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In this paper, empirical modeling of surface roughness in CO2 laser cutting of mild steel using the 
multiple regression analysis (MRA) and artificial neural network (ANN) was presented. To cover wider 
range of laser cutting parameters such as cutting speed, laser power and assist gas pressure as well as 
to obtain experimental database for MRA and ANN model development, Taguchi’s L25 orthogonal array 
was implemented for experimental plan. The average surface roughness was chosen as a measure of 
surface quality. The mathematical models of surface roughness developed by MRA and ANN were 
expressed as explicit nonlinear functions of the selected input parameters. The comparison between 
experimental results and models predictions showed that ANN model provided more accurate 
predictions when compared with the MRA model. The use of MRA for surface roughness prediction in 
CO2 laser cutting was of limited applicability and reliability. Powerful modeling ability of the ANNs 
justified the use of the ANN models for accurate modeling of the complex processes with many non-
linearities and interactions such as CO2 laser cutting. Finally, based on the derived ANN equation, the 
effects of the laser cutting parameters on surface roughness were examined. 
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INTRODUCTION 
 
Laser cutting is a thermal energy based advanced 
machining process in which the material is removed by 
melting, vaporization and chemical degradation (Noor et 
al., 2011). Among various machining processes, laser 
cutting is one of the most popular processes with many 
applications in various manufacturing industries. The 
wide spectrum of industrial application of the laser cutting 
is due to its: convenience of operation, small heat-
affected zone, minimum deformity (Yang et al., 2011), 
high cutting speed, high precision, high product quality 
(Choudhury and Shirley, 2010), low level of noise (Kurt et 
al., 2009), flexibility, ease of automation etc. As a non-
contact process, it is well suited for advanced 
engineering materials such as difficult-to-cut materials, 
brittle materials, electric and non-electric conductors, and 
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soft and thin materials (Chen et al., 2011). For the 
aforementioned reasons, laser cutting has become an 
area of great interest for research. Considerable research 
studies were carried out to examine laser cutting process 
with some of the findings summarized in recent 
comprehensive review papers (Dubey and Yadava, 2008; 
Meijer, 2004). 

The laser cutting is a complex process characterized by 
a number of process parameters which in turn determine 
efficiency of the whole process in terms of productivity, 
quality and costs. When the cut quality is considered, in 
most reported studies, kerf width, surface roughness and 
size of the heat affected zone, were commonly used as 
cut quality characteristics (Radovanović and Madić, 
2011). However, surface roughness is very important 
indicator of cut quality (Chen et al., 2011) and one of the 
main criteria of a product (Dhokia et al., 2008). 

The parameters leading to the surface roughness 
formation in laser cutting are complex. Great practical 
importance  of  the  surface roughness  and its   complex  



 
 
 
 
nature attracted attention of a great number of 
researchers. The work of researchers considering 
surface roughness analysis in CO2 laser cutting is 
indicated as follows. 

Kurt et al. (2009) investigated the effect of the laser 
cutting parameters such as the assist gas pressure, 
cutting speed and laser power on the dimensional 
accuracy and surface roughness in cutting engineering 
plastic materials. It was observed that the surface 
roughness decreased at higher cutting speeds and assist 
gas pressure. However, as the cutting speed increased 
together with the assist gas pressure, the increase of the 
surface roughness was insignificant. 

Choudhury and Shirley (2010) developed a model 
equation for relating the surface roughness and the laser 
cutting parameters (laser power, cutting speed and assist 
gas pressure) for cutting of three polymeric materials. 
Based on the model, it was observed that the surface 
roughness decreased with an increase in the cutting 
speed, laser power and assist gas pressure. Also, it was 
observed that the effects of the cutting speed and assist 
gas pressure were more pronounced than the effect of 
the laser power. 

Rajaram et al. (2003) indicated that the low cutting 
speed resulted in good surface roughness when cutting 
4130 steel. As noted by the authors, this apparent 
contrast was due to the place of the range of cutting 
speeds used in the study with respect to the optimum 
cutting speed. When the order of magnitude was 
considered, the cutting speed had a major effect on the 
surface roughness while the laser power had a small 
effect. Additionally, it was observed that the effect of the 
laser power on the surface roughness was more 
significant at low laser power levels. 

Stournaras et al. (2009) investigated the cut quality for 
the aluminum alloy AA5083 with the use of a pulsed laser 
cutting system using nitrogen as assist gas. The results 
showed that the laser power, cutting speed and pulsing 
frequency were the major influencing parameters, 
whereas the influence of the assist gas pressure on the 
surface roughness was negligible. However, combined 
effect of high cutting speed with high-pressure assist gas 
removed the molten material more effectively and faster, 
which resulted in smoother surface. Also, it was observed 
that the increase in the laser power decreased the 
surface roughness. 

Syn et al. (2011) presented an approach for the 
prediction of cut quality in cutting Incoloy(R) alloy 800 by 
employing fuzzy expert system. Based on the results of 
the prediction runs of the model, it was shown that there 
are high interaction effects between the assist gas 
pressure, cutting speed and laser power on the surface 
roughness. 

From what was said, it was seen that numerous 
parameters and their complex influences have an 
essential role on the surface roughness obtained in CO2 
laser cutting of a   given   material   and   thickness.   The  
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mechanism behind the surface roughness formation is 
further complicated considering the interaction effects 
between the laser beam, process parameters and 
workpiece properties. Also, the order of magnitude of a 
given parameter on the surface roughness is dependent 
on the values of other parameters and their interactions. 

A fishbone diagram showing the various parameters 
influencing the surface roughness in CO2 laser cutting is 
shown in Figure 1. There are several ways to describe 
the surface roughness among which the average surface 
roughness which is often represented with the symbol Ra, 
is mostly used. It is defined as the arithmetic value of the 
departure of the profile from the centerline along 
sampling length (Kurt et al., 2009). 

Surface roughness affects fatigue life, corrosion, 
thermal conductivity, friction and wear and tear of parts 
(Choudhury and Shirley, 2010; Kurt et al., 2009). Hence, 
it is of great importance to exactly quantify the functional 
relationship between the surface roughness and the laser 
cutting parameters so as to predict its value for any 
cutting condition. Actually, surface roughness modeling 
has become not just a special defying business but an 
area of great interest for research (Pontes et al., 2010). 
The mechanism behind the formation of the surface 
roughness is very complicated and process dependent, 
and along with the numerous uncontrollable factors that 
influence the phenomena, make surface roughness 
prediction difficult (Benardos and Vosniakos, 2003). 
Development of the mathematical models to predict the 
values surface roughness is important in order to have a 
better understanding of the machining process (Zain et 
al., 2011). Literature reveals that different methodologies 
have been employed for predicting the surface roughness 
in CO2 laser cutting, such as: multiple regression analysis 
(MRA) (Rajaram et al., 2003; Stournaras et al., 2009), 
response surface method (RSM) (Choudhury and Shirley, 
2010) and fuzzy expert system (Syn et al., 2011). 
However, although the application of artificial neural 
networks (ANNs) for predicting surface roughness in 
conventional machining processes is wide (Dhokia et al., 
2008; Pontes et al., 2010), to the authors knowledge, no 
work has been reported in the literature on developing 
mathematical models for surface roughness based on 
ANNs in CO2 laser cutting.  

MRA and ANNs are two important competitive data 
mining techniques widely used for development of 
predictive empirical models for surface roughness with 
the ultimate aim of relating process parameters (inputs) 
and process performance (responses, outputs). Both 
methodologies were successfully applied for surface 
roughness modeling, however when compared to one 
another, different conclusions were drawn. Çaydas and 
Hasçalik (2008) founded that the MRA model yielded 
slightly superior results for surface roughness prediction 
than the ANN model. On the other hand, for Asiltürk and 
Çunkaş (2011) and Paulo Davim et al. (2008), ANN 
modelling  offers  several  advantages over MRA such as  
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Figure 1. A fishbone diagram for the surface roughness in CO2 laser cutting. 

 
 
 

simplicity, speed and modeling complex nonlinearities 
and interactions. Furthermore, as noted by Fredj and 
Amamou (2006) and Stournaras et al. (2009), MRA 
models established using design of experiments (DOE) 
techniques may overestimate or underestimate the 
experimental data. However, applying ANNs for surface 
roughness prediction is not without some reported 
shortfalls such as lack of systematic design methods for 
ANNs (Dhokia et al., 2008) and more computational effort 
and time for development of an ANN model (Çaydas and 
Hasçalik, 2008). 

Motivated by the lack of model equations relating CO2 
laser cutting parameters with response like surface 
roughness, an attempt was made to develop such 
models. In an initial attempt, MRA was employed for 
development of the surface roughness model in terms of 
three laser cutting parameters, namely, the cutting speed, 
laser power and assist gas pressure. In addition, 
mathematical model of the surface roughness was 
developed using ANN, so as to evaluate and compare 
these methods for developing the empirical surface 
roughness models for CO2 laser cutting. To obtain data 
for MRA and ANN models development, the laser cutting 
experiment was conducted according to Taguchi’s L25 
orthogonal array (OA) experimental layout plan. 
 
 
MATERIALS AND METHODS 

 
CO2 laser cutting modeling 

 
In laser cutting, the process performance change drastically with 
the laser cutting parameters. For effective utilization of the laser 

cutting processes, it is very much important to find out the optimal 
combinations of process parameters to achieve enhanced 
machining performance with high dimensional accuracy (Samanta 
and Chakraborty, 2011). 

To select optimal conditions of the process parameters for 
different machining processes, various classical and meta-heuristic 
optimization techniques were proposed. However, an effective 
application of these techniques requires accurate mathematical 
models. Analytical solutions based on the physics of the process 
involve simplifications and approximations in relation to the real 
laser cutting process and hence generally do not guaranty results 
accurate enough for practical usage. In the present study, two 
attempts were made to model such complex and stochastic 
process, one is by traditional MRA, and the other one is by ANN 
approach. For both approaches, the use of distinct data sets for the 
model development and testing (Montgomery et al., 2008) was 
applied so as to evaluate and compare the performance of MRA 
and ANN models when exposed to new data. 
 
 
Experimentation 
 
Taguchi experimental design provides an efficient plan to study the 
entire experimental region of interest for the experimenter, with the 
minimum number of trials as compared with the classical DOE, 
therefore it was chosen for performing the laser cutting experiment. 
Furthermore, since it was assumed that the effects of the laser 
cutting parameters on the surface roughness were complex and 
nonlinear, the experiment was set up with parameters with more 
number of levels. To this aim, Taguchi’s L25 orthogonal array with 3 
input parameters and 5 levels was used so as to cover wider range 
of the laser cutting parameters that are controlled by the operator. 

The laser cutting experiment was performed by means of 
ByVention 3015 (Bystronic) CO2 laser cutting machine delivering a 
maximum output power of 2.2 kW at a wavelength of 10.6 µm, 
operating in CW mode. The cuts were performed with a Gaussian 
distribution beam mode (TEM00) on 2 mm thick mild steel 
S355J2G3 (EN). In consideration of the numerous parameters that 



 
 
 
 
Table 1. Laser-cutting conditions. 
 

Parameter  

Constant   

Workpiece material Mild steel S355J2G3 (EN) 

Material thickness (mm) 2 

Laser CO2 

Operating mode CW 

Max. power (kW) 2.2 

Lens focal length (inch) 5 (127 mm) 

Focal point position (mm) 0 (sheet top surface) 

Nozzle Conical shape,  = 1 mm 

Stand-off distance 0.7 mm 

Type of assist gas O2, purity ≥ 99.95% 

  

Variable   

Cutting speed v (m/min) 3, 4, 5, 6, 7 

Laser power P (kW) 0.7, 0.9, 1.1, 1.3, 1.5 

Assist gas pressure p, (bar) 3, 4, 5, 6, 7 

 
 
 

influence cutting process and finally the cut quality, that is, surface 
roughness, some of the process parameters were kept constant 
through the experimentation. On the other hand, the main cutting 
parameters such as cutting speed (v), laser power (P) and assist 
gas pressure (p) were taken as the variable input parameters. The 
laser cutting conditions are summarized in Table 1. 

The value range for each parameter was chosen such that wider 
experimental range is covered, full cut for each parameter 
combination is achieved and by considering the manufacturer's 
recommendations for parameter settings. Two straight cuts each of  
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60 mm in length were made in each experimental trial to ascertain 
surface finish. Experiment trials were conducted in random order to 
avoid any systematic error. 

The surface roughness of the cut was measured in terms of the 
average surface roughness (Ra) using Surftest SJ-301 (Mitutoyo) 
profilometer. The sampling length of each measurement was set at 

4 mm. Each measurement was taken along the cut at 
approximately the middle of the thickness and the measurements 
were repeated three times to obtain averaged values. 

Experimental data were divided into two data sets: 20 data for 
the model development (training data) consisting of 80% of the 
entire available data and 5 data for the model testing (testing data) 
consisting of 20% of the entire available data. The selection of data 
for training and testing was made by random method. For both 
approaches, the goal was to find the simplest model that has both 
bias and variance (the total error) considerably low. To facilitate the 
comparative analysis of the predictive performance of surface 
roughness prediction models, the same input parameters (the 
cutting speed, laser power and assist gas pressure) were used in 
both MRA and ANN models. 

 
 
RESULTS AND DISCUSSION 
 
MRA model 
 
To establish the surface roughness prediction model, 
MINITAB 15 statistical software package was used to 
perform the MRA using the available data. The second 
order MRA model (full quadratic regression model with 
interactions) relating the laser cutting parameters and the 
surface roughness was obtained as: 
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(1) 

 
More detailed results of MRA with all the corresponding 
coefficients and P-values are shown in Table 2.  

Note that insignificant model term p
2
 was automatically 

eliminated by the software since it was highly correlated 
with other variables. The adequacy of the proposed MRA 
model was checked based on coefficients of multiple 
determinations R

2 
and R

2
 (adj.). The R

2
 value indicates 

that the cutting parameters explain 97.8% of variance in 
surface roughness. This value indicates that the 
developed model fits the data very well. Analysis of 
variance (ANOVA) for the MRA model is given in Table 3. 
The F-ratio from statistical table is 4.74 for a level of 
confidence of 99%. Referring to F-ratio of 60 in Table 3, 
which is greater than that of statistical table value, yields 
a statistically significant MRA model. 
 
 
ANN model 
 
To establish the mathematical relationship between the 
laser cutting parameters and the surface roughness, a 
multilayer perceptron type ANN was selected. To develop 

ANN surface roughness model, the same twenty sets of 
experimental data considered for obtaining MRA model 
were taken for training the ANN by using MATLAB Neural 
Network Toolbox. Three neurons at the input layer (for 
each of the laser cutting parameter), one neuron at the 
output layer for calculating the surface roughness and 
only one hidden layer were used to define ANN 
architecture. Hyperbolic tangent sigmoid and linear 
activation functions were used in hidden layer and output 
layer respectively. The number of hidden neurons was 
selected by considering the following: (i) too few neurons 
in hidden layer can lead to underfitting, whereas too 
many neurons can contribute to overfitting (Karnik et al., 
2008); (ii) the more the hidden neurons the more the 
expressive power of the ANN; (iii) the upper limit of 
number of hidden neurons can be determined 
considering that the total number of weights and biases in 
the ANN does not exceed the number of data for training. 
As noted by Sha and Edwards (2007), in a case where 
the number of the connections to be fitted is larger than 
the number training data, ANN can be still trained, but the 
case is mathematically undetermined. 
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Table 2. The MRA model for surface roughness. 
 

Predictor Coefficient SE coefficient T P 

Constant -1.7044 0.8251 -2.07 0.063 

v 1.4915 0.3379 4.41 0.001 

P 5.001 1.901 2.63 0.023 

p -1.1256 0.4959 -2.27 0.044 

vP -0.7176 0.2041 -3.52 0.005 

vp 0.09124 0.04778 1.91 0.083 

Pp 0.8420 0.2290 3.68 0.004 

v
2 

-0.13589 0.02978 -4.56 0.001 

P
2
 -2.4945 0.8238 -3.03 0.011 

 

S = 0.143618; R
2 
= 0.978; R

2
 (adj.) = 0.961. T, value of Student’s distribution; P, probability density. 

 
 
 

Table 3. ANOVA results for MRA model for surface roughness. 
 

Source DF SS MS F P 

Regression 8 9.9001 1.2375 60.00 0.000 

Residual error 11 0.2269 0.0206   

Total 19 10.1270    
 

DF, degree of freedom; SS, sum of squares; MS, mean square; F, value of Fisher’s distribution. 

 
 
 

Table 4. The weights and biases of the developed ANN model for surface roughness. 
 

W1 W2 B1 B2 

2.4235 -0.35109 0.60286 -0.22013 -1.2987 -0.0010379 

-0.15908 1.4035 -1.4569 -0.40441 0.22615  

1.2296 -1.2203 -1.4707 -0.58464 1.5785  
 

W1, weights between input and hidden layer; W2, weights between hidden and output layer; B1, biases 
of the hidden neurons; B2, bias of the output neuron. 

 
 
 

For example, for the single hidden layer ANN architecture 
with n input neurons, m hidden neurons and k output 
neurons, the total number of weights and biases can be 
expressed as: 
 

k)kn(mT  1     (2) 

 

It is easy to calculate that for three inputs and one 
output, the upper limit of the number of hidden neurons is 
3 for 20 available training data. Therefore, 3-3-1 ANN 
architecture was selected for surface roughness 
modeling. 

In order to facilitate the ANN training process, both 
input and output data was normalized in the range [-1, 1]. 
In the present study, the ANN training process was 
carried out using variable learning rate training procedure 
“traingdx”. This procedure was selected since it improves 
the performance of the classical backpropagation training 
algorithm by allowing learning rate to change based on 

complexity of local error surface (Karnik et al., 2008). The 
mean squared error (MSE) was selected as the 
performance criterion for the ANN training process. 
Supervised learning was conducted with a zero as a 
target error value. The ANN training was stopped when 
no further improvement in performance was achieved 
and by considering the well known bias-variance trade-off 
in model development (Feng et al., 2006). 

In order to deal with converge to local minima problem 
and slow convergence, the ANN training process was 
repeated several times using different initial weights. The 
MSE at the end of the training process (155 epochs) was 
found to be 0.00509298. 

Once the ANN training process was finished and the 
near optimum weights and biases of the ANN were 
determined (Table 4), one can develop explicit 
mathematical function for the surface roughness based 
on ANN. Regarding the data normalization, activation 
functions used in hidden and output  layer  and  by  using 



 
 
 
 
the weights and biases from Table 4, the mathematical 
equation for calculating the surface roughness becomes: 
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where X is the column vector which contains normalized 
values of v, P and p. 
 
 

Comparison between MRA and ANN surface 
roughness prediction models 
 
Surface roughness prediction models were developed 
using MRA and ANN, mathematically represented by 
Equations 1 and 3 respectively. Using these equations, 
the surface roughness can be calculated for a given 
cutting condition. 

At this stage, in order to understand whether MRA or 
ANN models have good generalization capability, the 
models performance was checked using the test data 
which were not used in models development stage. 
Among the various statistical methods for assessing the 
prediction performance of a mathematical model, 
absolute percentage error (APE) which is one of the most 
stringent criteria, was used. It is defined as: 
 

100
 valuealExperiment

 valuePredicted -  valuealExperiment
APE%      (4) 

 

Results of ANN and MRA model predictions were 
compared with experimental results in Table 5 (data for 
model development) and 6 for assessing the models 
generalization capability. 

It was found from Table 5 that the average APE for the 
MRA model was 4.56% and for the ANN model was 
3.77%. While comparing the modeling accuracy using the 
testing data, it was found that the average APE for the 
MRA model was 21.26% and that of the ANN model was 
7.36%. 

From the results given in Tables 5 and 6, it can be seen 
that both MRA and ANN models exhibit good prediction 
performance, however the accuracy of the ANN model 
was much better when the testing data were used. In 
other words, the ANN model maintained good prediction 
accuracy, that is, showed good generalization capability 
on new data, which cannot be said for the MRA model. 
Better prediction capability of the ANN than the MRA 
model for predicting the surface roughness in CO2 laser 
cutting process could be explained by the fact that laser 
cutting is a complex process in which the surface 
roughness obtained is dependent on many process para-
meters and their interactions. In that sense, ANNs which 
are based on matrix-vector multiplications combined with 
nonlinear (activation) functions, offer powerful modeling 
ability for complex processes with many non-linearities 
and interactions and hence outperformed MRA. 
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Effects of the laser cutting parameters on the surface 
roughness 
 

The developed ANN model for surface roughness 
prediction showed better performance than the MRA 
model with the high degree of accuracy within the scope 
of cutting conditions investigated in the study. Thus, the 
ANN model was employed to analyze the effects of the 
laser cutting parameters on the surface roughness. This 
was accomplished using Equation 3 and by varying value 
of one parameter, while keeping the other two 
parameters constant at low, medium and high level. The 
effect of the cutting parameters on the surface roughness 
was represented in Figure 2. 

From Figure 2 it can be observed that the surface 
roughness is highly sensitive to the selected laser cutting 
parameters. Also, it can be seen that the functional 
dependence between the surface roughness and the 
laser cutting parameters is nonlinear, and that the effect 
of a given parameter on the surface roughness must be 
considered through the interaction with the other 
parameters. However, the following can be observed: 
 

(1) An increase in the cutting speed leads to the 
decrease in the surface roughness. This is due to the fact 
that as the cutting speed increases, the interaction time 
between laser beam and workpiece material decreases, 
hence the thermal energy available at the workpiece 
surface decreases, which results in minimum side 
burning of the cut edge. 
(2) An increase in the laser power improves the surface 
roughness. This is because laser cutting is less stable at 
low power levels (Rajaram et al., 2003). However, at 
higher laser power levels with increasing the assist gas 
pressure, the heat generated by the laser power and 
exothermic reaction is increased, which results in higher 
surface roughness. Actually, as shown in Figure 2b, for a 
given cutting speed and assist gas pressure, there exists 
an optimum laser power which provides good surface 
finish. 
(3) An increase in the assist gas pressure increases the 
surface roughness, depending on the interaction effect 
between the cutting speed and laser power, this increase 
is linear or nonlinear. The assist gas pressure has a 
negative influence on the surface roughness because the 
reduced gas pressure minimizes side burning of the cut 
edge. 
 
 

Conclusion 
 

In this paper, an attempt was made to develop and 
compare empirical models for surface roughness 
prediction in CO2 laser cutting using MRA and ANN. The 
conclusions drawn can be summarized by the following 
points: 
 

1. Both modeling approaches provide explicit models for 
the surface roughness prediction. MRA model development
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Table 5. Comparison of the experimental and predicted values of the surface roughness using the data for model development. 
 

Experimental 

trial 

Laser cutting parameter Experimental Model prediction % Error 

v (m/min) P (kW) p (bar) Ra (µm) MRA ANN MRA ANN 

1 3 0.7 3 1.487 1.519 1.414 2.19 4.90 

3 3 1.1 5 2.073 2.016 1.914 2.77 7.69 

4 3 1.3 6 2.477 2.471 2.718 0.24 9.75 

5 3 1.5 7 2.937 3.063 2.890 4.31 1.59 

6 4 0.7 4 1.780 1.653 1.794 7.13 0.80 

8 4 1.1 6 2.337 2.382 2.372 1.95 1.49 

9 4 1.3 7 3.307 2.953 3.127 10.69 5.44 

10 4 1.5 3 1.190 1.173 1.235 1.44 3.80 

12 5 0.9 6 2.017 2.109 2.022 4.60 0.25 

13 5 1.1 7 2.603 2.659 2.576 2.14 1.04 

14 5 1.3 3 1.173 1.243 1.128 5.95 3.90 

15 5 1.5 4 1.380 1.226 1.261 11.16 8.64 

16 6 0.7 6 1.660 1.652 1.694 0.48 2.04 

19 6 1.3 4 1.007 1.091 1.038 8.33 3.14 

20 6 1.5 5 1.143 1.190 1.181 4.04 3.25 

21 7 0.7 7 1.587 1.517 1.586 4.38 0.04 

22 7 0.9 3 0.832 0.831 0.842 0.17 1.22 

23 7 1.1 4 0.903 0.771 0.830 14.69 8.07 

24 7 1.3 5 0.880 0.848 0.837 3.61 4.83 

25 7 1.5 6 1.073 1.063 1.036 0.93 3.46 
 
 
 

Table 6. Comparison of the experimental and predicted values of the surface roughness using the testing data. 
 

Experimental 

trial 

Laser cutting parameter Experimental Model prediction % Error 

v (m/min) P (kW) p (bar) Ra (µm) MRA ANN MRA ANN 

2 3 0.9 4 1.290 1.699 1.469 31.69 13.87 

7 4 0.9 5 1.707 1.949 1.860 14.19 8.99 

11 5 0.7 5 2.013 1.697 1.965 15.69 2.40 

17 6 0.9 7 1.710 2.180 1.759 27.50 2.84 

18 6 1.1 3 0.963 1.129 1.047 17.21 8.69 
 
 
 

 
                                                                              (a)                                                          (b) 

 
Figure 2. The effects of the laser cutting parameters on the surface roughness: (a) effect of cutting 
speed; (b) effect of laser power; (c) effect of assist gas pressure. 
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                                              (c) 
 
Figure 2. Contd 

 
 
 

requires less time and effort than the ANN model 
development in which one has to take a number of 
architectural and training parameters in consideration. 
2. Quite basic ANN model architecture, trained with 
“traingdx” procedure using small training data set, proved 
to be better in predicting the surface roughness than the 
MRA model considering the prediction accuracy and 
generalization capability. 
3. The use of MRA for surface roughness prediction is of 
limited applicability and reliability. Complex surface 
roughness formation mechanism and nonlinear functional 
dependency between the process parameters in CO2 
laser cutting justifies the use of ANN for reliable modeling 
of the process. 
4. ANNs can be used efficiently as an alternative for 
analyzing the interdependences between the process 
parameters and process responses. 
5. Development of the ANN model for CO2 laser cutting 
also permits optimization of the process parameters on 
the basis of the desired surface quality, productivity 
and/or actual operating costs. 
6. From the obtained results, the final conclusion drawn 
from this study is that, ANN models should be preferably 
used to predict, optimize and improve the CO2 laser 
cutting process of each engineering material. 
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