach. Both approaches have their own advantages
and disadvantages such that the delayed approach is
able to reject weak features but has to wait until the
sensor movement generates enough degree of parallax.
The undelayed approach on the other hand benefits from
the information about the sensor orientation from the
beginning.

The downside of the undelayed approach is that the
depth estimation is modeled with huge uncertainty.
Moreover, its computational load grows exponentially
with the number of landmarks [Munguía et al., 2010]. This
is clearly shown when the state covariance matrix com-
putation is done. State covariance matrix computation
formula requires Jacobian matrix to be multiplied
iteratively based on the number of features. The iterative
process increases the matrix size and the multiplication
process. The consequences of many multi-plication
process increases the computational load and processing
time. For that reason, this paper will focus on how to
reduce the multiplication process by altering the original
state covariance matrix formula in order to improve the
robustness of the initialization process.

FEATURE INITIALIZATION EVOLUTION

A monocular SLAM is build up from series of process as
shown in Figure 1. As can be seen, the features are

required to be initialized before they are forwarded to the
estimation process (for example, EKF). This is done to
reduce uncertainty in the landmark range and to ensure
the location of landmarks can be inferred from single
bearing measurement. In the year 2000, Deans and
Hebert [2000] proposed a Delayed initialization approach
which makes use of bundle adjustment technique to
compute optimal least square estimates. The bundle
adjustment technique is to ensure that Kalman filter is
initialized with good estimate of robot state and landmark
locations. Another delayed initialization approach is
proposed by Bailey and Durrant [2006] which modifies
constraint initialization procedure suggested by Williams
et al. [2001]. Bailey’s initialization is delayed in a sense
that the system will wait until base-line is sufficient to
permit Gaussian initialization and become well-
conditioned by using Kullback distance. Other work
related to the delayed approach is presented in the paper
Real-Time 3D SLAM with Wide-Angle Vision by Davison
et al. [2004]. The paper shows that real time SLAM with
single camera is feasible using EKF framework. They
also employed particle filter to estimate the feature depth
that is uncorrelated with the rest of the map. The
distribution of possible depths is updated based on each
new observation until the variance range is small enough
to consider Gaussian estimation. The problem with such
approach is that the initial particles distribution has to
cover the entire possible depth values for a landmark.
This would be complicated when there are many
detected features or when the features are far.

 Another initialization method which is commonly used
by researchers is called undelayed approach. One of the
earliest undelayed approaches is presented by Kwok and
Dissanayake [2004]. The paper proposes that the initial
representation is in the form of multiple hypotheses
distributed along the direction of the bearing

Feature extraction

Feature

initialization

Prediction

Measurement prediction

Matching

Update

5650 Int. J. Phys. Sci.

measurement. For the subsequent measurements, they
use sequential probability ratio test (SPRT) based on
likelihoods to validate the hypotheses. In Sola et al.
[2005], two drawbacks of the Delayed approach are
addressed. The first drawback is the need of criteria to
decide whether or not the baseline is sufficient to permit
Gaussian initialization. Another drawback is that the
initialization has to wait until the criteria are validated. To
ensure the delay is below reasonable limits, the camera
motion cannot be close to the direction of the landmark.
This would be unpractical for outdoor navigation since
straight trajectories are common. For that reason, Sola et
al. [2005] utilize Gaussian Sum approximation that
permits undelayed initialization. Since approximation
representation has the tendency to be inconsistent and
diverge, their work proposes federated information
sharing (FIS) method to minimize the risk. In a more
recent work, Monteil et al. [2006] and Civera et al. [2008]
put forward a concept called inverse depth parameter-
zation (IDP). The key idea of the concept is to produce
measurement equation with high degree of linearity. Their
paper discusses the drawback implied by the work done
in Davison et al. [2003, 2007] which is only applicable for
features that were close to camera. The drawback is
caused by Euclidean XYZ feature parameterization for
low parallax feature that is not well represented by the
Gaussian distribution implied in the EKF. Inverse depth
on the other hand is claimed to allow Gaussian
distribution to cover uncertainty for both low and high
parallax features. Albeit the advantage, IDP suffers from
computational issue since it requires six state vector
parameters (Equation 2) instead of three in Euclidean
XYZ coding (Equation 1).

xi= (Xi Yi Zi)

T
 (1)

yi=(xi yi zi θi øi ρi)

T
 (2)

where xi yi zi = camera optical center; θi = azimuth; øi =
elevation; ρi = inverse depth.

INVERSE DEPTH PARAMETERIZATION FEATURE
INITIALIZATION BACKGROUND

As discussed previously, inverse depth parameterization
technique has been shown to be desirable to be
implemented in a SLAM system. In this paper, the
computational issue involved in inverse depth
parameterization computation will be addressed. Before
discussing the computational issues, background on the
IDP will be presented. Overall IDP flow and formula is
shown in Figure 2. This module will compute 6-D state
vector (yi) as in Equation 2 where xi yi zi is the camera
optical center, θi is the azimuth, φi is elevation and ρi
represent inverse depth. Feature initialization starts with
an initial of 13 state vector (xv) as in Equation 3 and

13×13 covariance matrix (P). The thirteen values consist
of three (x,y,z) camera optical center position (r

wc
), four

(qR,qx,qy,qz) values of quaternion defining orientation
(q

wc
), three values of linear velocity relative to world

frame (v
w
) and another three values of angular velocity

relative to camera frame (w
c
). The process begins when a

point feature (u,v) extracted using algorithm such as
SIFT, SURF, Harris, etc is channeled to radial distortion
model module. The radial distortion model will recover
the ideal projective undistorted coordinates gathered by
the camera. Using the “undistor a point” formula, the
value of the new u and v are computed. The values of u
and v will be used to find hx and hy. Together with hz, the
observation of a point yi from a camera location defines a
ray expressed in the camera frame as h

C
 = (hx hy hz)

T
.

Following that, h
C
 will be multiplied with the values

obtained from quaternion 3D rotation process which will
be used to calculate azimuth θi and elevation φi. To
initialize the covariance matrix (P), similar process done
in the state vector is conducted. However, the covariance
matrix process requires further actions to be performed.
“Undistort Jacobian” formula is utilized to acquire the
∂hu/∂(ud,vd) values which will be used to find the
Jacobian J. After J has been calculated, the new
covariance matrix is computed using the formula
PRES=J*P*J.

v

CC

k

WW

k

CC

k

WC

k

W

k

W

k

WC

k

C

k

W

k

WC

k

WC

k

v x
Vv

tqq

tVvr

v

q

r

f =





















Ω+

+

∆Ω+×

∆++

=





















=

+

+

+

+

ω

ω

ω

))((

)(

1

1

1

1

 (3)

INVERSE DEPTH PARAMETERIZATION FEATURE
INITIALIZATION SOFTWARE PROFILING

A software profiling tool has been chosen in this paper to
analyze the computational issue involved in the IDP
feature initialization. Software profiling is a form of
dynamic programming analysis to determine which
section of program demand high processing computation.
The result from the profiling is shown in Figure 3. As can
be seen, the calculation to determine state covariance
matrix (P_RES) consume the most processing time after
several iteration. The reason behind the high processing
time is caused by the increasing matrix size. Covariance
matrix (Pk|k) computation starts with 13×13 diagonal
matrixes as discussed previously. When features are
inserted, another six values (as in yi in Equation 2) will be
added into the full state vector, x=(xv

T
 y1

T
 y2

T
….. yn

T
). The

insertion of more features will increase the size of the full
state vector which leads to the increment of the matrix
size. For instance, if one hundred features are included, a
covariance matrix with size 613×613 will be used for the
computation (that is, 100 (from number of features) × 6

Idris et al. 5651

Figure 2. Inverse depth parameterization feature initialization.

(from yi; 6-D vector) + 13 (that is, from fv = 613). The
increase in matrix size means that larger matrix

multiplication has to be performed on the PRES = J*P*J
which eventually increase the execution time.

Memory Register

Full state vector

x=xv
T
,y1

T
, y2

T
, ……yn

T
,

Covariance Matrix; P

Feature

extraction

(SIFT, FAST, SURF

etc.)

Feature Initialization

Internal register

camera position;

xv(1:3)=x,y,z

Register Pv;

Covariance

quaternion

xv(4:7)=

qR,qx,qy,qz,

hx=u0-u/(-f/d);

hy=v0-v/(-f/d)

hz=1

multiplier

Calculate

azimuth θi and

elevation φi,

Radial distortion model

(Recover the ideal projective undistorted coordinates)

Undistort jacobian; ∂hu/∂(ud,vd)

Undistort a point

Feature Covariance

Point features

(u, v) New feature (6-D

state vector)

y (r
WC

,q
WC

, h, ρ0)

=

(xi yi zi θi φi ρi)
T

(camera optical

center, azimuth,

elevation,

inverse depth)

Quaternion

for 3D

Rotation

Internal ROM

ImageNoise

Inverse depth

initial guest;

lambda_init

std

deviation;

std_lambda

Camera

Parameters;

f = focal length;

Cx = u0 = x optical centre;

Cy = v0 = y optical centre;

 k1,k2 = radial distortion

 coefficients;

 d= pixel size in mm;

The orthogonal matrix corresponding to a rotation

by the unit quaternion

5652 Int. J. Phys. Sci.

Figure 3. Inverse depth parameterization software profiling result.

INVERSE DEPTH PARAMETERIZATION AND MATRIX
MULTIPLICATION

Matrix multiplication has long been studied by many
researchers mainly for the reason to increase their
computational speed. Classical algorithm, Winograd’s
algorithm and Strassen’s algorithm has been discussed
in our previous paper [Idris et al., 2010a, 2011]. Apart
from that, several matrix multiplication implementations
on FPGA are also reviewed. Among researchers utilized
the FPGA to improve matrix multiplication are Prasanna
and Tsai [1991], Mencer et al. [2001], Amira et al. [2001],
Jang et al. [2002], Bravo et al. [2007] and Zhuo and

Prasanna [2004, 2007]. We have also proposed parallel
method using FPGA to improve the matrix multiplication
computation in the paper. In this paper, another possible
approach is investigated to find alternative solution for
improving the matrix multiplication which subsequently
will speed up the overall IDP process. The research
concentrates on how the most time consuming state
covariance matrix formula can be interpreted in a simpler
way and can be calculated independently. The purpose is
to reduce the computation process as well as to allow
parallel processing.

Prior to the proposed solution, a discussion on how
original state covariance matrix formula affects the overall

Idris et al. 5653

Figure 4. Pseudocode for calculating state covariance (P).

Table 1. Matrix size increment.

 1
st

 Iteration matrix size 2
nd

 Iteration matrix size 3
rd

 Iteration matrix size n
th

 Iteration matrix size

J 19×16 25×22 31×28 19+(6)(n-1)×16+(6)(n-1)

P 16×16 22×22 28×28 16+(6)(n-1)×16+(6)(n-1)

J’ 16×19 22×25 28×31 16+(6)(n-1)×19+(6)(n-1)

Figure 5. Number of multiplication operation needed to solve state covariance

matrix using classical approach.

computation is carried out. For each feature, dydxv (that
is, dy/dr

wc
, dy/dq

wc
, 0,….,0) and dydhd (that is, dy/dh,

dy/dρ) of the Jacobian (J) are calculated. Each dydxv has
a matrix size of 6×13 and dydhd has a matrix size of 6×3.
A pseudocode on how the state covariance (P) is

calculated is presented as Figure 4. The pseudocode
shows that the matrix size is increasing every time a new
feature is inserted. The matrix size increment is shown in
Table 1 and Figure 5 illustrates how many multiplications
are needed when classical matrix multiplication approach

dydxv=[dydxv1 dydxv2 dydxv3 …… dydxv_k]; % each dyddxv_k has constant 6x13 matrix size
dydhd=[dydhd1 dydhd2 dydhd3 …… dydhd_k]; % each dyddxv_k has constant 6x3 matrix size

for k=1:numfeat % number of features
 J = [eye(size(P,2)) zeros(size(P,1),3); % Initial P has 13x13 matrix size & will increase
 dydxv(1:6,k*13-12:k*13) zeros(6,(size(P,2)-13))dydhd(1:6,k*3-2:k*3)];

 P = [P zeros(size(P,2),3);
 zeros(3,size(P,2)) Padd]; % Padd has constant 3x3 matrix size

 P = J*P*J';
end

 19

16

J

 16

16

P

 19

16

P

19*16*16 = 4864 ×

 19

16

JP

 16

19

J’

 19

19

JPJ’

19*19*16 = 5776 X

 25

22

J

 22

22

P

 25

22

P

25*22*22 = 12100 X

 22

22

JP

 22

25

J’

 25

25

JPJ’

25*25*22 = 13750 X

 31

28

J

 28

28

P

 31

28

P

31*28*28 = 24304 X

 31

28

JP

 28

31

J’

 31

31

JPJ’

31*31*28 = 26908 X

1
st

Iteration

2
nd

Iteration

3
rd

Iteration

+

+

+

5654 Int. J. Phys. Sci.

Figure 6. Pseudocode of the altered state covariance matrix.

is used. For three iterations, it can be seen that
4864+5776+12100+13750+24304+26908=87702
multiplication operation are needed.

PROPOSED APPROACH

Based on Figure 4 pseudocode, it can be seen that several
problems could affect the processing time. The insertion of zero into
the matrix J and P to suite the covariance matrix formula increase
the number of operation in the program. This type of problem has
been addressed by a typical approach from Zienkiewicz et al.
[1971] which avoids multiplication of zero term to save time. Other
problem perceived is the self matrix multiplication in P=PJP’ which
is expected to cause exponential growth problem every time the
program iterates. The same formula is also self reliant which will
cause the subsequent process to wait for prior P to finish computing
before it can proceed.

In this paper, the aforementioned problems will be reduced. The
original state covariance matrix formula is altered to avoid
exponential growth problem. At the same time, a computation which
is not self reliant is proposed. The purpose is to avoid waiting and
to be able to process independently. Independent processing is the
key to multi and parallel processing which will further speed-up the
execution time. The pseudocode and diagram to illustrate the
proposed design is depicted in Figures 6 and 7.

The number of multiplication involved in the proposed approach
is illustrated in Figure 8. Instead of multiplying the same number,
value that has been multiplied before such as dvP is stored in a
memory. A memory look up approach is utilized to reduce
multiplication operation. Table 2 shows an example of number of
multiplication operation used for calculating three features. Using

the proposed technique, there are
(1014+1014+54+108)×3+468×3×3 = 10,782 multiplication operation
needs to be performed.

PROPOSED APPROACH RESULTS AND
COMPARISON

In general, the number of multiplication operation for n
features can be compared using the pseudocode in
Figure 9. The graph which compares the number of
multiplication is shown in Figure 10. From the figure, it
can be seen that computation of state covariance matrix
using classic matrix multiplication increases
exponentially. The proposed approach on the other hand,
does not show large increment. This clearly shows that
the proposed method is able to perform with much lesser
multiplication operation. The key idea is to reuse the
same calculated values which are stored in memory.
Furthermore, the suggested approach is designed to
avoid multiplication with zero which could be affecting the
overall cycle time.

FUTURE WORK: PARALLEL PROCESSING DESIGN

As stated in the prior sections, the proposed approach
reduces the multiplication operation. At the same time,

dydxv=[dydxv1 dydxv2 dydxv3 …… dydxv_k]; % each dyddxv_k has constant 6 × 13 matrix size
dydhd=[dydhd1 dydhd2 dydhd3 …… dydhd_k]; % each dyddxv_k has constant 6x3 matrix size

for n=1:numfeat % number of features
 left=dydxv(1:6,n*13-12:n*13)*P(1:13,1:13); % dv_n X P
 right=P(1:13,1:13)*dydxv(1:6,n*13-12:n*13)'; % P X dv_n'
 rightdd=dydhd(1:6,n*3-2:n*3)*Padd*dydhd(1:6,n*3-2:n*3)'; %dd_n X Pad X dd_n'
 % Pad has constant 3x3 matrix size

 for k=1:numfeat
 dvPdvp=left*dydxv(1:6,k*13-12:k*13)'; %dv_n X P X dv_k'
 % store values in memory
 dvPdvp1=[dvPdvp1 dvPdvp];
 end

 % select diagonal from memory
 leftdv=dvPdvp1(1:6,6*numfeat*n-(6*numfeat-1)+m1:(6*numfeat*n-(6*numfeat-1))+5+m1);
 m1=m1+6;
 bottomright=leftdv+rightdd; % (dv X P X dv') + (dd X Pad X dd')

 % store values in memory
 ………
 ………

end

%Rearange P2 addresses
………

Idris et al. 5655

Figure 7. Altered state covariance matrix.

Figure 8. Number of multiplication operation needed to solve state

covariance matrix using proposed approach.

 6

13

dv

 13

13

P

 6

13

dvP

6*13*13 = 1014 X

 13

13

P

 13

6

dv’

13*6*13 = 1014 X

 13

6

Pdv’

 6

3

dd

 3

3

Pad

6*3*3 = 54 X

 6

3

ddPad

ddPaddd’

6*6*3 = 108 X

 6

6

 6

3

ddPad

 3

6

dd’

dvPdv’

6*6*13 = 468 X

 6

6

 6

13

dvP

 13

6

dv’

5656 Int. J. Phys. Sci.

Table 2. Number of multiplication operation for three features.

P 1014 1014 1014

1014 468+54+108 468 468

1014 468 468+54+108 468

1014 468 468 468+54+108

Figure 9. Number of multiplication comparison pseudocode.

Figure 10. Number of multiplication comparison.

independent processing has been put into consideration
to speed up the execution time. The purpose of inde-
pendent processing is to allow each or selected features
to be processed simultaneously instead of process in
sequence as in normal general processor approach. To
realize the independent processing, FPGA can be used

to implement the parallel architecture. Figure 11 shows a
parallel design that can be implemented to improve the
execution time. The design separate the odd and even
number features to be processed simultaneously. Though
only two (odd and even) parallel processing is illustrated,
more parallelism can be employed depending on the

% number of multiplication using normal classical matrix multiplication approach
for n=1:numfeat % number of features
 normal1=((19+6*(n-1))*(16+6*(n-1)) *(16+6*(n-1))) + ((19+6*(n-1))*(19+6*(n-1))*(16+6*(n-1)));
 normal2=normal2+normal1;
 featnum=[featnum n];
 normalmult=[normalmult normal2];
end

% number of multiplication using proposed approach
for k=1:numfeat % number of features
 proposedmult1= (6*13*13+13*6*13+6*3*3+6*6*3+(6*6*13)*k)*k;
 proposedmult=[proposedmult proposedmult1];
end

Idris et al. 5657

Figure 11. Parallel design.

capacity of the device chosen.

Conclusion

The purpose of this paper is to come out with an
approach that will be able to speed-up the most time
consuming process in the monocular SLAM feature
initialization stage. First, an overview of SLAM is
presented at the beginning of this paper. This is followed
by feature initialization evolution review which discusses
two most common initialization approaches. The two
approaches are delayed and undelayed initialization
approach. The undelayed inverse depth parameterization
(IDP) approach is chosen since it is able to overcome
delayed approach problem related to the need for a
criteria to decide sufficient baseline to permit Gaussian
initialization. The undelayed approach also reduces the
wait before criteria are validated problem faced by the
delayed approach. A software profiling tool is then utilized
to search for the most time consuming process in the
IDP. From the tool, it can be observed that state
covariance matrix calculation contribute to the extensive
processing time. For that reason, an approach to reduce
such problem is proposed. The number of multiplication
involved to calculate the state covariance matrix using
classical matrix multiplication is analyzed. Then, the
proposed method is explained and their result is
presented. From the result, it can be shown that the
proposed method requires much less multiplication
operation compared to the original state covariance

matrix formula using classical matrix approach. The
reduction of the number of multiplication operation is
expected to speed up the overall feature initialization
process. The proposed method is also designed in such
a way that enables each feature to be processed
independently. This will enable future development using
possible parallel architecture available in FPGA or other
multiprocessing platform.

ACKNOWLEDGMENTS

This project is funded by Ministry of Science Technology
and Innovation (MOSTI) under e-Science Fund (11-02-
03-1047) and University of Malaya Research Grant
(RG014-09ICT).

REFERENCES

Albaker BM, Rahim NA (2011). Autonomous Unmanned Aircraft

Collision Avoidance System Based On Geometric Intersection Int. J.
Physical Sci., 6(3): 391-401.

Amira A, Bouridane A, Milligan P (2001). Accelerating Matrix Product on
Reconfigurable Hardware for Signal Processing. Field-Programmable
Logic and Applications (FPL), pp. 101-111.

Bailey T (2003). Constrained Initialisation for Bearing-Only SLAM IEEE
International Conference on Robotics and Automation, 2003.
Proceedings. ICRA '03.

Bailey T, Durrant WH (2006). Simultaneous localization and mapping:
part II. IEEE Rob. Autom. Mag., 13: 108–117.

Bravo I, Jimenez P, Mazo M, Lazaro JL, de las Heras JJ, Gardel A
(2007). Different Proposals to Matrix Multiplication Based on FPGAs
IEEE International Symposium on Industrial Electronics. ISIE 2007:
Digital Object Identifier: 10.1109/ISIE.2007.4374862, pp. 1709-1714.

 5658 Int. J. Phys. Sci.

Civera J, Davison AJ, Montiel JM (2008). Inverse Depth Parametrization

for Monocular SLAM IEEE Trans. Robotics, 24(5): 932-945.
Davison AJ, Cid YG, Kita N (2004). Real-Time 3D SLAM with Wide-

Angle Vision 5th IFAC/EURON Symposium on Intelligent
Autonomous Vehicles Instituto Superior Técnico, Lisboa.

Davison AJ, Reid ID, Molton ND, Stasse O (2007). MonoSLAM: Real-
Time Single Camera SLAM. IEEE Trans. Pattern Anal. Machine
Intelligence, DOI: 10.1109/TPAMI.2007.1049, 29(6):1052-1067.

Davison AJ (2003). Real-Time Simultaneous Localization and Mapping
with a Single Camera. Proc. Int. Conf. Comput. Vision.

Deans M, Hebert M (2000). Experimental comparison of techniques for
localization and mapping using a bearing only sensor International
Conference on Experimental Robotics, Honolulu, Hawaii.

Durrant-Whyte H, Bailey T (2006). Simultaneous localization and
mapping: part I. IEEE Rob. Autom. Mag., 13: 99–110.

Idris MYI, Arof H, Tamil EM, Noor NM, Razak Z (2009). Review of
Feature Detection Techniques for Simultaneous Localization and
Mapping and System on Chip Approach. Inf. Technol. J. DOI:
10.3923/itj.2009.250.262, 8(3): 250-262.

Idris MYI, Arof H, Tamil EM, Noor NM, Razak Z (2010). Parallel Matrix
Multiplication Design for Monocular SLAM Fourth Asia International
Conference on Mathematical/Analytical Modelling and Computer
Simulation, AMS2010: 492-497.

Idris MYI, Arof H, Noor NM, Tamil EM, Razak Z (2011).

Improving

Monocular SLAM Inverse Depth Parameterization Computation Time
via Software Profiling and Parallel Matrix Multiplication International
J. Innov. Comput. Inform. Control ISSN, 1349-4198 7(12).

Jang JW, Choi S, Prasanna VK (2002). Area and Time Efficient
Implementation of Matrix Multiplication on FPGAs, Proc. First IEEE
Int. Conf. Field Programmable Technol.

Kwok NM, Dissanayake G (2004). An Efficient Multiple Hypothesis Filter

for Bearing-Only SLAM Proceedings of 2004 IEEElRSJ International
Conference on Intelligent Robots and Systems September 28-
October 2, 2004, Sendal, Japan.

Mencer O, Morf M, Flynn M, (2001). PAM-Blox: High Performance
FPGA Design for Adaptive Computing, Proc. PDCS, 2001.

Monteil JMM, Civera J, Davison AJ (2006). Unified Inverse Depth
Parametrization for Monocular SLAM. In Proceedings of Robotics:
Science and Systems, August 16th-19th, 2006. Pennsylvania, USA

Munguía R, Grau (2010). A Concurrent Initialization for Bearing-Only
SLAM sensors. ISSN 1424-8220.

Prasanna VK, Tsai Y (1991). On Synthesizing Optimal Family of Linear
Systolic Arrays for Matrix Multiplication, IEEE Trans. Comput., 40(6):
770-774.

Williams S, Dissanayake G, Durrant-Whyte H (2001). Constrained
Initialisation of the Simultaneous Localisation and Mapping Algorithm.
In International Conference on Field and Service Robotics: 315–330.

Zienkiewicz OC, Taylor RL, Too JM (1971). Reduced Integration
Technique In General Analysis Of Plates And Shells. Int. J. Numer.
Methods Eng., DOI: 10.1002/nme.1620030211, 3: 275–290.

Zhuo L, Prasanna VK (2004). Scalable and Modular Algorithms for
Floating-Point Matrix Multiplication on FPGAs, Parallel and
Distributed Processing Symposium, International, 18th International
Parallel and Distributed Processing Symposium (IPDPS'04), ISBN: 0-
7695-2132-0, DOI 10.1109/IPDPS.2004.1303036}, 1: 92a.

Zhuo L, Prasanna (2007). V.K. Scalable and Modular Algorithms for
Floating-Point Matrix Multiplication on Reconfigurable Computing
Systems IEEE Transactions on Parallel and Distributed Systems,
18(4), April 2007:433-448 Digital Object Identifier 10.1109/TPDS.
2007.1001.

