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The homotopy analysis method (HAM) is proposed for solving wave equations. By using the HAM, an 
approximate solution is as series which contains the auxiliary parameter � . In this way, �  provides us 
with a simple way to adjust and control the convergence region of series solution. This method has a 
reasonable residual error and in some cases has an exact solution. Some examples are employed to 
illustrate validity and flexibility of this method. 
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INTRODUCTION 
 
Most phenomena in our world are essentially nonlinear 
and are described by nonlinear equations. It is still 
difficult to obtain accurate solutions of nonlinear problems 
and often more difficult to get an analytic approximation 
than a numerical one of a given nonlinear problem. 
Recently, a powerful analytic method for nonlinear 
problems, namely the homotopy analysis method (HAM), 
has been developed by Liao (2003). This method 
provides us with a simple way to ensure the convergence 
of the series solution, so that we can get approximations 
with enough accuracy. Further more, this technique 
doesn't have restriction of non-perturbation methods, 
such as Lyapunov's artificial small parameter method, the 

-expansion method and Adomian's decomposition 
method (Jafari and Daftardar_Gejji, 2006; Bildik and 
Konuralp, 2007). In summary, this technique provides us 
with a convenient way to adjust with convergence region 
and the rate of approximation series. HAM has been 
applied successfully to many nonlinear problems in 
science and engineering (Abbasbandy et al., 2009: 
Babolian et al., 2009; Abbasbandy, 2006, 2007; Paripour 
et al., 2010; Liao, 1992, 2003, 2004, 2005; Liao et al., 
2003; Fu et al., 2001; Ezzati et al., 2011: Ezzati and 
Tajdini, 2010; Biazar et al., 2011, Mohyud-Din et al., 
2011; Jafari et al., 2011, Jafari and Momani 2007). In this  
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paper HAM is being used to find solutions of wave 
equations as follows:   
 

( )( ) ,xxtt uuFu =                                                             (1) 
 
where  is a function of ; and is considered in 
the following types: 
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THE BASIC RULES OF THE HAM  
 
In most cases, a nonlinear problem can be described by 
a set of governing equations with initial and /or boundary 
conditions. Let us consider the non-linear equation in a 
general form as follows: 
 

( )[ ] ,0, =truN  
 

where,  is a non-linear operator,  is an unknown 
function   and      and      denote  spatial  and  temporal  



 
 
 
 
independent variable, respectively. Using homotopy 
concept , (Liao et al., (2003)) has constructed the so-
called zeroth-order-deformation equation: 
 

( ) ( ) ( )[ ] ( ) ( )[ ],,,,,,,1 0 qtrNtrHqtruqtrLq Φ=−− �φ       (2) 
 
where,  is an embedding parameter,  
denotes an initial guess of the exact solution ( )tru , , 

0≠�  is an auxiliary parameter,  is an 
auxiliary function,  is an unknown function and 

 is an auxiliary linear operator with the property: 
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Clearly, as  increases from 0 to 1, the solution 

 varies from  to the exact solution 
. Liao (2009) named the auxiliary parameter 

 as the convergence-control parameter. HAM, 
because of having  and , is more general than 
the traditional ones.  and  play important roles 
with in the frame of the HAM (Liao, 1995).  By expanding 

 in a Taylor series with respect to  we have: 
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With property chosen of , the 
series (3) will converge at  and the power series 
(3) becomes: 
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which must be one of the solutions of . In 
short, defining the vector as:  
 

( ) ( ) ( ){ }.,,...,,,, 10 trutrutruu nn =  
 
According to the definition of , it can be derived 
from the zero-order deformation equation (2). 
Differentiating the equation (2) -times respective to the  
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embedding parameter  and then dividing it by  and 
finally setting , we have the so-called th-order 
deformation equation: 
 

( ) ( )[ ] ( ) ( ),,,,,, 11 truRtrHtrutruL mmmmm −− =− �χ       (5) 
 
where,  is defined by: 
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Clearly, Equation 5 is a linear one. Therefore a nonlinear 
equation could be transformed to a system of linear ones 
which can be easily solved using an iterative procedure 
and this is the main consequence of the HAM. After 
solving Equation 5, we can substitute  in 
Equation 5 and obtain an approximation of arbitrary 
order. In (Liao, 2003), the authors consider that 
convergence-control parameter  provides a simple way 
to adjust and control the convergence region and rate of 
the approximation series. So we can always find a proper 
value for  to ensure the convergence of series solution 
(Liao, 1995). By plotting the so-called -curves, we can 
adjust and control the convergence region and rate of 
approximation series and also choose . For more 
examples and details one can refer to (Paripour et al., 
2010; Liao,  2003; Liao  et al., 2003). 
 
 
APPLICATION OF THE HAM 
 
In this section, we apply the HAM to solve different kinds 
of wave equations. Although in this method we have 
great freedom to choose the initial approximation 

, the auxiliary linear operator  , the auxiliary 
function  and the auxiliary parameter ; for 
simplicity we use auxiliary function  and the 

auxiliary linear operator 
2

2

t
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where  and  are integral constants. For choosing 

, suppose that the following wave equation is 
given:  
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( )( ) ,xxtt uuFu =  
 
with initial conditions:  
 

( ) ( ) ( ) ( ).0,,0, xgxuxfxu t ==  
 
We suggest , where  are 
function of . For solving the examples of this 
section, we apply the so-called mth-order deformation 
equation, as follows:  
 

( ) ( )[ ] ( ) ( ),,,,,, 11 truRtrHtrutruL mmmmm −− =− �χ        (8) 
 
with initial conditions: 
 

 
 
where  is defined in Equation 6. 
 
Example 1. Consider the non-linear equation: 
 

( ) ,1
xxtt uuu −=                                                             (9) 

 
subject to the initial conditions  
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According to above explanations, we have 

 Successively, using the so-called 

th-order deformation Equation 8 with initial conditions:  
 

 
 
one has: 
 

 

 

 

 

 

 
So, using Equation 4, the series solution which is in terms 
of , will be obtained: 
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The series will be converge when , so  
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is the exact solution. 
 
Example 2. Consider the wave equation: 
 

( ) ,2
xxtt uuu −=                                                            (10) 

 
subject to the initial conditions:  
 

 

 
Frequently solving Equation 8 with initial conditions:  
 

 
 

and choosing , we can obtain 

, as follows :  
 

 

 
 

 
 

 
  

 
: Now according to Equation 4 the solution is  
 

 

 
which is the exact solution. 
 
Example 3. Consider the wave equation  
 

( ) ,xxtt uuu =                                                               (11) 
 
subject to the initial conditions  
 

 
 
Clearly, for solving Equation 11 with its initial conditions 
by using the HAM, we choose  Now, solving 
Equation 8 with initial conditions  
 

 
 
we can obtain  as follows:  
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Figure 1. -curves according to  of example 4. Dotted curve: ; solid curve: 

.  
 
 
 

 

 

 

 

 

 

 

 
So, according to Equation 4, we can approximate  
as follows:  
 

 

 
Imposing  the series converges to 
 

 which is the exact 

solution . 
 
Example 4 (Ezzati and Tajdini, 2010), Consider the wave 
equation  
 

( ) ,2
xxtt uuu =                                                             (12) 

 
subject to the initial condition  
 

 
 
Frequently, solving  Equation   8   with   initial   conditions  

 
 
and using the initial guess , we 
obtain:  
 

 

: 

 

 
 
We use the 10-term approximation and set  
 

 
 
By plotting the -curves, we obtain the interval 

 as the valid region for  (Figure 1). 
Testing different values of � in the 

�
R , it can be 

concluded that the value  is the best one 
with the minimum error. Figure 2  shows error curves in 

 for . Tables 1 and 2 show the 
absolute errors of  for  and 

, respectively. Clearly, residual error of 
 for  is better than for , 

(the HAM with  is the homotopy perturbation 
method). 
 
Example 5. Consider the wave equation; 
 

                                                       (13) 
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Figure 2. The residual error of Example 4 for the . Solid curve: x = 3; dashed curve: x = 2; 
dotted curve: x = 1.  

 
 
 

Table 1. Absolute errors of  of Example 4, obtained using the HAM with . 
 

x t = 0.5 t = 1 t = 1.5 t = 2 
-4 6.60195 E-10 3.08115 E-6 2.49995 E-3 7.70863 E-5 
-3 4.95136 E-10 2.31086 E-6 1.87496 E-3 5.78147 E-5 
-2 3.30098E-10 1.54057 E-6 1.24997 E-3 3.85432 E-5 
-1 1.65049E-10 7.70287 E-7 6.24986 E-3 1.92716 E-5 
1 1.65049E-10 7.70287 E-7 6.24986 E-4 1.92716 E-5 
2 3.30098E-10 1.54057 E-6 1.24997 E-3 3.85432 E-5 
3 4.95136E-10 2.31086 E-6 1.87496 E-3 5.78147 E-5 
4 6.60195E-10 3.08115 E-6 2.49995 E-3 7.70863 E-5 
10 1.65044E-9 7.70287 E-6 6.24986 E-3 1.92716 E-5 

 
 
 

Table 2. Absolute errors of  of Example 4, obtained using the HAM with . 
 

x t = 0.5 t = 1 t = 1.5 t = 2 
-4 1.05843 E-9 4.41821 E-5 5.81078 E-3 5.20989E-2 
-3 7.93815 E-10 3.31366 E-5 4.35809 E-3 3.90742E-2 
-2 5.29216 E-10 2.2091 E-5 2.90539 E-3 2.60494E-2 
-1 2.64608 E-10 1.10455 E-5 1.4527 E-4 1.30247E-5 
1 2.64608 E-10 1.10455 E-5 1.4527 E-4 1.30247E-5 
2 29216 E-10 2.2091 E-5 2.90539 E-3 2.60494E-2 
3 7.93815 E-10 3.31366 E-5 4.35809 E-3 3.90742E-2 
4 1.05843 E-10 4.41821 E-5 5.81078 E-3 5.20989E-2 

10 2.64606 E-9 1.10455 E-4 1.4527 E-2 1.30247E-1 
 
 
 
subject to  
 

( ) ( ) ( ) .00,,tanh0, == xuxxu t  
 
Solving the Equation 8 with initial conditions:  

 
 

and considering initial guess , we 

can calculate  as follows:  



 
 
 
 

 
 
 

 
: According to Equation 4, the series solution expression 
can be written in the form of  
 

( ) ( ) ( ) ( )xtxutxutxu tanh,,, 10 =++= �  
 
which is the exact solution. 
 
Example 6. Consider the wave equation: 
 

                                                      (14) 

 
subject to 
 

 
 
Solving the Equation 8 with initial conditions  
 

 and considering initial 

guess , we can successively 
calculate  
 

 
 

 
 

 
 
Hence, according to Equation 4, the approximate solution 
is:  
 

 
 
which is the exact solution.  
 
 
CONCLUSION 
 
In this paper, the HAM is applied to obtain the 
approximated analytical solutions of wave equations in 
different forms. A fundamental qualitative difference 
between the HAM and another analytical method is that 
the HAM provides us with a convenient way to control 
and adjust convergent regions of approximated solutions. 
Examples show the flexibility and potential of the HAM for 
complicated nonlinear problems. 
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