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In this paper, we use modified variational iteration method (MVIM) for solving generalized Boussinesq 
equation and Lie'nard equation. The obtained solutions of these equations using the traditional 
variational iteration method (VIM) give good approximations only in the neighborhood of the initial 
position. The main advantage of the MVIM is that it can enlarge the convergence region of iterative 
approximate solutions. Hence, the solutions obtained using the MVIM give good approximations for a 
larger interval, rather than a local vicinity of the initial position. Numerical results show that the method 
is simple and effective. 
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INTRODUCTION 
 
Analytical methods commonly used to solve nonlinear 
equations are very restricted and numerical techniques 
involving discretization of the variables on the other hand 
gives rise to rounding off errors.   

In this paper, the modified variational iteration method 
(Geng, 2010) has been applied for solving the 
generalized Boussinesq equation 
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and Lie’nard equation 
 

                                        (2) 
 

derived in 1872 to describe shallow water waves 
(Boussinesq, 1872) has the shortcoming that the Cauchy 
problem is ill posed. Thus, it cannot be used to analyze 
wave propagation problems numerically. 
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A well-known model of nonlinear dispersive waves was 
proposed by Boussinesq in the generalized form 
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With u, f and h are sufficiently differentiable functions and 
f(0)=0 . The initial conditions associated with the 
Boussinesq Equation (1) are assumed to have the form 
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with a(x) and b(x) given 
∞C functions. 

The Boussinesq Equation (3) describes motions of long 
waves in shallow water under gravity by Hirota (1973, 
1973a). It also arises in other physical applications such 
as nonlinear lattice waves, iron sound waves in plasma, 
and in vibrations in a nonlinear string. 

Ablowitz and Segur (1981) implemented the inverse 
scattering transform method to handle the nonlinear 
equations of the physical significance where soliton 
solutions were developed. Hirota (1973a) constructed the 
N-soliton solutions of the evolution equation by reducing 
it to a bilinear form. The approach of Kaptsov (1998) and 
Andreev et al. (1999) introduced an  efficient  algorithm to 
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handle the Boussinesq equation and developed multi 
solution solutions. The implementation of Adomian 
decomposition method (ADM) and its modified form to 
Boussinesq equation were introduced by Wazwaz (2001). 
Abbasy et al. (2007) solved the Boussinesq equation by 
using ADM-Pade technique. Also, variants of the one-
dimensional Boussinesq equation with positive and 
negative exponents are investigated in Wazwaz (2001, 
2005, 2006). In these works, Wazwaz used Sine-Cosine 
method. 

In the (2), let f  and g  be two continuously 

differentiable functions on R , with f  an even function 

and g  and odd function. Then the nonlinear second 

ordinary differential equation of the form 
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is called the Lie'nard equation. During the development of 
radio and vacuum tubes, Lie'nard equations were inten-
sively studied as they can be used to model oscillating 
circuits. Under certain additional assumptions Lie'nard 
theorem guarantees the existence of a limit cycle for such 
a system (Nili Ahmadabadi et al., 2009). 

The variational iteration method, which was proposed 
originally by He (1999, 2006,) and He et al. (2010), has 
been proved by many authors to be a powerful 
mathematical tool for addressing various kinds of linear 
and nonlinear problems (Wazwaz, 2005, 2006; Jafari and 
Alipoor 2011, Jafari et al., 2010, 2011; Salehpoor, 2011). 

The reliability of the method and the reduction in the 
burden of computational work gave this method wider 
application. 

In this paper, we used MVIM for solving Equations (1) 
and (2). We obtain an accurate numerical solution. The 
advantage of the MVIM over the existing methods for 
solving this problem is that the solution of Equations (1) 
and (2) obtained using the present method is efficient not 
only for a smaller value of x but also for a larger value. 

 

 

ANALYSIS OF THE VARIATIONAL ITERATION 
METHOD 

 
To illustrate basic concepts of VIM, we consider the 
following general non-linear system: 
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where L is a linear operator, N is a non-linear operator 
and g(t) is an inhomogeneous term. According to the 
VIM, we construct a correction functional as follows: 
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where λ  is a general multiplier, which can be identified 

optimally via the variational theory, the subscript n 

denotes the nth-order approximation, nu~  is considered 

as a restricted variation (He, 1999, 2006; He et al., 2010; 

Jafari et al., 2011), that is, nu~δ =0. 

Following the VIM, the correction variational functional 
in t-direction for generalized (scalar) Boussinesq equation 
(4) can be expressed as follows: 
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Making the correction functional, (6), stationary with 
respect to un  , we construct 
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which yields the following stationary conditions: 
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The Lagrange multiplier, therefore, can easily be 
identified as 
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(10) 

 

Using this expression of λ  in (7) we get 
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Now we begin with an arbitrary initial approximation:

btau +=
0

. Where a  and b  are depending on x to be 

determined on using the initial conditions (4), thus we 
have  
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In the case of Lie'nard equations, we have  
 

 
 
Therefore 
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We obtain  
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which gives xttx −=),(λ . Therefore our iteration 

formula becomes  
 

 
 
The components of the iteration Formulae (11) can be 
obtained using symbolic packages such as Maple or 

Mathematica. As a result, the components ,...,
1

uu
o

 are 

identified and the solution is thus entirely determined as 
the limit of this sequence. 

However, in many cases, the exact solution may be 
obtained in a closed form. 
 
 
THE MODIFIED VARIATIONAL ITERATION  
 
The main drawback of the standard VIM is that the 
sequence of successive approximations of the solution 
obtained can be rapidly convergent only in a small region, 
which will greatly restrict the application area of such a 
method. 

To enlarge the convergence region of the sequence of 
successive approximations obtained, Geng (2010) 
modified the VIM by introducing an auxiliary parameter. 

For using MVIM for (5), we rewrite it as  
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where γ is an auxiliary parameter and 0≠γ , which is 

used to adjust the convergence region of the following 
iterative formula. 

A correct functional for (5) can be written as  
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where λ is a general Lagrangian multiplier, which can be 

identified optimally via variational theory, and nu~ is a 

restricted variation which means 0~ =nuδ  . 

According to the VIM, the following iteration formula 
can be obtained: 
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From the convergence analysis aforementioned, it is 

easy to see that smaller the value of γ  is, the wider the 

convergence region of iterative sequence (15). 
In fact, iterative formula (15) gives us vast freedom of 

choice for some strong nonlinear problems; one can 

choose a relatively small value of γ  (generally less than 

1) to obtain a good approximation in a wider region. 
In addition, it should be especially pointed out that 

when 1=γ , (14) becomes the standard variational 

iteration formula (14). 
For Equation (1), according to the aforementioned 

MVIM, we construct the correct functional as follows: 
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where nu~ is a restricted variation, that is, 0~ =nuδ ; λ is a 

general Lagrangian multiplier and can be easily identified 

as .xt −=λ  

So we can obtain the following iteration formula: 
 

0,1,2,...n   x,x0    ,])[()()(
0

2

1
=≤≤−−−−+= ∫+

x

nxxxxnxxnxxnttnn dtuuuuxtxuxu γ
   

                                                                                
(17) 

 

where )(xuo is an initial approximation satisfying the 

initial condition of Equation (1). 

 
 
Theorem 1 

 

Suppose that α=)(xuo  and the iterative sequence 

)}({ xun obtained from (17) converge to u(x), then u(x) is 

the solution of Equation (1) (Geng, 2010). 
 
 
Theorem 2  

 
Define a nonlinear mapping (Geng, 2010) 
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A sufficient condition for convergence of the iterative 

sequence )}({ xun obtained from (17) is strict contraction 

of the nonlinear mapping T. Furthermore, the sequence 
(17) converges to the fixed point of T which is also the 
solution of Equation (1). 

Therefore, according to (17), by choosing a proper γ

and     initial    approximation    ),(
0

xu     the   successive  
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Table 1. Numerical results for Example 1. 
 

(x,t) 
MVIM  (VIM) 

Exact 
),(

2
txu  ),(

2
txu   ),(

4
txu  ),(

2
txu  

(-0.5,0.2) -6.65264 -5.64433  -4.93865 -7.20312 -7.20312 

(-0.5,0.5) -12.1813 -23.3471  -36.9943 -20 -20 

(0,0.3) -5.87304 -7.83001  -10.26 -7.16327 -7.16327 

(0,0.6) -10.4438 -50.8722  -93.9444 -24 -24 

(0.5,0.3) -4.49565 -8.59412  -12.9882 -5.63265 -5.63265 

(0.5,0.6) -7.8024 -45.1842  -84.2184 -19.3125 -19.3125 

 
 
 

 
 

Figure 1. Approximate solution ).,( txu        

 
 
 
approximations of the solution to (1) on the entire interval 
[0, x] can be obtained. 
 
 
NUMERICAL EXAMPLES 
 
Here, we apply the MVIM to Boussinesq and Lie'nard 
equation. Numerical results show that the MVIM is very 
effective. 
 
 
Example 1 
 
Consider the Boussinesq equation (Yusufoglu, 2008) 
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The exact solution can be easily determined to be  
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According to (19), taking γ  

= 0.3, n = 4, the numerical 

results is shown in Table 1. From Table 1, we find that 

the solution derived by the VIM (Yusufoglu, 2008) gives a 

good approximation only in the neighborhood of the initial 

position, while the present method gives a good 

approximation in a wider region. In Figures 1 and 2, we 

plot u1(x, t) and u(x, t) which is the exact solution 

(Yusufoglu, 2008). 

 

 

Example 2 
 

Consider the Lie'nard equation 
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Figure 2. Exact solution ),( txu .                                                           

 
 
 

Table 2. Comparison of VIM and MVIM with exact solution for Example 2. 
 

X 
(MVIM)  VIM (Nili Ahmadabadi et al., 2009) 

Exact 
),(

2
txu  ),(

4
txu   ),(

2
txu  ),(

4
txu  

0.1 0.706576 0.706046  0.705339 0.703571 0.741508 

0.3 0.702334 0.697561  0.691197 0.675287 0.803527 

0.4 0.698621 0.690136  0.678823 0.650538 0.830647 

0.5 0.693849 0.68059  0.662913 0.618718 0.85502 

0.7 0.681121 0.655134  0.620486 0.533866 0.895647 

0.9 0.66415 0.621193  0.563918 0.420729 0.926363 
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with exact solution [19] 
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In Table 2, we compare the VIM and MVIM with exact 
solution. 

 
 
Conclusion 

 
In this paper, MVIM is used for solving Boussinesq 
equations and Lie'nard equation. Comparing with the 
standard VIM results, the results for numerical examples 
demonstrate that the MVIM can give a more accurate 
approximation in a larger region. This is also the main 
advantage of this method. Therefore, the modification of 
the VIM can overcome the restriction of the application 
area of the VIM, and then expand its scope of application.  
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However, generally, when the value of γ chosen is 

small, the rate of convergence of the iterative formula is 
relatively slow, and so more iterative steps are required. 
This is the drawback of this modification. 
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