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Conjoint analysis has been a widely used method for measuring customer preferences since 1970s. 
This method is based on the idea that customers' decisions depend on all tangible and intangible 
product features. One of the fundamental steps in performing conjoint analysis is the construction of 
experimental designs. These designs are expected to be orthogonal and balanced in an ideal case. In 
practice, it is hard to construct optimal designs and thus constructing of near optimal and efficient 
designs is carried out. There are several ways to quantify the relative efficiency of experimental 
designs. The choice of measure will determine which types of experimental designs are favoured as 
well as the algorithms for choosing efficient designs. In this paper, we propose a simultaneous 
algorithm which combines two optimality criteria: standard criterion named by A-efficiency, and non-
standard criterion, P-value. The algorithm was implemented as the procedure in MCON software for 
traditional conjoint analysis. The computational experiments were made and results were compared 
with results of SPSS

®
 procedure. It was shown that, unlike the SPSS

®
 procedure, MCON procedure 

could construct designs that contain an arbitrary chosen number of profiles. Furthermore, it was 
confirmed that the designs constructed using MCON procedure are not just highly efficient but also 
better balanced than those constructed by SPSS

®
. 

 
Key words: Conjoint analysis, efficient experimental design, optimality criteria, approximate algorithm, MCON 
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INTRODUCTION 
 
Attractiveness of the preference measuring techniques 
and its usage in practice has been rapidly increased in 
the last few years. The practical significance of these 
techniques derives from their widespread use for new 
product or concept development and valuation studies in 
such diverse areas as marketing, transport and financial 
services, etc (Gustafsson et al., 2003; Wittink and Cattin, 
1989; Wittink et al., 1994). One method that has become 
particularly popular in this context is conjoint analysis 
(Kofteci et al., 2010; Kuzmanovic et al., 2011; Tawil et al., 
2011). 

Conjoint  analysis   is  a  decomposition  method  which   
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assumes that products/services can "break-down" into 
their attributive components and which implies the study 
of joint effects of products' variety attributes on their 
preference. In conjoint analysis, respondents have to 
evaluate a set of alternatives that are represented by 
factorial combinations of the levels of certain attributes. In 
traditional conjoint approach, the alternatives have to be 
rank ordered or rated on some graded scale. It is 
assumed that these preference judgments are based on 
the overall utility values of the considered profile's levels. 
These unknown parameters are then estimated from the 
data. If the data consists of ranking techniques from 
linear programming, non–metric versions of ANOVA can 
be used. Metric conjoint analysis comprises variants of 
conjoint analyses that use rating scales.  Here, the utility 
values are usually estimated by the least squares 
procedures. Because of the metric  response  format  and 
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the linear relationship between preference judgments and 
attributes, it is especially this type of conjoint analysis that 
can be readily applied to the optimal design theory 
techniques. 

The quality of statistical analysis heavily depends on 
the alternatives presented in the experimental design. An 
experimental design is a plan for running an experiment. 
Experiments are performed to study the effects of the 
factor levels on the dependent variable. The factors of an 
experimental design are variables that have two or more 
fixed values or levels of the factors. In conjoint analysis, 
the factors are the attributes of the hypothetical products 
or services, and the response is either preference or 
choice.  

Using all combinations of attribute levels, that is, a full 
factorial design, the number of evaluations required from 
every respondent soon becomes prohibitively large along 
with the number of attributes and/or levels increased. To 
deal with this problem, the application of formal 
experimental designs was suggested. Green and Rao 
(1971) and Green and Wind (1973) proposed the use of 
orthogonal arrays, incomplete block designs and 
fractional factorial designs of different resolutions to 
reduce the number of evaluations to be performed. In this 
reduction process, the goodness of the reduced designs 
is especially important. This goodness is named 
efficiency.  

There are several ways to quantify the relative 
efficiency of experimental designs. The choice of mea-
sure will determine which types of experimental designs 
are favoured as well as the techniques for choosing 
efficient designs. Two basic techniques for constructing 
efficient designs are manual, typically used in surveys 
with small number of attributes and levels, and 
computerized search which is based on approximate 
algorithms.  

A number of recent papers have searched for, or 
derived, efficient experimental conjoint designs using 
approximate algorithms (Barone and Lombardo, 2005; 
Cook and Nachtsheim, 1980; Federov, 1972; Grossmann 
et al., 2002; Haines, 1996; Kessels et al., 2008; Kuhfeld, 
1997; Kuzmanovic, 2005, 2006; Ma et al., 2000; Meyer 
and Nachtsheim, 1995; Nguyen, 1996; Steckel et al., 
1991; Xu, 2002; Xu and Wan, 2011; Zwerina et al., 
1996). The most commonly used design criterion in 
literature has been D-optimality, or the maximization of 
the determinant of the Fisher information matrix (Kessels 
et al., 2008; Kuhfeld, 1994, 1997; Mitchell, 1974; Mitchell 
and Miller, 1970; Zwerina et al., 1996). However, some 
authors propose use of some other standard (Grossmann 
et al., 2002; Huber and Zwerina, 1996; Nguyen, 1996) as 
well as non-standard criteria (Kuzmanovic, 2006; Ma et 
al., 2000; Steckel et al., 1991). 

The purpose of this paper is to present a procedure for 
constructing efficient conjoint experimental designs, 
named  MCON  procedure.  The  procedure  relies   on  a 

 
 
 
 
simple and effective algorithm which combines two types 
of efficiency measures. 
 
 
CONJOINT EXPERIMENTAL DESIGN 
 
The designs of experiment are fundamental components 
of conjoint analysis. Experimental designs are used to 
construct the hypothetical products or services. A simple 
experimental design is the full-factorial design, which 
consists of all possible combinations of the factors levels. 
These combinations in conjoint analysis are referred as 
profiles or concepts. For example, with six factors, three 
at two levels and three at three levels (denoted as 2

3
3

3
), 

there are 216 possible combinations. In a full-factorial 
design, all main effects, two-way interactions, and higher-
order interactions are estimable and uncorrelated. The 
problem with a full-factorial design is that it is, for more 
practical situations, too cost-prohibitive and tedious to 
have subjects rate in all possible combinations. For this 
reason, researchers often use fractional-factorial designs, 
which have fewer runs than full-factorial designs. The 
basic difficulty is how to construct such fractional-factorial 
design which can provide worth data. In order to obtain 
valuable and reliable data, two basic principles must be 
taken into account: orthogonality and balance. 

A design is orthogonal if all effects can be estimated 
independently from all other effects, and it is balanced 
when each level occurs equally often within each factor, 
which means the intercept is orthogonal to each effect. In 
ideal case, experimental design is orthogonal and 
balanced, hence optimal. This is the case in full-factorial 
designs. However, orthogonal designs are available for 
only a relatively small number of very specific problems. 
They may not be available due to the following reasons 
(Kuhfeld, 1997): 
 
1. When there are many attributes in the survey, 
2. When the number of attribute levels is different for 
most of the factors, 
3. When some combinations of factor levels are 
infeasible, 
4. When a non-standard number of runs (factor level 
combinations or hypothetical products) is desired or when 
the number of runs must be limited, 
5. When some factor levels combinations are unrealistic, 
such as of the best product at the lowest price, or 
6. When a non-standard model is being used, such as a 
model with interactions. 
 
When an orthogonal design is not available, 
nonorthogonal designs must be used. The measure of 
experimental design's quality is referred as "efficiency". In 
efficient experimental designs, both variance and 
covariance of estimated parameters are minimal. Some 
orthogonal designs are not always more efficient than the  
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Figure 1. Helmert’s contrast matrix for an 

attribute with k levels. 
 
 
 

other orthogonal or nonorthogonal designs. 
 
 
Coding 
 
Before the design is used, it must be coded. One 
standard coding is the binary or dummy variable or (1,0) 
coding. Another standard coding is effects or deviations 
from means or (1,0,-1) coding. However, for evaluating 
design efficiency, an orthogonal coding is the most 
appropriate. This is because no standard orthogonal 
coding such as effects or binary is generally correlated, 
even for orthogonal designs. One of the standard ways to 
orthogonally coding data is Chakravarty's coding. The 
other method is called the Helmert’s procedure.  

Helmert’s procedure consists of arranging a set of data 
into a matrix which fulfils the Helmert’s characteristics, 
meaning that the sum of each column is equal to zero. 
Helmert’s contrast matrix is a matrix with k–1 number of 
columns and k number of rows (Figure 1). The diagonal 
of this matrix from (1,1) to (k–1, k–1) is filled with a 
decreasing series of numbers going from k–1 down to 1. 
The supra-diagonal elements are set to zero while the 
infra-diagonal elements are set to –1. A matrix following 
these characteristic automatically has a mean of zero for 
each of the column. 
 
 
Optimality criteria  

 
An optimality criterion is a single number that 
summarizes how good a design is, and it is maximized or 
minimized by an optimal design. In order to generate an 
efficient design, specific methodology was developed. 
Efficient designs can be efficient for one criterion and less 
efficient for another one. There are some standard 
criteria for measuring efficiency of experimental design in 
conjoint analysis (Kuhfeld et al., 1994). Two general 
types are: Information-based criteria and distance-based 
criteria.  

Consider the  linear  model  where  consumers  provide 
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utility scores, yj, for each profile: 
  

1 1 2 2j j j m mj j
y x x xα β β β ε= + + + + +K  (1) 

 

for  j = {1,...,n}, where 
ij

x  are independent variables. In 

matrix notation, Equation 1 can be written as y = α + βX + 
e, where X is the orthogonally coded design matrix of 
independent variables.  

For the distance-based criteria, the candidates are 
viewed as comprising a point cloud in p-dimensional 
Euclidean space, where p is the number of parameters in 
the model. The goal is to choose a subset of this cloud 
that "covers" the whole cloud as uniformly as possible or 
that is as broadly "spread" as possible. Two optimality 
criteria are introduced in this type, U–optimality and S–
optimality criteria. 

The information-based criteria such as D- and A-

optimality are both related to the information matrix 'X X  
for the design. This matrix is important because it is 
proportional to the inverse of the variance-covariance 
matrix for the least-squares estimates of the linear 
parameters of the model. Roughly, a good design should 

"minimize" the variance 
1

( ' )
−

X X , which is the same as 

"maximizing" the information 'X X . D- and A-efficiency 

are different ways of saying how large ( ' )X X  or 

1
( ' )

−
X X  are. 

D-optimality is based on the determinant of the 
information matrix for the design, which is the same as 
the reciprocal of the determinant of the variance-
covariance matrix for the least-squares estimates of the 
linear parameters of the model.  
  

1
( ' ) 1/ | ( ' ) |

−=X X X X                             (2) 

 
The determinant is thus a general measure of the size of

1
( ' )

−
X X . D-optimality is the most common criterion for 

computer-generated optimal designs.  
A-optimality is based on the sum of the variances of the 

estimated parameters for the model, which is the same 
as the sum of the diagonal elements, or trace, of 

1
( ' )

−
X X . Like the determinant, the A-optimality criterion 

is a general measure of the size of 
1

( ' )
−

X X . A-optimality 

is less commonly used than D-optimality as a criterion for 
computer optimal design. This is partly because it is more 
computationally difficult to update. Also, A-optimality is 
not invariant to non-singular recoding of the design 
matrix; different designs will be optimal with different 
coding. 

For both criteria A and D, if a balanced and orthogonal 
design exists, then it has optimum efficiency; conversely, 
the more efficient a design is, the more  it  tends  towards 
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balance and orthogonality. Assuming an orthogonally 
coded X: 
 

1. A design is balanced and orthogonal when 
1

( ' )
−

X X  is 

diagonal; 
2. A design is orthogonal when the sub matrix of 

1
( ' )

−
X X , excluding the row and column for the intercept, 

is diagonal; there may be off-diagonal nonzero for the 
intercept; 
3. A design is balanced when all off-diagonal elements in 
the intercept row and column are zero; 
4. As efficiency increases, the absolute values of the 
diagonal elements get smaller. 
 

For appropriate coded matrix X , measures of efficiency 
can be scaled to bi in interval 0 to 100. For Helmert’s 
coded data (matrix), it is more appropriate to use A-
optimality criterion: 
  

1

1
100

tr( ' ) /
D

A eff
N p

−
− = ×

⋅ X X
 (3) 

 
When data are coded by Chakravarty's procedure, it is 
more appropriate to use D optimality criterion: 
  

1 1/

1
100

| ( ' ) |
p

D

D eff
N

−
− = ×

X X
 (4) 

 
In Equations 3 and 4, p is number of parameters in 
model. The total number of parameters to be estimated is 
given by the formula:  

 
Total number of levels – number of attributes + 1 

 

DN  is number of runs (profiles) in fractional factorial 

design specified by the user. It is suggested, when 
possible, including between two to three times, the 
numbers of runs as parameters estimated. However, 
design efficiency is not the only reason for including two 
to three times as many runs as parameters to be 
estimated. All real-world respondents answer conjoint 
questions with some degree of error, so those 
observations beyond the minimum required to permit 
utility estimation are needed to refine and stabilize utility 
estimates. 

These optimality criteria measure the goodness of the 
design relative to hypothetical orthogonal designs that 
may be far from possible, so they are not useful as 
absolute measures of design efficiency. Instead, they 
should be used relatively, to compare one design to 
another for the same situation. Efficiencies that are not 
near 100 may be perfectly satisfactory. 

 
 
 
 
The algorithms for constructing conjoint 
experimental designs  
 
The algorithms based on standard optimality criteria 
 
As mentioned previously, finding exact optimal designs is 
hard. In general, it requires solving a large nonlinear 
mixed integer programming problem, since the number of 
feasible designs explodes rapidly as the number of 
factors and levels increases. However, we live in the real 
world, and we do not need absolute best design, but the 
one that is good enough. This is where approximation 
algorithms come in.  

One of most simple algorithms for constructing 
information-efficient designs is Dykstra’s (1971) 
sequential search method (Cook and Nachtsheim, 1980). 
The method starts with an empty design and adds 
candidate points so that the chosen efficiency criterion is 
maximized at each step. This algorithm is fast, but it is 
not very reliable in finding a globally optimal design. Also, 
it always finds the same design. 

A typical approximation algorithm seeks to locate a 
good solution by the following sequential process: 
 
1. Choose initial feasible solution (random/greedy); 
2. Modify solution slightly (random/greedy); 
3. Repeat 2 until finished, then report best solution seen 
 
Random methods modify the current solution in some 
random way, and this change is accepted or rejected via 
some decision routine. Even worse solutions may be 
accepted under certain decision routines. Simulated 
annealing is an example of a random approximation 
algorithm. Greedy methods modify the current solution in 
a way that improves the score; as they are seeking to 
improve every iteration score for of the process they are 
frequently referred to as hill climbing algorithms. 

One large class of pure greedy algorithms for 
constructing efficient designs is the exchange algorithms. 
Exchange algorithms hill climb by adding new design 
points and removing the existing design points to improve 
the objective. There are both Rank-1 and Rank-2 
exchange algorithms, and these classifications are based 
on how the algorithm changes the points in the current 
candidate design matrix: 
 
Rank-1: Choose points to add and delete sequentially 
(Wynn, DETMAX) 
Rank-2: Choose points to add and delete simultaneously 
(Fedorov, modified Fedorov, k-exchange, kl-exchange). 

Although the Mitchell and Miller (1970) simple 
exchange algorithm is slower than Dykstra's, it is a more 
reliable method. It improves the initial design by adding a 
candidate point and then deleting one of the design 
points, stopping when the chosen criterion ceases to 
improve.   The   DETMAX   algorithm   of  Mitchell  (1974)  



 

 

 
 
 
 
generalizes the simple exchange method. Instead of 
following each addition of a point by a deletion, the 
algorithm makes excursions in which the size of the 
design may vary. These algorithms add and delete points 
one at a time. 

The next two algorithms add and delete points 
simultaneously, and for this reason they are usually more 
reliable for finding the truly optimal design; but because 
each step involves a search over all possible pairs of 
candidate and design points, they generally run much 
slowly. The Fedorov (1972) algorithm simultaneously 
adds one candidate point and deletes one design point. 
Cook and Nachtsheim (1980) define a modified Fedorov 
algorithm that finds the best candidate point to switch 
with each design point. The resulting procedure is 
generally as efficient as the simple Fedorov algorithm in 
finding the optimal design, but it is up to twice as fast.  

The k-exchange algorithm modifies the current 
candidate design via the following process: 
 
1. Examine k least critical points only; 

2. Least critical: x with smallest ( )v x , where 

( ) '( ) ( )v x f x D f x= ⋅ ⋅ ), x is a point in p-dimensional 

design space, where the total number of factors is p, 

( )f x  is the corresponding row of our design matrix X, 

and '( )f x  is corresponding column; 

3. Among these k, find the best exchange to make. 
If k = 1, this is Wynn’s algorithm; if k = n, this is the 

modified Fedorov algorithm.  
The standard philosophy in approximation algorithms is 

that many small steps are generally better than fewer but 
larger steps. This is precisely the idea behind the 
coordinate-exchange algorithm, which follows the 
procedure: 

 
1. Choose k least critical points 
2. Examine each point for the best coordinate to 
exchange 
3. Make this best coordinate exchange. 

The coordinate exchange algorithm of Meyer and 
Nachtsheim (1995) does not use a candidate set. Instead 
it refines an initial design by exchanging each level with 
every other possible level, keeping those exchanges that 
increase efficiency. In effect, this method uses a virtual 
candidate set that consists of all possible runs, even 
when the full-factorial candidate set is too large to 
generate and store. 

Some researchers have proposed nonstandard 
algorithms and criteria for constructing efficient 
experimental design. Steckel et al. (1991) proposed using 
computer-generated experimental designs for conjoint 
analysis in order to exclude unacceptable combinations 
from the design (SDM approach). They considered a 
nonstandard measure of design goodness based  on  the  
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determinant of the (m-factor × m-factor) correlation matrix 
(|R|) instead of the customary determinant of the (p-

parameter × p-parameter) variance matrix 
1

( ' )
−

X X . The 

SDM approach represents each factor by a single column 
rather than as a set of coded indicator variables. 
 
 
New algorithm for constructing efficient experimental 
designs  
 
The basic idea behind the algorithm we propose for 
constructing efficient experimental designs is to generate 
random initial design and then remove and add points 
simultaneously in order to obtain more efficient design. 
The algorithm has the following features: 
 
1. The variables (attribute levels) may be numeric or 
symbolic; 
2. The number of runs is specified arbitrary by the user; 
3. The user has control over how much effort is expended 
by the algorithm, and can if desired monitor the progress 
of the search. It is not necessary to specify initial points 
for the search; 
4. The algorithm combines two measures of design 
goodness: A-efficiency and P-value. 

Optimality criterion A-efficiency was discussed 
previously. There are at least two reasons for using P-
value as the second criterion. First, it enables faster 
convergence to the optimal solution. Second, it is 
observed that two designs with the same A-efficiency can 
be differentially balanced. Thus, this criterion serves to 
choose a better balanced one. 

P-value presents the return of F probability distribution. 
That is probability that there are not significant 
differences between the variances of columns in coded 
matrix X. In other words, P-value can be used to 
determine whether parameters in orthogonally coded 
matrix X have different degrees of diversity. P can take 
any value in interval [0,1]. Low values of P indicate that 
design has great unbalanced attribute levels. This value 
will be low even if some attributes have perfect balanced 
levels, while some others have extreme unbalanced 
levels. By improving of balance in sense of quantity and 
homogeneity, the P-value is also increased. If P-value is 
equal to one, it can mean either all levels are completely 
balanced or there are unbalanced levels which are 
consistently distributed. 

The algorithm is based on the following: The solution 
will be accepted (change will be made) only if it is equally 
good or better then the existing one, considering the least 
one of the criteria. The underlying rationality is: Existence 
of unbalance has an impact on efficiency but still serves 
as guideline to detect the list of appropriate and 
inappropriate candidates while enabling convergence to 
the better solution (design).  



 

 

5664          Int. J. Phys. Sci. 
 
 
 

The algorithm proceeds as follows: 
 
Step 0 (Initialization):  
Specify the number of iterations (NI) and number of runs 

(profiles) dN ; set A efficiency to zero, 0,iA =  and set 

0i =  
Step 1 (Generation of initial solution): Randomly 

generate initial solution 
0

X  ( dN p×  matrix)   

Step 2 (Calculation of initial solution efficiency): 

Calculate , ,i i iA F P  for initial matrix 
0

X  

Step 3 (Estimation of initial solution efficiency): IF 

0
100A =  and 1P =  design 

0
X  is optimal. GO TO Step 

5. ELSE set i =1. Go to Step 4  
Step 4: (Iterative procedure for finding better 
solution) 

a. Detect the worse balanced column in matrix iX  (that 

is, column with high value of absolute sum of elements); 
b. Generate the list of candidate rows for excluding from 
existing (current) design (LE). Good candidates are those 
which levels affect on existing of unbalance; 
c. Generate the list of candidate rows for adding to the 
design (LA). Good candidates are those rows that can 
improve balance of design; 
d. Choose randomly one row from LE list and remove 
from the design.  
IF list LE is empty, go to Step 4a; 
e. Choose randomly one row from LA list and add to the 
design. One candidate can be considered once in the 
current iteration. 
IF list LA is empty, go to Step 4a; 

f. Solve and i iA P  

g. IF 
1i iA A −≥  or 

1i iP P−≥  make exchange. Current 

solution (design) is matrix iX .  GO TO Step 4h. ELSE 

GO TO Step 4e; 

h. IF i = NI or IF 100iA =  and 1P = , GO TO Step 5.  

Else set i = i + 1, go to Step 4 
Step 5: Efficient experimental design is current matrix

i
X . 

END. 
 

Since the initial design has been generated randomly, 
each time we start the procedure, different design for the 
same date will be obtained. If the procedure will repeat 
several times, the best suitable solution (design) can be 
chosen. 
 
 

MCON PROCEDURE 
 
The algorithm proposed previously was implemented in 
Visual Basic Application as the procedure for constructing 
of  experimental  designs,  in  the  user  friendly  software  

 
 
 
 
named MCON. The software also includes procedures for 
estimating conjoint data and module for market 
simulation. 

A procedure for developing and producing experimental 
designs contains: 

 
1. Dialog box which allows specification both of 
quantitative and qualitative attributes as well as their 
corresponding levels (Figure 2); 
2. Module for orthogonal data coding according to 
Helmert's procedure; 
3. Dialog box which allows specification of preferred 
number of profiles to generate. Depending on number of 
attributes and attributes' levels in the study, procedure 
automatically determines the number of profiles that 
needs to be administered to allow estimation of the 
utilities, but shows recommended number, too (Figure 3); 
4. Procedure for constructing efficient experimental 
designs based on algorithm which combines two 
measures of design goodness: A-efficiency and P-value. 
5. Report which shows details of constructed efficient 
experimental design as well as values of the designs' 
optimality criteria (Figure 4); 
6. Procedure for experimental design decoding and 
exporting to MS Word in order to prepare questionnaire 
for printing. 

 
MCON software performs conjoint analysis using the 

ordinary least-squares estimation method. This method 
has been found to perform as well as other methods and 
it has the advantage of being easier to use and interpret. 
Output from MCON software includes importance ratings 
of the attributes, part worth estimates showing 
preferences for attribute alternatives, and correlations 
relating predicted rankings from the conjoint model with 
observed rankings. 

A key benefit of conjoint analysis is the ability to 
produce dynamic market models that enable companies 
to test out what steps they would need to take to improve 
market share, or how competitors’ behaviour will affect 
their customers. Those models are known as conjoint 
market simulation models. MCON software employ logic 
model for market simulation and can be used to estimate 
market share of preference for selected profiles. With this 
procedure, it is possible to create a number of scenarios 
which include new product introduction or modification of 
the existing one in order to define effects of these 
changes. 
 
 
COMPUTATIONAL EXPERIMENTS 
 
The power of MCON procedure for constructing experimental 
designs was tested on numerous examples. Using A-optimality and 
attribute levels' balance criteria, the efficiency of constructed 
designs were compared with efficiency of the designs constructed 
by SPSS

®
 Conjoint procedure. 
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Figure 2. Attributes entry form.  

 
 
 

 
 
Figure 3. Dialog box for specifying preferred number of profiles to construct. 
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Figure 4. Efficient experimental design constructed by MCON procedure and values of the designs' optimality criteria. 

 
 
 
SPSS

®
 is a software package for data management and analysis. 

The conjoint option is an add-on enhancement that provides a 
comprehensive set of procedures for conjoint analysis: 
 
1. Procedures for developing and producing profiles for use in 
conjoint studies; 
2. Four different models for conjoint analysis; 
3. Graphic summary of conjoint results. 
 
A procedure for developing and producing profiles for use in 
conjoint studies consists of two sub-procedures: 
 

1. Generate Orthogonal Design procedure (ORTHOPLAN) - 
automatically generates main-effects orthogonal fractional factorial 
plans, known as orthogonal arrays.  
2. The Display Design procedure - enables to generate physical 
profiles that can be sorted by the respondent to arrive at a ranking. 
 

The Generate Orthogonal Design Options dialog box allows 
specification of a minimum number of profiles to be included in the 
orthogonal design. If the Orthoplan procedure cannot generate at 
least the number of profiles requested for the minimum, it will 
generate the largest number it can that fits the specified factors and 
levels. Design does not necessarily include exactly the number of 
specified cases, but rather the smallest possible number of cases in 
the orthogonal design using this value as a minimum. 

 
 
RESULTS AND DISCUSSION 
 
The following examples present some of the results of 
comparing MCON and SPSS

®
 Conjoint procedures for 

constructing experimental designs. 

Example 1 
 
Let us consider a conjoint study with five attributes with 3, 
4, 3, 2, and 2 levels respectively. Here full-factorial 
design consists of 144 profiles (3×4×3×2×2=144). 
Saturated design consists of 10 profiles ((3+4+3+2+2)–
5+1=10), while recommended number of profiles in 
design is between 15 and 30. The features of designs 
constructed by proposed algorithm as well as those 
constructed by SPSS

®
 algorithm are shown in Table 1. 

The first column in the Table 1 shows the number of 
profiles in experimental design arbitrarily chosen. The 
second column contains F-critical values for designs with 
various numbers of profiles. This value serves for testing 
hypothesis of variance diversity. Column A shows values 
of the designs' A-efficiency. Column F indicates existence 
of unbalance in design. When this value is equal to zero, 
the design is completely balanced. Column P-value 
indicates uniformity of unbalance in experimental design. 
If this value is near to 1, it means that the design is 
uniformly balanced. 

As can be seen from Table 1, MCON software has 
constructed high efficient and well-balanced designs, no 
matter whether the dimensions of design are specified. 
Efficiency of all of constructed designs is greater than 
82%, while for some of them (designs with 18 and 24 
profiles) have reached A-efficiency greater than 90%. In 
all of these designs, very low and uniformly distributed 
unbalance of attribute levels exists (F is close to 0  and  P
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Table 1. Experimental results for Example 1. 
 

Number of 
profile 

F critical 
SPSS

®
 MCON 

A F P A F P 

12 2.0333 - - - 85.0155 0 1 

14 2.0185 - - - 82.5527 0.0490 0.99994 

15 2.0126 - - - 86.0423 0.0545 0.09999 

16 2.0076 91.7611 0.52500 0.83607 
89.0611 0.0117 0.99999 

88.3294 0.0406 0.99999 

 

18 1.9990 - - - 
92.7027 0.0268 0.99999 

88.4320 0.1068 0.99893 

 

20 1.9929 - - - 89.7209 0.0346 0.99998 

24 1.9833 - - - 
92.0730 0.1296 0.99999 

90.2650 0 1 

 

25 1.9814 89.6047 0.50625 0.85094 
94.4193 0.0001 1 

90.0875 0.2065 1 

 

32 1.9717 91.7611 1.08500 0.37365 
94.0762 0.0171 0.99999 

92.7915 0.0061 0.99999 

 
 
 
value is close to 1). Especially, design with 12 profiles is 
completely balanced with high efficiency (85%), while 
completely balanced design with 24 profiles reaches 
efficiency greater than 90%.   

Most efficient design, constructed by MCON software 
consists of 25 profiles. A-efficiency of this design is equal 
to 94.42% and design has only one unbalanced level. On 
the other hand, SPSS

®
 has constructed only the designs 

with specific number of profiles (16, 25 and 32). These 
designs are high A-efficient but tend to be highly 
unbalanced. 

Furthermore, highly efficient designs constructed by 
SPSS

®
 are those with 16 and 32 profiles. Their A-

efficiency is 91.76%, but both of them are extremely 
unbalanced. Moreover, only the 16-profiles design 
constructed by SPSS

®
 is more A-efficient than that one 

constructed by MCON. Actually, for 25 and 32-profile 
designs, MCON constructed more efficient and better 
balanced designs. 
 
 
Example 2 
 
Let us now consider somewhat larger five attributes 
example with 2, 2, 3, 4, and 4 levels respectively. Here 
full-factorial design consists of 192 profiles; saturated 
design consists of 11 profiles, while recommended 
number of profiles is between 20 and 33. Results of 
comparisons of SPSS

®
 designs with MCON designs are 

given in Table 2. 

Again, MCON software has constructed high efficient 
and well-balanced designs, no matter the dimensions of 
design are, while SPSS

®
 had constructed only the 

designs with specific number of profiles.  
Efficiencies of all of the designs constructed by MCON 

software, except of design with 12 profiles, are greater 
than 84%, while most of them have reached A-efficiency 
greater than 90%. Highly efficient designs constructed by 
MCON software is 36-profiles design. Its A-efficiency is 
equal to 94.15%, and it is completely balanced. 24-
profiles design is completely balanced, too, but its A-
efficiency is somewhat less (88.7%). 

Highly efficient designs constructed by SPSS
®
 are 

again those with 16 and 32 profiles. Their A-efficiency 
is96.15%, but both are more unbalanced than the 
designs constructed by MCON software. Particularly, 
MCON software was constructed well-balanced 25-
profiles design with efficiency equal to 91.24% (against 
the efficiency of design constructed by SPSS

®
 which is 

equal to 87.7%). 
 
 
Example 3  
 
Let us now consider four attributes of conjoint study with 
3, 4, 4, and 4 levels respectively. Here full-factorial 
design consists of 192 profiles (3×4×4×4=192). Saturated 
design consists of 12 profiles ((3+4+4+4)-4+1=12), while 
recommended number of profiles in design is between 20 
and 36. Results of comparisons  of  SPSS

®
  designs  with
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Table 2. Experimental results for Example 2. 
 

Number of profiles F critical 
SPSS

®
 MCON 

A F P A F P 

12 1.9660 - - - 72.0015 0.03718 0.99999 

16 1.9428 96.1538 0.25424 0.98526 
84.4061 0.00713 1 

81.0580 0.00891 1 

 

24 1.9207 - - - 
91.3267 0.01090 1 

88.7010 0 1 

 

25 1.9190 87.7639 0.82474 0.59388 91.2385 0.00028 1 

28 1.9146 - - - 
93.1203 0.00418 1 

89.1572 0.00418 1 

 

32 1.9101 96.1538 0.52542 0.85587 
93.8371 0.00458 1 

92.5821 0.00366 1 

 

36 1.9066 - - - 94.1552 0 1 

 
 
 

Table 3. Experimental results for Example 3. 
 

Number of 
profile 

F critical 
SPSS

®
 MCON 

A F P A F P 

12 1.9097    48.4466 0 1 

16 1.8885 96.4912 0.21127 0.99505 81.4438 0.00599 1 

24 - - - - 
90.5471 0.00904 1 

83.0279 0 1 

 

25 1.8667 84.9341 0.99832 0.44520 
89.1155 0.05909 0.99998 

86.7398 0.05909 0.99998 

 

32 1.8685 96.4912 0.43662 0.92809 91.9130 0.00308 1 

 
 
 
MCON designs are given in Table 3. 

As it can be seen from Table 3, MCON procedure has 
constructed 12-profiles fully balanced, but inefficient 
design (A-efficiency is only 48.45%). This is saturated 
design and result is as expected. Efficiency of all other 
designs is greater than 82%. In all of these designs, very 
low and uniformly distributed unbalance of attribute levels 
exists. Most efficient designs, constructed by MCON 
procedure consists of 24 and 32 profiles, with A-efficiency 
equal to 90.5471 and 91.9130%, respectively. Both of 
these designs have only one unbalanced level. 

In this example, SPSS
®
 procedure constructed more 

efficient designs, but some of them are extremely 
unbalanced, especially 25-profiles design. 

Previous examples show that nonorthogonal designs 
may be more efficient than an unbalanced orthogonal 

array. This phenomenon can be seen with other 
orthogonal arrays and in other situations as well. 
Preserving orthogonality at all costs can lead to 
decreased efficiency. Orthogonality was extremely 
important in the days before general linear model 
software became widely available. Today, it is more 
important to consider efficiency when choosing a design. 
It should be noted that good nonorthogonal designs exist 
in many situations in which no orthogonal designs exist, 
and it was demonstrated through the previous examples. 

According to the experimental results presented 
previously, the following conclusions can be derived: 

SPSS
®
 Conjoint procedure constructs only the designs 

with specific number of profiles, but often in practice there 
is a need for various dimensions of designs. This weak-
ness of SPSS

®
  procedure  is  as  a  result  of  orthogonal 



 

 

 
 
 
 
design nature. Another effect of using only orthogonality 
as criteria for constructing experimental design in SPSS

®
 

procedure is that these designs are often extremely 
unbalanced.  

MCON procedure could construct the high efficient and 
well-balanced designs with arbitrary number of profiles. 
Constructed designs are always better balanced and in 
many cases has higher A-efficiency than designs 
constructed by SPSS

®
. This is the effect of using 

additional optimality criteria, P-value. 
Finally, we can summarize that in optimizing efficiency, 

the algorithm implemented in MCON procedure, 
effectively optimize both balance and orthogonality. In 
contrast, in orthogonal arrays constructed by SPSS 
procedure, balance and efficiency may be sacrificed to 
preserve orthogonality.  

 
 
Conclusion 

 
Conjoint analysis is a technique for measuring consumer 
preferences for products or services and intentions to buy 
them. It is also a method for simulating consumers’ 
possible reactions to changes in current products or 
newly introduced products into an existing competitive 
market.  

One of the fundamental problems in performing 
conjoint analysis is how to construct experimental 
designs. The purpose of an experimental design is to 
give a rough overall idea as to the shape of the 
experimental response surface, while only requiring a 
relatively small number of runs. These designs are 
expected to be orthogonal and balanced in an ideal case. 
In practice, though, it is hard to construct optimal designs 
and thus constructing of near optimal and efficient 
designs is carried out. Efficient designs are typically 
nonorthogonal; however, they are efficient in the sense 
that the variances and covariances of the parameter 
estimates are minimized.  

There are several ways to quantify the relative 
efficiency of experimental designs. The choice of mea-
sure will determine which types of experimental designs 
are favoured as well as the algorithms for choosing 
efficient designs.  

This paper proposes a simultaneous algorithm for 
constructing experimental designs in traditional conjoint 
analysis. Proposed algorithm combines two optimality 
criteria: Standard criterion named by A-efficiency, and 
nonstandard criterion, P-value in ANOVA. The algorithm 
was implemented in Visual Basic application, as the 
procedure in MCON software. The computational 
experiments were made and results were compared with 
results of SPSS

®
 procedure. The obtained results confirm 

effectiveness of the proposed procedure.  
The proposed procedure has the following advantages: 

(a) It is easy to use for  practitioners;  (2)  It  is  flexible  to  
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construct various mixed-level designs; (3) It outperforms 
algorithm implemented in SPSS

®
 in efficiency, and (4) It 

generates not only orthogonal but balanced designs. On 
the other hand, as with all other algorithms, this algorithm 
may be trapped in a local minimum. To overcome this 
problem, the procedure should be re-run few times.  
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