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In this paper, a connection between the long lasting macroscopic classical laws of gases and the 
quantum mechanical description of non-interacting particles confined in a box was found, thus 
constituting an ideal gas. In such a gas, the motion of each individual molecule can be considered to be 
independent of all other molecules, and the macroscopic parameters of an ideal gas, mainly, pressure P 
and temperature T, can be defined as simple average quantities based on individual motions of all 
molecules in consideration. It is shown that for an ideal gas enclosed in a macroscopic box of volume 

V, the constant γγγγ appearing in the classical law of adiabatic expansion law, that is, tconsPV tan=γ
, can 

be derived based on quantum mechanics. Physical implications of the result we disclose are discussed. 
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INTRODUCTION 
 
From time to time, most of us, no doubt, just like many 
scientists of the 20th century, were puzzled with the 
question of finding a link between the Boltzmann 
Constant k and the Planck Constant h. In particular, one 
can refer to the de Broglie doctorate thesis, where he 
brilliantly has applied his relationship (associating a wave 
length with the momentum of a moving particle) to the 
statistical equilibrium of gases (de Broglie, 1925), but did 
not advance his idea, to see whether one can along such 
a line, obtain anything related to the law of gases, 
established long ago, in 1650. At the second half of the 
past century a possible relationship between k, h as well 
as the light velocity in vacuum c has been explored in 
details by Dannenhower (1977). However, he concluded 
that the existence of a solution is not evident; thus 
according to him the issue remains unresolved. We will 
see below that this is actually a vain effort. 
 
 
 
 
*Corresponding author. E-mail: khol123@yahoo.com. 

Let us assume that the gas is made of just one kind of 
molecule. The Boyle-Mariotte law of ideal gas is given as 
usual by 
 

kNTRTnPV m ==              (1) 
 
where P is the pressure of the gas, V the volume of the 
gas, T the temperature of the gas, nm the number of 
moles the gas is made of, N the number of molecules 
making the gas, R= 8.31 J/K is the gas constant, 
 

ANRk /=                (2) 
 

is the Boltzmann constant, and AN  the Avagadro 
number. 
 
The kinetic theory of gases allows us to derive the same 
casing as that of Equation (1) via considering the 
momentum change of each molecule separately, when 
bouncing   back   from   a   wall   of   the  given  container  



 
 
 
 
(Halliday et al., 1997). Assuming for simplicity a cubic 
geometry, one obtains through simple averaging: 
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where 2/2vmE = being the average translational 
energy of molecules of mass m. 

For the sake of completeness, let us recall the classical 
derivation of Equation (3). The force fx exerted by the 
molecule of mass m and velocity v{vx, vy, vz} on the wall 
in the plane yz, is given by Newton’s second law 

tpf xx ∆∆−= , where xx mvp 2−=∆  is the algebraic 
increase in the momentum, whilst the molecule bounces 

back from the wall, and xvLt 2=∆ , L being the size of 
the container along the x-direction. Thus one has 

Lmvf xx
2= . We can suppose that we deal with an 

average molecule, and all molecules behave as this 
average molecule in the ideal gas. Hence, summing over 
N molecules the gas is made of, we get the total force 
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, where the mean square 
velocity can be assumed to have the same value for each 
molecule at the equilibrium. The pressure P exerted by N 
molecules on the wall of concern, is thence 
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which is Equation (3), along with V=L3. 

Now comparing Equations (3) and (1), one as usual 
derives 
 

kT
2
3

E =
.                          (4) 

 
Furthermore, Equation (3) can naturally be written for the 
pressure p that would be built in a volume V, containing 
just one molecule of translational energy E : 
 

EkTpV
3
2==

,                        (5) 
 
Given that we have started our derivation, based on just 
one molecule, before we achieved a subsequent 
averaging. 
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Now, exploring a possible relationship between the laws 
of ideal gases and quantum mechanics and supposing 
the discrete energy levels for each individual molecule 
(no matter how large the principal quantum number n in 
the classical limit), one may ask the following questions: 
 
i) Could Equation (3) be the basis for building a bridge 
between thermodynamics, mainly characterized by the 
Boltzmann constant, and quantum mechanics, basically 

the energy quantity E  averaged over the discrete energy 
states of all molecules? 
ii) More specifically can Equation (3) be the basis for 
building a bridge between k and the Planck constant h? 
 

Here though, while the equality kTpV =  points to the 

law of gases, the next equality EkT )3/2(=  of Equation 
(5), is no more than a definition of temperature in terms of 

the average translational energy E  of the molecules, 

once k is defined via Equation (2). So EkT )3/2(=  does 
not in fact provide us with any relationship between k and 
h.  

In other terms, E  is to be expected to involve the 
Planck constant, yet this, does not allow us to coin a 
relationship between h and k, based on Equation (5), and 
hence with this equation we are bound to fail to establish 
a relationship between macroscopic properties of an ideal 
gas and the quantum mechanical description of its 
molecules. 

Thereby it is found that, when we propose to draw a 
bridge between the phenomenological laws of gases and 
quantum mechanics, we should not really look for a 
relationship between h and k. Any such effort will be 
dissolved through a plain definition of the temperature, in 
terms of the average translational energy of the 
molecules, and nothing beyond. However, we can still go 
ahead to check whether the phenomenological laws of 
gases could be matched with quantum mechanics, if we 
could explore those laws of gases, which do not involve 
the constants R or k. That is the key point of our 
approach. 
 
 

CONSTANCY OF PV
γ
 FOR AN ADIABATIC 

TRANSFORMATION: QUANTUM APPROACH IN SEMI-
CLASSICAL LIMIT 
 
There is, in effect, a relationship satisfying the criteria we 
have just set; this is the one describing an adiabatic 
transformation of gases in a wide temperature range, that 
is, 
 

constantPV =γ
,             (6) 
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obtained in the familiar way based on the laws of gases, 
considered together with the first law of thermodynamics 
(Sommerfeld, 1964), along with the usual definition. 
 

VP CC=γ .              (7) 
 

Here VC  is the heat to be delivered to one mole of an 
ideal gas at constant volume to increase its temperature 

as much as 1K, and PC  is the heat to be delivered to 
one mole of an ideal gas at constant pressure to increase 
its temperature till as much as 1K. 

For an ideal gas, the internal energy levels of 
molecules are not excited by definition. In such a case 
(Van Wylen and Sonntag, 1985) we have: 
 

23RCV = ,                                                             (8) 
 

25RCP = ,                                                             (9) 
 
and the constant γ in Equation (7) turns to be equal to 
 

35=γ .                        (10) 
 
Hence Equation (6) acquires the form 
 

constantPV =35
.                      (11) 

 
Any reader in the field knows that the derivation of this 
latter relationship is presented in any related text book. 
Haar and Wergeland (1960) suggested a different 
derivation of Equation (11) based on the fact that the 
single-particle energy E of a mono-atomic, non-
relativistic, diluted gas is proportional to V-2/3, that is, 
 

3/2~ −VE .                       (12) 
 
To show this, they write the energy of a single particle in 

the ith atom as ii fV ⋅= − 32ε , where fi is some function 
of quantum numbers and particle mass for the ith particle. 
Involving the adiabatic theorem of quantum mechanics 
(which implies the constancy of fi under slow variation of 
the volume), they straightforwardly arrive at Equation (12) 
Furthermore Haar and Wergeland noticed that the 
internal energy of one mole of gas can be written in the 
form 
 

ENE A= .                       (13) 
 
Combining Equations (12) and (13), one obtains: 

 
 
 
 

constantVE =3/2
.                       (14) 

 
One can additionally write, as usual (cf. Equation (1)), 
 

RTPV = ,                         (15) 
 
and via Equation (4), we further derive 
 

PVE
2
3=

.                         (16) 
 
If we now multiply the two sides of this latter equation by 

32 /V , and use the constancy delineated by Equation 
(14), we arrive at 
 

constantPV =3/5
,                        (17) 

 
which is Equation (6), written for the ideal gas.  

One should mention that the derivation of Equation (6) 
proposed in Sommerfeld (1964) is of a general character, 
and, in particular, does not assume a classical limit. 
However, neither Equation (6) usually provided by text 
books, nor Equation (17) obtained by Haar and 
Wergeland, did tell us, what the “adiabatic constant” on 
the rhs of these equations, specifically is. Moreover, at 
the moment nobody seems to have even asked what 
could be the particular alphanumeric expression of this 
constant, if any. 

Our goal thus becomes to derive specifically an 
expression for this “adiabatic constant”, which is worth 
stressing - still remains classically unknown, by means of 
a quantum mechanical description of the ideal gas, being 
applied to the semi-classical limit. This implies that a 
principal quantum number for any given molecule can be 
very large, but it does not create any conceptual 
difficulties. At the same time, it is important that in this 
limit we can use the standard classical phenomenological 
laws for the ideal gas without any limitations. 

In our further approach, as emphasized, it is essential 
that the ideal gas is made of non-interacting molecules, 
each behaving as a simple quantum mechanical particle 
locked up (potential energy – wise) in an infinitely high 
box. The wave functions of such non-interacting 
molecules are not mixed, and thus the internal energy of 
the ideal gas can be found as a simple sum of 
eigenvalues of energy for each molecule. Besides, along 
with the kinetic theory of gases to be valid in the classical 
limit, we well assume that the Boyle Mariotte law (1) 
holds for even one molecule. That is, if R is replaced by 
the Boltzmann constant k, in these equations, then one 

lands at ( )kcv 23= , 
( )kc p 25=

, defined for just one 
molecule. This means we can confidently use the ratio 
Cp/Cv or the  same, the ratio cp/cv in the quantum world. It  



 
 
 
 
means, in particular, that the expression (10) is well 
applicable to the one molecule, that is, to a particle in a 
box. 

Let us thus consider a particle of mass m at a fixed 
internal energy state located in a macroscopic cube of 
side L. Herein we will consider the non-relativistic case. 
Our approach however can be extended to the relativistic 
case with no difficulty. The non-relativistic Schrödinger 

equation furnishes the energy nE  of the particle in the 
box at a given energy level, that is, 
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where nx, ny, nz are the quantum numbers to be 
associated with the corresponding wave function 
dependencies on the respective directions x, y and z. For 
brevity, we introduced the subscript “n” which denotes the 
specific state characterized by the set of integer numbers 
nx, ny and nz. 

For an ideal gas, the “potential energy” within the box is 
null. Thus we have 
 

22
nn mvE = ,                        (19) 

 

with nv  being the velocity of the particle at the nth energy 
level. 
 

At the given energy level, the pressure np  exerted by 
just one particle on either wall, becomes (cf. Equations 
(3) and (5)) 
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Now let us calculate (for just one particle) the product 

35Vpn : 
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Hence this quantity indeed turns out to be a constant for 
a given particle of mass m at the given energy level, 
characterized by the principal quantum numbers nx, ny 
and nz. 

Recall that the total energy En of Equation (18) 
ultimately determines the quantized velocity vn of 
Equation (19). 
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When it is a question of many particles instead of just 
one, normally we would have particles, in general, at 
different quantized states. This means that we deal with 
some energy distribution of molecules at the given 
temperature, instead of the fixed eigenvalue, Equation 
(18) derived for a gas consisting of a single molecule. 

In order to describe the distribution of energy over the 
molecules within an elaborated quantum mechanical 
approach, we have to abandon the strict ideal gas 
approximation, and add to the Schrödinger equation 
coming into play, a potential energy term responsible of 
the weak interaction of molecules, which will randomly 
affect all of the molecules of gas at each fixed 
temperature. We have to recall that such a distribution of 
perturbation energy is to be compatible with the 
Maxwellian distribution of velocities. However, the 
analysis of this problem falls outside the scope of the 
present paper. For our immediate purpose, it is sufficient 
to take into consideration an “average molecule” at the 
given temperature T. We can, as conveyed, well visualize 
the average molecule as a single particle, obeying 
Equation (21), thus situated at the nth level, and of 
course associate the given temperature with this energy, 
along with Equation (4). 

Not to complicate things, let us get focused on the 
average particle, and simply suppose that all others 
behave the same. Furthermore, all three components of 
the average velocity at equilibrium are expected to be the 
same. Thus we can rewrite Equation (21) for the 
macroscopic pressure Pn exerted at the given average 
state n by one mole of gas on the walls of the container: 
 

m
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NVP An 4
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Rigorously speaking, one must write 
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along with the definition 
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Thus it becomes clear that, if all particles bared the same 
set of quantum numbers, each with equal quantum 
numbers along all three directions, that is, 

nnnn zyx ===
,  

 

then 

__
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Equation (22) does disclose the constant involved by 
Equation (6). Note that at the average state n (that is, at 
the given temperature), the mean square speed of the 
gas molecules is vn

2. The average energy is furnished 
accordingly, via the framework of Equation (19). Let us 
calculate what would n be for 1 mole of H2, delineating 
the pressure of 105 Pascal (1 atmosphere), in a volume of 
1 m3. From Equation (22) we obtain: 
 

10
68223

305

10x7
106.62100236.
100.939182410 ≈

×××
⋅××××≅ −

−
n

.      (25) 
 
Thus our result indicates that the behavior of an ideal gas 
is nothing, but a macroscopic manifestation of quantum 

mechanics. In particular, the constancy of 
γPV  happens 

to be rooted to quantum mechanics, and seems to be 

deep. It is such that the quantity “mass × 
γPV ” turns out 

to be a Lorentz scalar. 
Therefore, we expect this scalar to be somehow nailed 

to a Lorentz invariant universal constant; this constant, 
more specifically, turns out to be the square of the Planck 
constant. Accordingly, for a given mass m, the quantity 

γPV  relates to mh /2
; this is what we have revealed in 

this paper. Henceforth: 
 

The constancy of 
γPV  appears to be an extension of 

quantum mechanics to macroscopic scales, but even 
more essentially it delineates how the internal dynamics 
displayed by a gas consisting of quantum mechanical 
particles made of a given mass is organized in 
conjunction with the size of the container, the dynamics in 
question takes place in, and this universally, at all scales 
(Yarman, 2004a, b). Here we will not go in any further 
details of this fundamental problem. 

We should like to note that Equation (6) is not a 
relativistic equation anyway. That is, if ever the 
constituents of the gas move at speeds, which cannot be 
neglected as compared to the speed of light, then it is not 
anyway a valid relationship, and it should be replaced, as 
insinuated by Equations (21) and (22), by 
 

( ) constantPVmc =γγ 2
,          (26) 

 
where γ is the Lorentz factor, and γ m the relativistic mass 
of the average particle. 

Note further that the above relationship well holds for a 
photon gas, and we spare the discussion of these 
interesting points for a future work. 
 
 
CONCLUSION 
 
In this article we aimed to bridge classical thermodynamics 

 
 
 
 
and quantum mechanics. Though we have determined 
that toward that aim, it is in vain to look for a relationship 
between Boltzmann constant k and Planck constant h. 
Indeed, a relationship involving both k and h, such as 
Equation (5), is nothing more than a definition of say, the 
temperature, in terms of the translational energy of the 
particle in hand (see the discussion we provided below 
Equation (5)). Thus we have chosen on purpose the 

relationship constantPV =3/5
 to work with, because it 

constitutes distinctively a closed form of basic gas 
relationships, which does not involve the Boltzmann 
constant. 

To avoid possible confusions, let us stress that, our 

goal was not of course, to show that 
35/PV  remains 

constant through an adiabatic transformation; this is 
evidently a classical relationship. Our goal was to 
calculate this particular constant, which remained 
obscure up till now. In the present contribution we have 
solved this problem based on quantum mechanics, 
applied in the semi-classical limit, thus establishing a new 
link between classical thermodynamics and quantum 
mechanics in the description of an ideal gas. 

The particular value of the constancy of 
γPV  

(Equation (22)) is something totally missed over almost a 
century in the literature. The whole thing, in fact, is rooted 
to an intuition, the first author had developed elsewhere 
(Yarman, 2004a, b, 2009). In other terms, the constancy 

of 
γPV  (and, likewise, the frame drawn by the law of 

gases) seems to be deep, in relation to the fact that the 

quantity “mass × 
γPV ” turns out to be a Lorentz scalar, 

which must further be in natural harmony with quantum 
mechanics. Such a universal property, may well allow us 
to state that the quantity “mass × P × (Appropriate 
volume)γ”, in general, is nailed to the square of the Planck 
constant; under any circumstances, the volume in 
question, is being eventually made of the mean free path 
of a constituent of the gas at hand. 

It is also important that Equation (22), being obtained in 
the semi-classical limit, is in practice well applicable to 
any ordinary rarefied room-temperature gas, where this 
equation may well be tested experimentally. 

Concurrently we should point out that Equation (22), in 
general, cannot be applied to low-temperature gases, 
when their quantum properties become dominant. In such 
a case the law of adiabatic transformation of such a 
quantum gas should better be handled via the 
relationship (cf. Landau and Lifshits, 1981) 
 

Sq
H

p
1

∂
∂−=

,            (27) 
 
where H is the Hamiltonian of quantum particle confined 
in a container, q stands for the spatial coordinate (x, y or 
z), and S is the area of the wall of container orthogonal to  



 
 
 
 
the coordinate q. Note yet that for the case we handled, 
the energy of any particle (not interacting with another 
one, whatsoever), is constant throughout. And the 
peculiarity drawn by Equation (27) becomes needless. 
In addition, one should distinguish between Fermi-gas 
and Bose-gas, a problem, which can however be 
overlooked for the case of a semi-classical ideal gas, we 
have undertaken herein. We only notice that taking into 
account the exchanged energy through interactions 
(which we did not have to deal with, herein) requires re-
defining the notion of ideal gas, in a quantum mechanical 
perspective. The analysis of these problems, from the 
stand point we painted over here, is postponed for a 
future work. 
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