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In this paper, gravitational effects on propagation of surface waves in a homogeneous fibre-
reinforced anisotropic general viscoelastic media of higher order with voids is investigated. The 
general surface wave speed is derived to study the effects of gravity on surface waves. Particular cases 
for Stoneley and Rayleigh waves are discussed. The results obtained in this investigation are more 
general in the sense that some earlier published results are obtained from our result as special cases. 
In the absence of voids our results for viscoelastic of order zero are well agreement to fibre-reinforced 
materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known 
isotropic medium. Numerical results for particular materials are given and illustrated graphically. The 
results indicate that the effect of the gravitational, voids and the reinforced elastic parameters on 
surface waves are very pronounced. 
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INTRODUCTION 
 
It is of great interest to study the propagation of surface 
waves in a homogeneous fibre-reinforced anisotropic 
general viscoelastic media of higher order with voids as it 
plays an importent role in material fracture and failure. 
Such problems have attracted much attention and have 
undergone a certain development (Bullen, 1965; Ewing 
and Jardetzky, 1957; Rayleigh, 1885; Stoneley, 1924). 

Surface waves have been well recognized in the study of 
earthquake, seismology, geophysics and geodynamics. 
These waves usually have greater amplitudes as 
compared with body waves and travel more slowly than 
body waves. There are many types of surface waves but 
we only discussed Stoneley and Rayleigh waves. In 
earthquake the movement is due to the surface waves.
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These are also used for detecting cracks and other 
defects in materials. Lord Rayleigh (1885) was the first to 
observe such kind of waves in 1885. That is why we 
called it Rayleigh waves. Sengupta and Nath (2001) 
investigated surface waves in fibre-reinforced anisotropic 
elastic media but their decomposition of displacement 
vector was not correct due to which some errors are 
found in their investigations (Sarvajit, 2002). 

The idea of continuous self-reinforcement at every 
point of an elastic solid was introduced by Belfield et al. 
(1983). The superiority of fibre-reinforced composite 
materials over other structural materials attracted many 
authors to study different type of problems in this field. 
Fibre-reinforced composite structures are used due to 
their low weight and high strength. Two important 
components namely concrete and steel of a reinforced 
medium are bound together as a single unit so that there 
can be no relative displacement between them, that is, 
they act together as a single anisotropic unit. The artificial 
structures on the surface of the earth are excited during 
an earthquake, which give rise to violent vibrations in 
some cases. Engineers and architects are in search of 
such reinforced elastic materials for the structures that 
resist the oscillatory vibration. The propagation of waves 
depends upon the ground vibration and the physical 
properties of the structure material. Surface wave 
propagation in fiber reinforced media was discussed by 
various authors. 

In classical theory of elasticity, the voids is an important 
generalization. Nunziato and Cowin (1979) and Cowin 
and Nunziato (1983) discussed the theory in elastic 
media with voids. Puri and Cowin (1985) studied the 
effects of voids on plane waves in linear elastic media 
and it is evident that pure shear waves remain unaffected 
by the presence of pores. Theory of thermoelastic 
material with voids is investigated by Lesan (1986). Good 
amount of literature on surface wave propagation in a 
generalized thermoelastic material with voids, is available 
in Singh and Pal (2011) and references therein. 
Chandrasekharaiah (1987a, b) discussed the effects of 
voids on propagation of plane and surface waves. Abo-
Dahab (2010) investigated the propagation of P waves 
from stress-free surface elastic half-space with voids. 

The effect of gravity on wave propagation in an elastic 
solid medium was first considered by Bromwich (1898). 
Later on gravity effects on wave propagation were 
discussed by various authors (Abd-Alla et al., 2013; Abd-
Alla and Ahmed, 2003; De and Sengupta, 1974; 
Sengupta and Acharya, 1979) 

Surface waves in fiber-reinforced,general viscoelastic 
media of higher order under gravity is discussed by kakar 
et. al. (2013) whereas Pal and Sengupta (1987) studied 
the gravitational effects in viscoelastic media. Ren et al. 
(2012) investigated the coupling effects of void shape 
and void size on the growth of an elliptic void in a fiber-
reinforced hyper-elastic thin plate. Vishwakarma et al. 
(2013) discussed the  influence of rigid  boundary  on  the  
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love wave propagation in elastic layer with void pores. 
Tvergaard (2011) studied the elastic–plastic void 
expansion in near-self-similar shapes. Fonseca et al. 
(2011) expressed the material voids in elastic solids with 
anisotropic surface energies. The extensive literature on 
the topic is now available and we can only mention a few 
recent interesting investigations in Abo-Dahab and Abd-
Alla (2014), Abd-Alla et al. (2011), Abd-Alla and Ahmed 
(2003), Abd-Alla (1999), Abd-Alla and Ahmed (1999), 
Abd-Alla et al. (2004), Elnaggar and Abd-Alla (1989), 
Abd-Alla and Ahmed (1996) Abd-Alla et al. (2012) and 
Abd-Alla et al. (2013). Aim of this paper is to investigate 
the gravitational effects on propagation of surface waves 
in fibre-reinforced viscoelastic anisotropic media of higher 
order with voids. The general surface wave speed is 
derived to study the effect of gravity and voids on surface 
waves. Particular cases for Stonely and Rayleigh waves 
are discussed. The results obtained in this investigation 
are more general in the sense that some earlier 
published results are obtained from our result as special 
cases. Numerical results are given and illustrated 
graphically. 
 
 
FORMULATION  OF THE PROBLEM 
     
The constitutive relation of an anisotropic and elastic 
solid is expressed by the generalized Hooke’s law, which 
can be written as: 
 

ij = Cijkl  kl i, j, k, l =1, 2, 3. 
 

where,
 

ij  are the Cartesian components of the stress 

and ijε  is the strain tensor which is related with the 

displacement vector, ui ; ijklC  are the components of a 

fourth-order tensor called the elasticities of the medium. 
The Einstein convention for repeated indices is used.  
In the absence of body forces, the field equations in the 
presence of voids may be taken as follows: 
 

,ij j iu  ,               (1) 

 

0,ii i ,iu        
            (2) 

 

 ijkl klij ijC  
            

(3) 
 

In these equations,  is the so-called volume fraction 

field. 0, , ,     and  are new material constants 

characterizing the presence of voids.   
is the mass 

density. Comma followed by index shows partial 
derivative   with   respect   to   coordinate.   The   Einstein  

http://www.sciencedirect.com/science/article/pii/S0894916612600287
http://www.sciencedirect.com/science/article/pii/S0894916612600287
http://www.sciencedirect.com/science/article/pii/S0894916612600287
http://www.sciencedirect.com/science/article/pii/S0927025611003077
http://www.sciencedirect.com/science/article/pii/S0927025611003077
http://www.sciencedirect.com/science/article/pii/S0021782411000882
http://www.sciencedirect.com/science/article/pii/S0021782411000882
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convention for repeated indices is used. Thus Above 
equation under gravity force G becomes: 
 

, ,iijkl k jl i iGu uC                            (4) 

 
Medium is consisting of two homogeneous anisotropic 
fibre-reinforced semi-infinite elastic solid media M1 and 
M2 with different elastic and reinforcement parameters. 
The two media are perfectly welded in contact at a plane 
interface. Let us take orthogonal Cartesian 

axes 1 2 3Ox x x with the origin at O . 2Ox is pointing vertically 

 
 
 
 
upwards into the medium, M1 (

2x > 0). Each of the media 

M1 (
2x > 0) and M2 (

2x < 0) separated at 
2x = 0.  

It is assumed that the waves travel in the positive 
direction of the x1-axis and at any instant, all particles 
have equal displacements in any direction parallel to Ox3. 
In view of those assumptions, the propagation of waves 
will be independent of x3. Therefore all derivatives with 
respect to x3 will be zero.  

The general equation for a fibre-reinforced linearly 
elastic anisotropic media with respect to a direction  

1 2 3( , , )a a a a is as follows (Sengupta and Nath, 2001): 

 

)2 ( 2( )( ) ( ),
T L Tkl kk ij ij k m km ij kk i jijkl i k kj j k ki k m km i jD D D a a a a D D a a a a D a aC a a                      

 

Strain tensor is 1
, ,2

( )ij i j j iu u   and  D ,
T

D 
are 

elastic parameters. ,D D
and (D )

L T

D    are 

reinforced anisotropic viscoelastic parameters of higher 
order, s , defined as: 

 
k k

k kD D
t t

  
    

    
    

 

L k

k k

k LD D
t t

  
    

    
    

 

T k

k k

k TD D
t t

  
    

    
    

 

0,1,2... .k s
 

 
An Einstein summation convention for repeated indices 
over “k” is used and comma followed by an index denotes 
the derivative with respect to coordinate. 

iu are the displacement vectors components. By 

choosing the fibre direction as  (1,0,0)a  , the 

components of stress becomes as follows: 
 

11 11 22 33

22 11 22 33

33 11 22 33
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12 12

23 23

(D 2 4 2 ) (D ) (D ) ,

(D ) (D 2 ) ,

(D ) (D 2 ) ,

2 ,

2 ,

2 .

L T

T

T

L

L

T

D D D D D D

D D D

D D D

D

D

D

        
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    








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 

 

 

         

     

     







 

 

By choosing the fibre direction as  (1,0,0)a  ; also by 

taking all derivatives w.r.t. 3x zero. The Equation (4) of 

motion takes the following form: 

 

1,11 2,21 1,22 3,

1 ,

1

1

(D 2 4 2 ) (D )
LL T L

D D D D u D D u D u gu

u

         

 

         


                              (5a) 

 

1,12

,

2,11 2,22 3,2

2 2

(D ) ( 2 )
k L L k T

D D u D u D D u gu

u

      

 

      


             (5b) 

 

T3,11 3,22 1,1 2,2 3D D ( ) ,
L
u u g u u u                (5c) 

 
From Equation (2), we have: 
 

   11 22 0 11 2 2, , , ,u u                          (5d) 

 

Similarly, we can get similar relations in 2M with 

, , , , vc    ,D ,D  ,
L

D
T

D and D are replaced 

by , , , , vc        ,DD   ,
L

D
T

D and D  ,
 that is, 

all the parameters in medium M1 are denoted by super 
script “dash”. 

Equations (5) in simplified form can be written as: 
 

3 1,11 2 2,21 1 1,22 3,1 1 1,h u h u hu gu u      
        (6a) 

 

4 2,22 2 1,12 1 2,11 3,2 2 2,h u h u hu gu u      
         (6b) 



 

 

 

 

1 3,11 5 3,22 1,1 2,2 3( )    hu h u g u u u

                      (6c) 
 

   11 22 0 11 2 2, , , ,u u            
 
,         (6d) 

 
where 
  

1 2 3, D , D 2 4 2
L L L T

h D h D D h D D D D                , 

1 2 3, D , D 2 4 2
L L L T

h D h D D h D D D D                
1 2 3, D , D 2 4 2

L L L T

h D h D D h D D D D                

4 2
k T

h D D   and 
5 T

h D
 

 
 

SOLUTION OF THE PROBLEM 
 

To solve the coupled thermoelastic equations, we make 
the assumptions: 
                

 

 

1 2 3 1 2 2 2 3 2 1

2 1

ˆ ˆ ˆ, , ( ), ( )

ˆ   

, ( ) ( )

) ( )(  

exu u u u x u p

ex

x u x i x ct

x i x tp c



 






   (7)     

 
Thus coupled equations (6a, b and c)) becomes: 
 

2 2 2 2

1 3 1 2 2 3
ˆˆ ˆ ˆ( ) 0D c u i Du i gu i          

      
2 2 2 2

5 1 3 1 2
ˆ ˆ ˆ( ) ( ) 0       D c u g i u Du

 
and 

    2 2 2 2
0 1 2 0ˆ ˆ ˆD i c c i u Du               

 
 

where
 

1 2

3

4 5

( ) , ( )( ) ,

( 2 4 2 )( ) ,

( 2 )( ) , ( ) .

k k

Lk k k Lk

k

k k Lk Tk k

k k

k Tk Tk

i c i c

i c

i c i c

     

     

    

     

     

      
 

Above set of equation can be written as 
 

 

2

1 1 1 2 2 3

2

4 2 2 2 1 3

2

5 2 3 1 2

2

3 1 2

ˆˆ ˆ ˆ( ) 0,

ˆˆ ˆ ˆ( ) 0,

ˆ ˆ ˆ( ) 0

ˆ ˆ ˆ( ) ( ) 0

D A u i Du i gu i

D A u i Du gDu D

h D A u g i u Du

D A i u Du

  

   

 

  

    


     


    


    

         (8)
 

 

where 
 

 

 

2 2

1 3

2 2

2 1

2 2
2 0

3

A c

A c

i c c
A

 

 

    




 

 

 
 
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From above set of equations, for non-trival solution, we 
have: 
 

2

1 1 2

2

2 4 2

1 22

5 2

2

3

( )

( ) ˆˆ ˆ( , , ) 0
( ) 0

0 ( )

D A i D i g i

i D D A gD D
u u

i g gD D A

i D D A

  

  


 

 






  

  

 This implies 

 

8 6 4 2

1 2
ˆˆ ˆ( )( , , ) 0D ED FD GD H u u     

 
where 

  2 2

1 4 2

1 4 5

1
E A A g  

 

  

   

2 2 2

1 2 4 1 2

1 4 5

2 2 2

1 2 4 3 2 2 1

1 4 5

1
2

1
2

F g A B A A

G g A A A A B C

 

 

    

     

 

  2 2 2

2 3 2

1 4 5

1
H g A A A C  

 

 2 2 2

4 1 1 2 4 3 2( )A A A A      
 

  2 2 2 2

1 2 4 1 3 1 2 3 2 3 4 1 2 4( 2 )B A A A A A A A A A         
 

 2 2

1 2 3 2C A A A A  
 

2Let D m
 

Auxiliary equation becomes: 
 

4 3 2 0m Em Fm Gm H    
                      (9)  

 
E,F,G and H must be positive for real positive roots (m). 
In the absence of gravity the above equation is cubic and 
if  there are no voids then the above equation is quadratic 
in m and it is easy to solve.

  

Let mi  (i=1,2,3,4)  be four positive real roots, then 
solution by normal mode method has the following form: 

 

2

4

1

1

ˆ  ,
n

m xn
nu M e




                                 (10a) 

  

2

4

2 1

1

ˆ  ,n

n

m xnu M e



                              (10b) 

 

2

4

3 2

1

ˆ  ,n

n

m xnu M e





                                

(10c) 
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2

4

3

1

ˆ  ,n

n

m xnM e



                                  (10d) 

 

where nM , 1nM , 2nM and 3nM   are some parameters. 

By using Equations (10a to d) into Equations (8), we get 
the following relations: 
 

1 1

2 2

3 3

,

,

,

n n

n n

n n

n

n

n

M H M

M H M

M H M





  

 

where 

 
2 2

2 2 4
1 2 3

1 2 1

2

1 2
2

1

2

3
3

1

( )
,

,
( )

.
( )

n n
n

n n n

n
n

n n

n
n

n n

i A m m
H

A m m m

m A
H

g i m H

A m
H

i m H





 

 

 


 











 

 
Hence we obtain the expressions of the displacement 
components, volume fraction field and stresses as follows  
 

 2

4

1 1

1

 ( ) ,
n

m xn
nu M e iex x ctp 




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        (11a) 
 

 2

4

2 1 1

1

 ( ) ,n

n

m xn
nu H M e i x cp tex 




        (11b) 

 

 2

4

3 2 1

1

 ( ) ,n

n

m xn
nu H M e i x cp tex 




             

(11c) 

 

 2

4

3 1

1

 ( ) ,n

n

m xn
nH M e i txp ce x 




        (11d) 

 
Also it is found that 
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4

12 1 1 1

1
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n
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4
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1
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n
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


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Similar expressions can be obtained for second mediun 
and present them with super script dashes as follows: 
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Also it is found that: 
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In order to determine the secular equations, we have the 
following boundary conditions. 
 
 
BOUNDARY CONDITIONS 
 
1. The displacement components and volume fraction 
field between the mediums are continuous, that is, 

1 1,u u 2 2u u ,  3 3u u  and    on  2 0x  , for 

all 1x and t. 

2. Stress continuity exists, i.e. 12 12   , 22 22   , 

23 23    on 2 0x  , for all 1x and t. 

3. It is assumed that the following relation hold: 
 

1 2

2 1

2 2
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mediumM medium M

h h x x and t
x x
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    

 

 
where h is a constant. 
Boundary conditions implies the following equations: 
 

1 2 3 4 1 2 3 4

11 1 12 2 13 3 14 4 11 1 12 2 13 3 14 4

21 1 22 2 23 3 24 4 21 1 22 2 23 3 24 4

31 1 32 2 33 3 34 4 31 1 32 2 33 3 34 4

M M M M M M M M

H M H M H M H M H M H M H M H M

H M H M H M H M H M H M H M H M

H M H M H M H M H M H M H M H M

          


              
             
                 (13a)
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Elimination of constants , ( 1,2,3,4) n nM and M n   

from above set of relation, gives the following secular 
equation for surface wave in a fibre reinforced 
viscoelastic material of higher order s under gravity with 
voids. 
 
det( ) 0; 1,2,3,4,5,6,7,8.pqa p q  

       (14) 
 
where
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PARTICULAR CASES 
 
Stoneley waves 
 
Equation (14) is the secular equation for Stonely waves in  

a fibre reinforced viscoelastic media of higher order. For k 
= 0, results are similar to Abd-Alla (2003). If rotational, 
voids and fiber-reinforced parameters are ignored, then 
for k = 0, the results are same as Stoneley (1924). 
 
 
Rayleigh waves 

 
Rayleigh wave is a special case of the above general 
surface wave. In this case we consider a model where 

the medium, 1M is replaced by vacuum. Since the 

boundary, 2 0x   is adjacent to vacuum. It is free from 

surface traction. So the stress boundary condition in this 
case may be expressed as: 

 

12 0   ,  22 0  on  2 0x  , for all 1x and t. 

2 1

2

0, on theplane 0 , ,h x x and t
x





   


 

 
It is assumed that gravitational field produces a 
hydrostatic initial stress. It produced by a slow process of 
creep where the shearing stresses tend to small or 
vanish after a long period of time. Equilibroim conditions 
of initial stress are: 

 

11 11

1 2

0, 0g
x x

 


 
  

 
 

 
Thus above set of equations reduces to: 
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Eliminating the constants 1,M 2 ,M 3M
 
and 4M we get 

the wave velocity equation for Rayleigh waves in the 
fibre-reinforced viscoelastic media of order s under the 
influence of gravity as follows: 
 

det( ) 0; 1,2,3,4.lmb l m  
                     (15) 
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Equation (15) is the secular equation for Rayleigh wave 
for the medium M1. For k = 0 and by ignoring the voids 
and gravitational effects our results are same as that of 
Sengupta and Nath (2001). If one ignores the fibre-
reinforced parameters also then results are same as 
Rayleigh (1885).  

 
 
NUMERICAL SIMULATION AND DISCUSSION 
 
The following values of elastic constants  are  considered  

 
 
 
 

Chattopadhyay et al. (1987) for mediums M and 
1M  

respectively. 
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The numerical technique outlined above was used to 
obtain secular equation, surface waves velocity and 
attenuation coefficients under the effects of rotation in 
two models with voids. 

For the sake of brevity some computational results are 
being presented here. The variations are shown in 
Figures 1 and 2, respectively. 

Figure 1a to i show the variation of  the magnitude of 

the frequency equation  , Stoneley wave velocity 

)Re( and attenuation coefficient )Im(  with 

respect to the frequency   for different values of  order 

,k  gravity field g  and phase velocity c . The magnitude 

of the frequency equation increases with increasing of 
frequency, while it decreases with increasing of order and 
gravity field and when effect of phase velocity it increases 
with increasing of phase velocity, as well, Stoneley wave 
velocity decreases with increasing of frequency, while it 
increases with increasing of order and gravity field and 
when effect of phase velocity, it decreases with 
increasing of phase velocity and  the attenuation 
coefficient increases with increasing of frequency, except  
when effect of phase velocity it decreases with increasing 
of frequency, while it increases with increasing of order , 
as well it decreases with increasing of gravity field and 
phase velocity.  

Figures 2a to i show the variation of  the magnitude of 

the frequency equation  , Stoneley wave velocity 

)Re( and attenuation coefficient )Im(  with 

respect to the frequency   for different values of  order 

,k  gravity field g  and phase velocity c . The magnitude 

of the frequency equation increases with increasing of 
frequency, while it decreases with increasing of order and 
gravity field and when effect of phase velocity it increases 
with increasing of phase velocity, as well, Stoneley wave 
velocity decreases with increasing of frequency, while it 
increases with increasing of order and gravity field and 
when effect of phase velocity, it decreases with 
increasing of phase velocity and  the attenuation 
coefficient increases with increasing of frequency and 
when effect of phase velocity it increases and decreases 
gradually with increasing of frequency, while it decreases 
with increasing of phase velocity.  

Finally, one can see that there  is  a  similarity  between
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Figure 1. Variation of  , velocity ( Re( ) ) and attenuation coefficient ( Im( ) ) for Stoneley waves with respect to   with 

variation of ,k g  and c. 
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Figure 2. Variation of  , velocity ( Re( ) ) and attenuation coefficient ( Im( ) ) for Rayleigh waves with respect to   

with variation of ,k g  and c. 

 
 
 
the graphs of two waves types (that is, Stoneley and 
Rayleigh) in the behavior but there are differences 
between the values and part of their behavior. 

CONCLUSION 
 
Due to the complicated nature of the governing equations  



 
 
 
 
of the fibre-reinforced anisotropic general viscoelastic 
media of higher order with voids, the work done in this 
field is unfortunately limited in number. The method used 
in this study provides a quite successful in dealing with 
such problems. This method gives exact solutions in the 
fibre-reinforced anisotropic elastic media without any 
assumed restrictions on the actual physical quantities 
that appear in the governing equations of the problem 
considered. Important phenomena are observed in all 
these computations:                                                                                                                                                              
 
1. It was found that the solutions obtained in the context 
of the fibre-reinforced anisotropic general viscoelastic 
media of higher integer and fractional order with voids, 
however, exhibit the behavior of speeds of wave 
propagation. 
2. By comparing Figures 1 and 2, it is found that the wave 
velocity has the same behavior in both media. But with 
the passage of gravity field, numerical values of wave 
velocity in the viscoelastic media are large in comparison 
due to the viscoelastic fiber-reinforced. 
3. Special cases are considered as Stoneley and 
Rayleigh waves only. 
4. The results presented in this paper should prove useful 
for researchers in material science, designers of new 
materials. 
5. Study of the phenomenon of rgravity field is also used 
to improve the conditions of oil extractions. Finally, if the 
rotation is neglected, the relevant results obtained are 
deduced to the results obtained by Sengupta and Nath 
(2001). 
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