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Monocular simultaneous localization and mapping (SLAM) research is a study which concentrates on 
how to derive position and motion estimates information from tracked features using a single camera. 
Before the features can be processed by standard extended Kalman filter (EKF), they have to be 
initialized. In the initialization process, the state covariance matrix calculation is found to be the most 
time consuming process. This is proven by software profiling method which is used to identify which 
section of program demand high processing computation. The execution time is further increased when 
the number of features is increased. This is due to the fact that the matrix multiplication involved in 
obtaining the state covariance becomes larger when more features are added. In this paper, the author 
proposed a new method to reduce the computation time by altering the state covariance matrix formula 
by reducing the multiplication operation involved. The proposed method also manipulates the 
conventional approach to produce multiplication process which is independent. The independency will 
enable future researcher to consider parallel design which would further accelerate the execution time. 
 
Key words: Simultaneous localization and mapping (SLAM), parallel design, matrix multiplication, landmark 
initialization, inverse depth parameterization. 

 
 
INTRODUCTION 
 
Autonomous unmanned vehicles are predicted to be part 
of future urban civil and military applications [Albaker and 
Rahim, 2011]. One of the important areas for designing 
an autonomous vehicle is called simultaneous localiza-
tion and mapping (SLAM). SLAM is a process where a 
mobile robot can build a map of an environment and 
concurrently use this map to compute its own location. To 
achieve SLAM goals, prior researchers have employed 
several types of range sensors such as sonar and laser 
sensors to be included in SLAM system. However, the 
range sensors are facing several disadvantages due to 
their    high     cost     and     data    association    difficulty  
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[Durrant-Whyte and Bailey, 2006]. In the recent years, 
vision has become more appealing to the SLAM 
community. This is evidenced by a number of vision 
SLAM algorithms and methods as reviewed [Idris et al., 
2009]. Vision sensor has been chosen due to its ability to 
reduce range sensors data association difficulty by 
providing vast amount of information. In addition, vision 
sensor is found to be compact, accurate, noninvasive, 
cheap, well under-stood and ubiquitous [Davision, 2007]. 
A SLAM system which use single vision sensor is called 
Monocular SLAM. The single camera approach is 
suitable for system which requires no lengthy calibration 
steps. Though appears attractive, Monocular SLAM is a 
Bearing-Only SLAM which only measures the bearing of 
image features. The problem with Bearing Only SLAM is 
that the depth information is not as straight forward as 
acquired by the range sensors. Depth using vision sensor  
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Figure 1. Monocular SLAM series of process. 

 
 
 

can be estimated by using a feature parallax where a 
parallax is a measured angle of an object or captured 
rays viewed from two different lines of sight. In 
determining the depth information, the robustness of the 
new features initialization process has been found to be 
the most important problem in Bearing Only SLAM 
[Munguía and Grau, 2010]. This initialization problem is 
commonly addressed by using delayed and undelayed 
approach. Both approaches have their own advantages 
and disadvantages such that the delayed approach is 
able to reject weak features but has to wait until the 
sensor movement generates enough degree of parallax. 
The undelayed approach on the other hand benefits from 
the information about the sensor orientation from the 
beginning.  

The downside of the undelayed approach is that the 
depth estimation is modeled with huge uncertainty. 
Moreover, its computational load grows exponentially 
with the number of landmarks [Munguía et al., 2010]. This 
is clearly shown when the state covariance matrix com-
putation is done. State covariance matrix computation 
formula requires Jacobian matrix to be multiplied 
iteratively based on the number of features. The iterative 
process increases the matrix size and the multiplication 
process. The consequences of many multi-plication 
process increases the computational load and processing 
time. For that reason, this paper will focus on how to 
reduce the multiplication process by altering the original 
state covariance matrix formula in order to improve the 
robustness of the initialization process. 
 
 
FEATURE INITIALIZATION EVOLUTION 
 
A monocular SLAM is build up from series of process as 
shown in Figure 1. As  can  be  seen,   the   features   are  

required to be initialized before they are forwarded to the 
estimation process (for example, EKF). This is done to 
reduce uncertainty in the landmark range and to ensure 
the location of landmarks can be inferred from single 
bearing measurement. In the year 2000, Deans and 
Hebert [2000] proposed a Delayed initialization approach 
which makes use of bundle adjustment technique to 
compute optimal least square estimates. The bundle 
adjustment technique is to ensure that Kalman filter is 
initialized with good estimate of robot state and landmark 
locations. Another delayed initialization approach is 
proposed by Bailey and Durrant [2006] which modifies 
constraint initialization procedure suggested by Williams 
et al. [2001]. Bailey’s initialization is delayed in a sense 
that the system will wait until base-line is sufficient to 
permit Gaussian initialization and become well-
conditioned by using Kullback distance. Other work 
related to the delayed approach is presented in the paper 
Real-Time 3D SLAM with Wide-Angle Vision by Davison 
et al. [2004].  The paper shows that real time SLAM with 
single camera is feasible using EKF framework. They 
also employed particle filter to estimate the feature depth 
that is uncorrelated with the rest of the map. The 
distribution of possible depths is updated based on each 
new observation until the variance range is small enough 
to consider Gaussian estimation. The problem with such 
approach is that the initial particles distribution has to 
cover the entire possible depth values for a landmark. 
This would be complicated when there are many 
detected features or when the features are far. 

 Another initialization method which is commonly used 
by researchers is called undelayed approach. One of the 
earliest undelayed approaches is presented by Kwok and 
Dissanayake [2004]. The paper proposes that the initial 
representation is in the form of multiple hypotheses 
distributed     along    the    direction     of     the    bearing  
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measurement. For the subsequent measurements, they 
use sequential probability ratio test (SPRT) based on 
likelihoods to validate the hypotheses. In Sola et al. 
[2005], two drawbacks of the Delayed approach are 
addressed. The first drawback is the need of criteria to 
decide whether or not the baseline is sufficient to permit 
Gaussian initialization. Another drawback is that the 
initialization has to wait until the criteria are validated. To 
ensure the delay is below reasonable limits, the camera 
motion cannot be close to the direction of the landmark. 
This would be unpractical for outdoor navigation since 
straight trajectories are common. For that reason, Sola et 
al. [2005] utilize Gaussian Sum approximation that 
permits undelayed initialization. Since approximation 
representation has the tendency to be inconsistent and 
diverge, their work proposes federated information 
sharing (FIS) method to minimize the risk. In a more 
recent work, Monteil et al. [2006] and Civera et al. [2008] 
put forward a concept called inverse depth parameter-
zation (IDP). The key idea of the concept is to produce 
measurement equation with high degree of linearity. Their 
paper discusses the drawback implied by the work done 
in Davison et al. [2003, 2007] which is only applicable for 
features that were close to camera. The drawback is 
caused by Euclidean XYZ feature parameterization for 
low parallax feature that is not well represented by the 
Gaussian distribution implied in the EKF. Inverse depth 
on the other hand is claimed to allow Gaussian 
distribution to cover uncertainty for both low and high 
parallax features. Albeit the advantage, IDP suffers from 
computational issue since it requires six state vector 
parameters (Equation 2) instead of three in Euclidean 
XYZ coding (Equation 1).  
 
xi= (Xi Yi Zi)

T
                           (1) 

 
yi=(xi yi zi  θi  øi  ρi)

T
             (2) 

  
where xi yi zi  = camera optical center; θi = azimuth; øi = 
elevation; ρi = inverse depth. 
 
 
INVERSE DEPTH PARAMETERIZATION FEATURE 
INITIALIZATION BACKGROUND 
 
As discussed previously, inverse depth parameterization 
technique has been shown to be desirable to be 
implemented in a SLAM system. In this paper, the 
computational issue involved in inverse depth 
parameterization computation will be addressed. Before 
discussing the computational issues, background on the 
IDP will be presented. Overall IDP flow and formula is 
shown in Figure 2. This module will compute 6-D state 
vector (yi) as in Equation 2 where xi yi zi is the camera 
optical center, θi is the azimuth, φi is elevation and ρi 
represent inverse depth. Feature initialization starts with 
an initial of  13  state  vector  (xv)  as  in  Equation  3  and 

 
 
 
 
13×13 covariance matrix (P). The thirteen values consist 
of three (x,y,z) camera optical center position (r

wc
), four 

(qR,qx,qy,qz) values of quaternion defining orientation 
(q

wc
), three values of linear velocity relative to world 

frame (v
w
) and another three values of angular velocity 

relative to camera frame (w
c
). The process begins when a 

point feature (u,v) extracted using algorithm such as 
SIFT, SURF, Harris, etc is channeled to radial distortion 
model module. The radial distortion model will recover 
the ideal projective undistorted coordinates gathered by 
the camera. Using the “undistor a point” formula, the 
value of the new u and v are computed. The values of u 
and v will be used to find hx and hy. Together with hz, the 
observation of a point yi from a camera location defines a 
ray expressed in the camera frame as h

C
 = (hx hy hz)

T
. 

Following that, h
C
 will be multiplied with the values 

obtained from quaternion 3D rotation process which will 
be used to calculate azimuth θi and elevation φi. To 
initialize the covariance matrix (P), similar process done 
in the state vector is conducted. However, the covariance 
matrix process requires further actions to be performed. 
“Undistort Jacobian” formula is utilized to acquire the 
∂hu/∂(ud,vd) values which will be used to find the 
Jacobian J. After J has been calculated, the new 
covariance matrix is computed using the formula 
PRES=J*P*J. 
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INVERSE DEPTH PARAMETERIZATION FEATURE 
INITIALIZATION SOFTWARE PROFILING 
 

A software profiling tool has been chosen in this paper to 
analyze the computational issue involved in the IDP 
feature initialization. Software profiling is a form of 
dynamic programming analysis to determine which 
section of program demand high processing computation. 
The result from the profiling is shown in Figure 3. As can 
be seen, the calculation to determine state covariance 
matrix (P_RES) consume the most processing time after 
several iteration. The reason behind the high processing 
time is caused by the increasing matrix size. Covariance 
matrix (Pk|k) computation starts with 13×13 diagonal 
matrixes as discussed previously. When features are 
inserted, another six values (as in yi in Equation 2) will be 
added into the full state vector, x=(xv

T
 y1

T
 y2

T
….. yn

T
). The 

insertion of more features will increase the size of the full 
state vector which leads to the increment of the matrix 
size. For instance, if one hundred features are included, a 
covariance matrix with size 613×613 will be used for the 
computation (that is, 100 (from  number  of  features)  × 6



Idris et al.          5651 
 
 
 

 
 
Figure 2. Inverse depth parameterization feature initialization. 

 
 
 

(from yi; 6-D vector) + 13 (that is, from fv = 613). The 
increase    in    matrix   size   means   that   larger   matrix 

multiplication has to be performed on the PRES = J*P*J 
which eventually increase the execution time.  
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Figure 3. Inverse depth parameterization software profiling result. 

 
 
 
INVERSE DEPTH PARAMETERIZATION AND MATRIX 
MULTIPLICATION  
 
Matrix multiplication has long been studied by many 
researchers mainly for the reason to increase their 
computational speed. Classical algorithm, Winograd’s 
algorithm and Strassen’s algorithm has been discussed 
in our previous paper [Idris et al., 2010a, 2011]. Apart 
from that, several matrix multiplication implementations 
on FPGA are also reviewed. Among researchers utilized 
the FPGA to improve matrix multiplication are Prasanna 
and Tsai [1991], Mencer et al. [2001], Amira et al. [2001], 
Jang et al.   [2002],  Bravo  et  al.  [2007]  and  Zhuo  and 

Prasanna [2004, 2007]. We have also proposed parallel 
method using FPGA to improve the matrix multiplication 
computation in the paper. In this paper, another possible 
approach is investigated to find alternative solution for 
improving the matrix multiplication which subsequently 
will speed up the overall IDP process. The research 
concentrates on how the most time consuming state 
covariance matrix formula can be interpreted in a simpler 
way and can be calculated independently. The purpose is 
to reduce the computation process as well as to allow 
parallel processing.  

Prior to the proposed solution, a discussion on how 
original state covariance matrix formula affects the overall  
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Figure 4. Pseudocode for calculating state covariance (P). 

 
 
 

Table 1. Matrix size increment. 
 

 1
st

 Iteration matrix size 2
nd

 Iteration matrix size 3
rd

 Iteration matrix size n
th

 Iteration matrix size 

J 19×16 25×22 31×28 19+(6)(n-1)×16+(6)(n-1) 

P 16×16 22×22 28×28 16+(6)(n-1)×16+(6)(n-1) 

J’ 16×19 22×25 28×31 16+(6)(n-1)×19+(6)(n-1) 

 
 
 

 
 
Figure 5. Number of multiplication operation needed to solve state covariance 

matrix using classical approach. 

 
 
 
computation is carried out.  For each feature, dydxv (that 
is, dy/dr

wc
, dy/dq

wc
, 0,….,0) and dydhd (that is, dy/dh, 

dy/dρ) of the Jacobian (J) are calculated. Each dydxv has 
a matrix size of 6×13 and dydhd has a matrix size of 6×3. 
A pseudocode  on   how   the   state   covariance   (P)   is 

calculated is presented as Figure 4. The pseudocode 
shows that the matrix size is increasing every time a new 
feature is inserted. The matrix size increment is shown in 
Table 1 and Figure 5 illustrates how many multiplications 
are needed when classical matrix multiplication approach  

dydxv=[dydxv1 dydxv2 dydxv3 ……  dydxv_k]; % each dyddxv_k has constant 6x13 matrix size  
dydhd=[dydhd1 dydhd2 dydhd3 ……  dydhd_k]; % each dyddxv_k has constant 6x3 matrix size 
 
for k=1:numfeat % number of features 
    J = [eye(size(P,2))         zeros(size(P,1),3); % Initial P has 13x13 matrix size & will increase 
        dydxv(1:6,k*13-12:k*13) zeros(6,(size(P,2)-13))dydhd(1:6,k*3-2:k*3)]; 
  
    P = [P  zeros(size(P,2),3);    
        zeros(3,size(P,2)) Padd]; % Padd has constant 3x3 matrix size 
     
    P = J*P*J'; 
end 
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Figure 6. Pseudocode of the altered state covariance matrix. 

 
 
 

is used. For three iterations, it can be seen that 
4864+5776+12100+13750+24304+26908=87702 
multiplication operation are needed.   
 
 
PROPOSED APPROACH 
 
Based on Figure 4 pseudocode, it can be seen that several 
problems could affect the processing time. The insertion of zero into 
the matrix J and P to suite the covariance matrix formula increase 
the number of operation in the program. This type of problem has 
been addressed by a typical approach from Zienkiewicz et al. 
[1971] which avoids multiplication of zero term to save time. Other 
problem perceived is the self matrix multiplication in P=PJP’ which 
is expected to cause exponential growth problem every time the 
program iterates. The same formula is also self reliant which will 
cause the subsequent process to wait for prior P to finish computing 
before it can proceed.  

In this paper, the aforementioned problems will be reduced. The 
original state covariance matrix formula is altered to avoid 
exponential growth problem. At the same time, a computation which 
is not self reliant is proposed. The purpose is to avoid waiting and 
to be able to process independently. Independent processing is the 
key to multi and parallel processing which will further speed-up the 
execution time. The pseudocode and diagram to illustrate the 
proposed design is depicted in Figures 6 and 7. 

The number of multiplication involved in the proposed approach 
is illustrated in Figure 8. Instead of multiplying the same number, 
value that has been multiplied before such as dvP is stored in a 
memory. A memory look up approach is utilized to reduce 
multiplication operation. Table 2 shows an example of number of 
multiplication operation used for  calculating  three  features.  Using 

the proposed technique, there are 
(1014+1014+54+108)×3+468×3×3 = 10,782 multiplication operation 
needs to be performed.  
 
 
PROPOSED APPROACH RESULTS AND 
COMPARISON 
 
In general, the number of multiplication operation for n 
features can be compared using the pseudocode in 
Figure 9. The graph which compares the number of 
multiplication is shown in Figure 10. From the figure, it 
can be seen that computation of state covariance matrix 
using classic matrix multiplication increases 
exponentially. The proposed approach on the other hand, 
does not show large increment. This clearly shows that 
the proposed method is able to perform with much lesser 
multiplication operation. The key idea is to reuse the 
same calculated values which are stored in memory. 
Furthermore, the suggested approach is designed to 
avoid multiplication with zero which could be affecting the 
overall cycle time. 

 
 
FUTURE WORK: PARALLEL PROCESSING DESIGN 
 
As stated in the prior sections, the proposed approach 
reduces the multiplication  operation.  At  the  same  time,  

dydxv=[dydxv1 dydxv2 dydxv3 ……  dydxv_k]; % each dyddxv_k has constant  6 × 13 matrix size  
dydhd=[dydhd1 dydhd2 dydhd3 ……  dydhd_k]; % each dyddxv_k has constant 6x3 matrix size 
 
for n=1:numfeat % number of features 
    left=dydxv(1:6,n*13-12:n*13)*P(1:13,1:13); % dv_n X P 
    right=P(1:13,1:13)*dydxv(1:6,n*13-12:n*13)'; % P X dv_n' 
    rightdd=dydhd(1:6,n*3-2:n*3)*Padd*dydhd(1:6,n*3-2:n*3)'; %dd_n X Pad X dd_n' 
       % Pad has constant 3x3 matrix size 
     
    for k=1:numfeat 
        dvPdvp=left*dydxv(1:6,k*13-12:k*13)'; %dv_n X P X dv_k' 
        % store values in memory 
        dvPdvp1=[dvPdvp1 dvPdvp]; 
    end 
     
    % select diagonal from memory 
    leftdv=dvPdvp1(1:6,6*numfeat*n-(6*numfeat-1)+m1:(6*numfeat*n-(6*numfeat-1))+5+m1); 
    m1=m1+6; 
    bottomright=leftdv+rightdd; % (dv X P X dv') + (dd X Pad X dd') 
  
    % store values in memory 
     ………     
     ……… 
 
end 
 
%Rearange P2 addresses 
………     
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Figure 7. Altered state covariance matrix. 

 
 
 

 
 
Figure 8. Number of multiplication operation needed to solve state 

covariance matrix using proposed approach. 
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Table 2. Number of multiplication operation for three features. 
 

P 1014 1014 1014 

1014 468+54+108 468 468 

1014 468 468+54+108 468 

1014 468 468 468+54+108 

 
 
 

 
 
Figure 9. Number of multiplication comparison pseudocode. 

 
 
 

 
 
Figure 10. Number of multiplication comparison. 

 
 
 
independent processing has been put into consideration 
to speed up the execution time. The purpose of inde-
pendent processing is to allow each or selected features 
to be processed simultaneously instead of process in 
sequence as in normal general processor approach. To 
realize the independent processing, FPGA can  be   used 

to implement the parallel architecture. Figure 11 shows a 
parallel design that can be implemented to improve the 
execution time. The design separate the odd and even 
number features to be processed simultaneously. Though 
only two (odd and even) parallel processing is illustrated, 
more   parallelism  can  be  employed  depending  on  the  

% number of multiplication using normal classical matrix multiplication approach 
for n=1:numfeat % number of features 
    normal1=((19+6*(n-1))*(16+6*(n-1)) *(16+6*(n-1))) + ((19+6*(n-1))*(19+6*(n-1))*(16+6*(n-1))); 
    normal2=normal2+normal1; 
    featnum=[featnum n]; 
    normalmult=[normalmult normal2]; 
end 
  
% number of multiplication using proposed approach 
for k=1:numfeat % number of features 
   proposedmult1= (6*13*13+13*6*13+6*3*3+6*6*3+(6*6*13)*k)*k; 
   proposedmult=[proposedmult proposedmult1]; 
end 
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Figure 11. Parallel design. 

 
 
 
capacity of the device chosen. 
 
 
Conclusion 
 
The purpose of this paper is to come out with an 
approach that will be able to speed-up the most time 
consuming process in the monocular SLAM feature 
initialization stage. First, an overview of SLAM is 
presented at the beginning of this paper. This is followed 
by feature initialization evolution review which discusses 
two most common initialization approaches. The two 
approaches are delayed and undelayed initialization 
approach. The undelayed inverse depth parameterization 
(IDP) approach is chosen since it is able to overcome 
delayed approach problem related to the need for a 
criteria to decide sufficient baseline to permit Gaussian 
initialization. The undelayed approach also reduces the 
wait before criteria are validated problem faced by the 
delayed approach. A software profiling tool is then utilized 
to search for the most time consuming process in the 
IDP. From the tool, it can be observed that state 
covariance matrix calculation contribute to the extensive 
processing time. For that reason, an approach to reduce 
such problem is proposed. The number of multiplication 
involved to calculate the state covariance matrix using 
classical matrix multiplication is analyzed. Then, the 
proposed method is explained and their result is 
presented. From the result, it can be shown that the 
proposed method requires much less multiplication 
operation compared   to   the   original   state   covariance 

matrix formula using classical matrix approach. The 
reduction of the number of multiplication operation is 
expected to speed up the overall feature initialization 
process. The proposed method is also designed in such 
a way that enables each feature to be processed 
independently. This will enable future development using 
possible parallel architecture available in FPGA or other 
multiprocessing platform.  
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