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The present study was performed with fuzzy logic (FL) time series prediction modeling on a twenty 
years hourly averaged wind data, that is, 1985 to 2004 for Quetta, Pakistan. A free fuzzy logic design 
was followed and hourly wind data for spring prediction were obtained (February, March and April). It 
was found that the prediction is reliable and precise. Non-stationarity or random walk in wind data 
exists but it does not influence prediction. Mackey-Glass (MG) simulation of wind data indicated chaos 
or non periodicity in time series. Moreover, stable attractors were observed in MG-time series, in which 
the origin is yet unknown. The attractors seen in MG simulation do not influence FL time series 
prediction. 
 
Key words: Fuzzy logic, artificial neural networks, antecedents, the adaptive neural fuzzy inference system, 
autoregressive integrated moving average. 

 
 
INTRODUCTION  
 
The original fuzzy logic pioneered by Zadeh (1965) has 
been around forty years, and yet it is unable to handle 
uncertainties. Zadeh introduced the concept of a fuzzy 
set, a set whose boundary is not sharp or precise. This 
concept contrasts with the classical concept of a set 
recently called a crisp set, whose boundary is required to 
be precise. Probability and fuzzy sets describe different 
kind of uncertainty. The probability is the theory of sets 
with random elements. It deals with the likelihood of 
relevant events or with the expectation of a future event 
based on something now known (outcome of a random 
event) while the fuzziness is not the uncertainty 
expectation. Fuzzy set theory, on the other hand, is not 
concerned with events. It is concerned with concepts. 
Rule based fuzzy logic system (FLS), is a powerful design 
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methodology used to minimize the effect of uncertainty 
(Mendel, 2001; Jafri et al., 2012a, b, c). Model free 
designs are artificial neural networks (ANN) and fuzzy 
logic. The fuzzy logic rules are extracted from numerical 
data and are then combined with linguistic knowledge. 
The richness of fuzzy logic is that, there are enormous 
members of possibilities that lead to lot of nonlinear 
mappings of an input data vector into a scalar output. In 
model free approaches, the associated model is a 
representation of architecture to solve a specific problem. 
With model approach in fuzzy logic, one can endeavor 
the truth or close approximation theory. FLSs employ 500 
rules for one pass and sixteen rules for back propagation 
steepest descent method of designs, respectively. We 
followed a model free approach, that is, fuzzy logic on 
hourly wind speed data to predict future values, that is, 
consequents from antecedents (past values). A single 
stage forecasting for a chaotic time series wind data will 
be used. 



 
 
 
 

THEORY 
 
Let s(t) be a time series, where t=1,2,…,N; for hourly 
wind data of Quetta, Pakistan. Measured values of s (t) 
are denoted by x (t), 
 
x(t) = s(t) +n(t) 
 
Where x(t) denotes measurement error-noise. 

Given a window of p past measurements of s(t), 
namely x(t-p+1), x(t-p+2),…,x(t), to determine an 
estimate of a future value of s, that is, s(t+l) where p and l 
are fixed positive integers. For noise free measurements, 
x(t-p+1), x(t-p+2),…,x(t) are replaced by s(t-p+1), s(t-
p+2),…,s(t). When l=1, we obtain the single stage 
forecaster of s. There are l-stage forecasters in time 
series. We used a single stage forecaster of fuzzy logic. 

Suppose we are given a collection of N data points, 
x(1), x(2),…x(N). Then as it is commonly done when 
neural networks are used to forecast a time series, we 
shall partition this data set into two subset: a training data 
and a testing data subset with N-D data points, x(D+1), 
x(D+2),…,x(N). Because we will use a window of p data 
points to forecast the next data point, there are at most 
D-p training pairs, x

(1)
,x

(2)
,…,x

(D-P)
, where: 

  

              x(1) = [x(1), x(2),…,x(p), x(p+1)]T 

              x(2) = [x(2), x(3),…x(p+1),x(p+2)]T 

   .                   .                      .                      .                          ________________  (1)        

 .              .             .               .    

x(D-p)=[x(D-p), x(D-p+1),…,x(D-1), x(D)]T                                             
 (1) 

 
In Equation 1, the first p elements of x

(t) 
are the inputs to 

the forecaster and the last element of x
(t)

 is the desired 
output of the forecaster, that is: 
  

              x(t)=[p*1 input, desired output]T 

 

 

                                                           =[x1
(t), x2

(t),…,xp
(t), xp+1

(t)]T __________________(2)  (2) 
 
where t =1,2,…D-p and T is over the complete time 
series. 

The training data are used in a fuzzy logic system by 
forecaster to establish its rule. There are at least three 
ways to extracting rules from the numerical training data: 
 

1. Let the data establish the centers of the fuzzy sets that 
appear in the antecedent and consequents of the rules. 
For single stage forecasting, there are D-p rules that one 
can extract from the (D-p) training pairs, x

(1)
, x

(2)
,…,x

(D-p) 

(Mendel 1995).  
2. Pre-specify fuzzy sets for the antecedents and 
consequents and then associate the data with these 
fuzzy sets. Fuzzy rules are generated from the given data 
pairs (Wang and Mendel, 1992). Initially, fuzzy sets are 
established for all the antecedents and the consequents 
(Wang, 1994). 
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3. Establish the architecture for a FLS and use the data 
to optimize its parameters. In this approach, we fix the 
architecture of the FLS ahead of time; we fix the number 
of rules, the number of antecedents, the shapes of the 
antecedents and consequents membership functions, the 
inference method and the kind of fuzzification. 

Since we are dealing with chaotic time series, 
therefore, it is imperative to talk on defuzzifier chaos 
simulation. Chaos now-a-days is having an impact on 
diverse disciplines of knowledge including physics, 
biology, chemistry, economics and medicine (Farmer, 
1982; Rasband, 1990). Very briefly, chaotic behavior can 
be described as bounded fluctuations of the output of a 
nonlinear system with high degree of sensitivity to initial 
conditions (Casdogli and Stephen, 1992). The 
observation in a system exhibiting chaotic dynamics 
appears to be uncorrelated, thus making forecasts 
difficult. A nonlinear delay differential equation developed 
by Mackey and Glass (1977) of the form: 
 
ds         0.2 s(t-T) 
        =                    - 0.1s(t)   
dt         1+s10(t-T)        (3) 

 
can be used for time-series prediction in a deterministic 
manner. 

In Equation 3, for τ > 17 is known to exhibit chaos in 
both neural networks and fuzzy logic (Wang, 1994; 
Casdogli and Stephen, 1992; Farmer, 1982; Rasband, 
1990; Mackey and Glass, 1977). When τ < 17 in Equation 
3, we observe non chaotic, that is, periodic time series 
(Mendel, 1965). Equation 3 can be converted to a 
discrete time series by using Euler’s method with a step 
size equal to 1. 
 
 
RESULTS AND DISCUSSION 
 

We used mean hourly wind data of the years 1985 to 
2004 to gain more reliability about model validation and 
indeed better prediction. We follow the adaptive neural 
fuzzy inference system (ANFIS) which constructs a fuzzy 
inference system for input/output data set and whose 
membership function parameters are tuned using either 
back propagation algorithms alone or in combination with 
least squares estimation method. This is how fuzzy 
inference system (FIS) structure and parameter adjust-
ment were accomplished. The parameters are associated 
with membership functions and will change during the 
course of learning from the data that are to be modeled. 

The model validation is dependent on trained FIS 
model which predicts the corresponding data set output 
values from the input vectors. We considered 600 hourly 
wind speed data for trainee and the remaining 120 or 144 
for checking. With FIS modeling we checked the trainee 
data and found its learning fit with checking data sets to 
adjust the membership functions. We also viewed FIS 
structure after  adjusting  membership  functions  for  our 
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Table 1. Shows model validation for 5 epochs, four input membership functions and for FLS in case of hourly averaged wind data for 
the period of 1985 to 2004 over months. No of epochs do not influence FIS output or its associated testing error. 
 

Epoch Month Epoch error Average checking error on FIS output FIS Data structure 

5 

10 
January 

0.55325 

0.54888 
0.51091 Same for all months 

     

5 

10 
February 

0.56150 

0.55817 
13.242 - 

     

5 

10 
March 

1.11460 

1.10300 
6.6941 - 

     

5 

10 
April 

1.01030 

1.00770 
5.1694 - 

     

5 

10 
May 

1.42290 

1.41970 
4.7963 - 

     

5 

10 
June 

1.54530 

1.51620 
1.6881 - 

     

5 

10 
July 

1.7249 

1.7063 
11.9788 - 

     

5 

10 
August 

1.2153 

1.2123 
2.0175 - 

     

5 

10 
September 

0.79920 

0.79590 
2.6837 - 

     

5 

10 
October 

0.78743 

0.77950 
1.0969 - 

     

5 

10 
November 

1.11760 

1.10920 
5.9558 - 

     

5 

10 
December 

0.24367 

0.24215 
0.82591 - 

 
 
 
monthly data which looked same for all months (Jafri, 
2008). We then performed ANFIS training and test the 
data against the trained FIS. The validation of model is 
true only if the beginning gap between the training and 
checking error would have a minimum value; checking 
error data would decrease in the initial epoch and would 
go on decreasing even for larger epoch along with the 
training error. When the checking error goes down to a 
minimum value at a certain epoch and rises suddenly 
from its minimum value, we get model over fitting. Model 
over fitting is avoided as much as possible. Tables 1 and 
2 show model validations for months and seasons 
respectively, which are found compromising and suitable 
for five epochs and four membership function for FLS. 
The number of epochs do not influence FIS output or its 
associated checking error. The checking data does not 

always validate FIS model. In such a case, we train the 
trained FIS model against the checking data. 

We have been able to set indices in MATLAB 5.3 for 
our wind data to execute prediction of hourly wind speed 
data for the period of 1985 to 2004 with window interval 
of 6 and with four antecedent membership functions, that 
is:  
  

                     for  t = 59:658 

            Data (t-58,:) = [x(t-18)  x(t-12)  x(t-6)  x(t)  x(t+6)];         _________(4) 

                     end 

 
(4) 

Where x(t+6) is the predicted value of wind speed and 
x(t+6) is also referred to as consequent. We obtained 
forecast for wind speed ahead of  6 h  for  each  hours  of 



 
Jafri et al.          2599 

 
 

Table 2. Shows model validation for 5 and 10 epochs respectively, four input membership functions and for FLS in all seasons. 
 

S # Season Epoch Epoch error Average checking error from FIS output FIS Data structure 

1 
Winter 

(November, December, January) 

5 

10 

0.6109 

0.5966 
0.63416 Same for all seasons 

      

2 
Spring 

(February, March, April) 

5 

10 

1.3675 

1.3495 
2.0746 - 

      

3 
Summer 

(May, June, July) 

5 

10 

0.79207 

0.7879 
2.7368 - 

      

4 
Autumn(fall) 

(August, September, October) 

5 

10 

0.4847 

0.4797 
2.1922 - 

 

 
 

Table 3. Predicted values of averaged wind data for the month of February (1985 to 2004). 
 

S # x(t-18) x(t-12) x(t-6) x(t) x(t+6) 

1 1.0288 8.2304 0 9.2592 7.2016 

2 0 8.2304 9.2592 9.2592 8.2704 

3 0 8.2304 8.2304 9.2592 4.1152 

4 0 6.1728 9.2592 8.2304 3.0864 

5 1.0288 2.0576 7.2016 7.2016 2.0576 

6 1.0288 3.0864 7.2016 8.2304 3.0864 

7 8.2304 0 9.2592 7.2016 2.0576 

8 8.2304 9.2592 9.2592 8.2304 2.0576 

9 8.2304 8.2304 9.2592 4.1152 9.2592 

10 6.1728 9.2592 8.2304 3.0864 7.2016 

11 2.0576 7.2016 7.2016 2.0576 2.0576 

12 3.0864 7.2016 8.2304 3.0864 3.0864 

13 0 9.2592 7.2016 2.0576 2.0576 

14 9.2592 9.2592 8.2304 2.0576 6.1728 

15 8.2304 9.2592 4.1152. 9.2592 7.2016. 

. . . . . . 

. . . . . . 

. . . . . . 

591 1.0288 9.2592 1.0288 1.0288 7.2016 

592 6.1728 7.2016 2.0576 2.0576 8.2304 

593 8.2304 4.1152 2.0576 3.0864 8.2304. 

594 10.288 1.0288 1.0288 0 8.2304 

595 9.2592 2.0576 1.0288 2.0576 8.2304 

596 9.2592 2.0576 1.0288 1.0288 8.2304 

597 9.2592 1.0288 1.0288 7.2016 6.1728 

598 7.2016 2.0576 2.0576 8.2304 4.1152 

599 4.1152 2.0576 3.0864 8.2304 2.0576 

600 1.0288 1.0288 0 8.2304 3.0864 
 
 
 

the month. These four antecedent membership functions 
are selected over a day with a window of six hours. The 
results of prediction are heavy and cumbersome (Jafri, 
2008), therefore, it cannot be reproduced either in a 
research paper or in a thesis. Therefore, we produced 
time series prediction of wind data only for months of 

spring (February, March, April) as shown in Tables 3, 4 
and 5. We must remember that the antecedent and the 
consequent membership functions are initially tuned and 
modeled through ANFIS. We also calculated root square 
mean error value (RMSE) for both trainee and checking 
data sets (Jafri, 2008). 
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Table 4. Predicted values of averaged wind data for the month of March (1985 to 2004). 
 

S # x(t-18) x(t-12) x(t-6) x(t) x(t+6) 

1 1.0288 0 1.0288 4.1152 5.1440 

2 2.0576 0 3.0864 5.1440 2.0576 

3 2.0576 0 3.0864 7.2016 1.0288 

4 1.0288 0 1.0288 8.2304 1.0288 

5 0 1.0288 0 5.1440 2.0576 

6 1.0288 1.0288 0 7.7160 1.0288 

7 0 1.0288 4.1152 5.1440 0 

8 0 3.0864 5.1440 2.0576 0 

9 0 3.0864 7.2016 1.0288 0 

10 0 1.0288 8.2304 1.0288 0 

11 1.0288 0 5.144 2.0576 0 

12 1.0288 0 7.7160 1.0288 0 

13 1.0288 4.1152 5.144 0 0 

14 3.0864 5.144 2.0576 0 0 

15 3.0864 7.2016 1.0288 0 0 

.      

.      

.      

591 5.1440 9.2592 8.2304 2.0576 0 

592 5.1440 9.2592 6.1728 2.0576. 0 

593 4.1152 10.288 5.1440 2.0576 1.0288 

594 4.1152 1.0288 1.0288 2.0576 2.0576 

595 10.288 2.0576 1.0288 2.0576 3.0864 

596 9.2592 2.0576 1.0288 3.0864 2.0576 

597 9.2592 1.0288 1.0288 0 3.0864 

598 9.2592 2.0576 2.0576 0 7.2016 

599 10.288 2.0576 3.0864 1.0288 2.0576 

600 9.2092 1.0288 0 2.0576 8.2304 
 
 
 

Table 5. Predicted values of averaged wind data for the month of April (1985 to 2004). 
 

S # x(t-18) x(t-12) x(t-6) x(t) x(t+6) 

1 8.2304 5.144 5.144 5.144 2.0576 

2 6.1723 5.144 5.144 4.1152 2.0576 

3 8.2304 8.1728 5.144 2.5720 10.200 

4 8.2304 2.0576 5.1440 2.5720 9.2592 

5 6.1728 3.0864 6.1728 2.5720 2.0576 

6 5.1440 3.0864 5.144 2.5720 3.0864 

7 5.1440 5.1440 6.1728 2.5720 3.0864 

8 5.1443 5.1440 8.2304 2.0576 3.0864 

9 6.1728 5.1440 5.1440 2.5720 3.0864 

10 2.0576 5.1440 2.0576 10.288 5.1440 

11 3.0864 6.1728 .2.0576 9.2592 5.144 

12 3.0864 8.2304 2.5720 3.0864 5.144 

13 5.144 5.144 2.5720 3.0864 9.2592 

14 5.144 4.1152 2.5720 3.0864 10.288 

15 5.144 2.5720 8.0576 3.0864 8.2304 

. . . . . . 

. . . . . . 

. . . . . . 
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Table 5. Cont.d 
 

590 0 6.1728 3.0864 1.0288 2.0576 

591 1.0288 5.1440 2.0576 0 0 

592 1.0288 4.1152 2.0576 2.0576 0 

593 1.0288 2.0576 2.0576 0 0 

594 2.0576 3.0864 1.0288 0 2.0576 

595 5.1440 2.0576 1.0288 0 6.1728 

596 6.1728 2.0576 1.0288 2.0576 0 

597 5.1440 2.0576 0 0 1.0288 

598 4.1152 1.0288 2.0576 0 1.0288 

599 2.0576 1.0288 0 0 1.0288 

600 3.0864 1.0288 0 2.0576 5.144 
 
 
 

We performed chaotic time series prediction on wind data 
using Equation 3. To obtain the time series values over 
the hours of the month, we applied a Runge-Kutta 
method to find the numerical solution of Mackey-Glass 
equation; the result we saved in the file mgdata.dat. Here 
we assume x(0) = 1.2 for τ =17 and x(t) = 0 for t<0. 
Surprisingly enough, our data exhibited chaos even for τ 
= 17. To plot the MG-time series we type 
  

                                load mgdata .dat  

              t = mgdata(:,1); x = mgdata(:,2); plot(t,x);                       _________(5) 

                                end 

                             

(5) 
 

                                end 

                                 

          trnData = Data(1:600, : );  

                               chkData = Data(601:end,: );                                 _____(6)  

   

 

   (6) 
 
To start the training, we need FIS structure that specifies 
the structure and initial parameters of the FIS for 
learning. This is the task of genfis 1. 
 

fismat =genfis1(trn Data);  
 

The generated FIS structure contains fuzzy rules with 
104 parameters. In order to get good generalization 
capability, the ratio between trainee data sets and 
parameters is about five, that is, in our case it is about 
600/120. 

Figures 1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11 and 12 show 
MG-simulation of wind data. We observe in these figures 
line or loops and triangular chaotic attractors. These 
chaotic attractors to our knowledge have not been seen 
in MG-simulation in any literature. The chaos or non 
periodicity in wind speed time series data is evident. We 
checked the position of attractors on time axis from 
where it took the start and then compared the nearby 
consequent or predicted values. We found that the pre-
dicted values were not affected. It appears as if chaotic 
attractors are inherited characteristics of wind speed data. 

In addition to chaotic attractors, there is a chaos in the 
data which supposedly to our conjecture is non-
stationary. We confirmed the non-stationarity of wind 
speed data by determining the standard deviation of 
every hour over the days of the month (Jafri, 2008). We 
know that a pure integrated (І) process is a random walk. 
Integrated process remembers where it was and then 
moves at random (Anderson et al., 2011). A random walk 
is said to be a non-stationary process because over time 
it tends to move further and further away from where it 
was. In contrast, the autoregressive (AR), moving 
average (MA) and autoregressive moving average 
(ARMA) model each, represents a stationary process 
because they tend to behave similarly over long periods, 
staying relatively close to their long time periods and 
staying relatively close to their long run mean. The 
autoregressive integrated moving average (ARIMA) 
process remembers its changes. The Box-Jenkins 
ARIMA processes form a family of linear statistical model 
based on the normal distribution that have the flexibility to 
imitate many different real time series by combining AR 
process, І-process and MA-process. The result is a 
parsimonious model. Stochastic simulation and time 
series models were studied (Sami et al., 2012; Jafri et al., 
2012a, b, c) and developed to forecast synthetic 
sequence of wind speed and global solar radiations, 
respectively (Kamal and Jafri, 1997). The daytime and 
night time sleep patterns of a new born baby defined a 
random biological process with long range power law 
correlation (Canessa and Calmetta, 1994). The chaos 
may behave almost linearly in some part of the phase 
space and highly non-linearly in other parts. We are 
familiar with approximately two chaotic non-linear 
dynamical systems (Kosko, 1997). But the recognition of 
attractors in a chaotic system is indeed difficult. The 
behavior of chaos in wind speed time series data due to 
presence of attractors seems to be almost non-linear. 
The use of neural networks and the practical 
considerations in controlling chaos (Alsing et al., 1994; 
Bayly and Virgin, 1994) are based on the observation that 
a   chaotic  attractor  has  embedded  within  it  an  infinite  

http://www.google.com.pk/search?tbo=p&tbm=bks&q=inauthor:%22David+R.+Anderson%22
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Figure 1. MG-simulation for January (1985 to 2004). 
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Figure 2. MG-simulation for February (1985 to 2004). 
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Figure 3. MG-simulation for March (1985 to 2004). 



Jafri et al.          2603 
 
 
 

 

W
in

d
 s

p
e

e
d

 (
m

s
-1

) 

Time (h)  
 

Figure 4. MG-simulation for April (1985 to 2004). 
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Figure 5. MG-simulation for May (1985 to 2004). 
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Figure 6. MG-simulation for June (1985 to 2004). 
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Figure 7. MG-simulation for July (1985 to 2004). 
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Figure 8. MG-simulation for August (1985 to 2004). 
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Figure 9. MG-simulation for September (1985 to 2004). 
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Figure 10. MG-simulation for October (1985 to 2004). 
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Figure 11. MG-simulation for November (1985 to 2004). 
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Figure 12. MG-simulation for December (1985 to 2004). 
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number of unstable periodic orbits. But we did not 
observe periodic orbits in the attractors. It may happen 
that attractors which we have seen are stable. Recursive 
partitioning algorithms feed forward back propagating 
neural network and small perturbations of a control 
parameter can generate accurate models for chaotic 
systems. Rules explosion is the biggest problems in 
FLSs. Therefore, the feedback fuzzy system may offer a 
more efficient way to approximate dynamical systems 
with a fixed and a small number of rules. An open 
research problem is to find tractable learning laws for 
controlling and tuning such FLSs. Moreover, chaotic 
attractors should be viewed in terms of long range time 
series power law correlation or with cascade correlation 
algorithms. 
 
 
CONCLUSIONS 
 
We infer from this study the following conclusions: 
 
1- The chaotic time series prediction with fuzzy logic is 
reliable and precise. 
2- Non-stationarity in wind data exists. The non-
stationarity in wind data does not influence FL prediction. 
3- The line/loop and triangular attractors are seen in 
Mackey-Glass simulation for chaotic time series data. But 
these attractors do not affect FL prediction. 
4- The recognition of attractors whether stable or 
unstable in a non linear dynamical system such as 
occurrence of wind and its speed is essential to 
deciphering an appropriate time series statistical 
correlation. This will provide a rationale solution to 
learning procedures for tuning and controlling fuzzy logic. 
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