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Surface modification is an effective method to improve the electrochemical property of hydrogen 
storage alloy. In order to investigate the influence of process factors of electroless copper (Cu) plating 
for AB5-type hydrogen storage alloy on Cu coating mass, a novel modeling approach, support vector 
regression (SVR) combined with particle swarm optimization (PSO), was proposed to construct a 
mathematical model for prediction of the mass changes of Cu coating over the AB5 hydrogen storage 
alloy surface based on three factors, including temperature, pH value and Ni

2+
 concentration. The 

modeling accuracy and reliability of the created SVR model are validated through leave-one-out cross 
validation (LOOCV), and compared with those of a second-order polynomial model. The results show 
that the predicted errors by SVR-LOOCV models are all smaller than those achieved by the second-
order polynomial model. The SVR model is further applied to predict the process parameters for the 
maximum Cu coating mass. These studies suggest that SVR can be used as an effective methodology 
to assist the design of experiment, and is helpful to precisely control the coating mass via fine 
adjustment of the process parameters. 
 
Key words: Surface modification, electroless copper plating, hydrogen storage alloy, support vector regression, 
modeling and prediction. 

 
 
INTRODUCTION 
 
Hydrogen as a renewable and non-contamination fuel 
has continually received much attention. In order to make 
the hydrogen practical application, storage technologies 
must be improved to solve the mass storage for 
transport. AB5-based hydrogen storage alloy, which 
exhibits some excellent properties, including fast 
reversible sorption kinetics with small hysteresis and 
good cycling life (Schlapbach and Zuttel, 2001; Singh et 
al., 2007), has been investigated extensively and become 
large-scale commodity production as negative electrode 
of the nickel-metal hydride battery (Tliha et al., 2007; Hu 
and Noreus, 2010; Ozaki et al., 2007; Thomas et al., 
2008; Malinova and Guo, 2004; Dong et al., 2010; Zhang 
et   al.,  2007).  Due  to  oxidation  at   the  surface  during  
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repeated charge-discharge cycling, surface segregation 
and  decomposition of hydrogen storage alloy may cause 
the electrochemical property of metal hydride electrodes 
degradation (Lei et al.,1991). To improve the electro-
chemical property of hydrogen storage alloy electrode in 
nickel-metal hydride battery, several types of surface 
modification have been studied in recent literatures. 
Surface modification for hydrogen storage alloy, which 
covers the intermetallic powder to prevent corrosion or 
oxidation, is an effective strategy to improve nickel-metal 
hydride battery performance (Matsuoka et al., 1993; Yan 
et al., 1995; Shen et al., 2010; Yu et al., 2009; Raju et al., 
2009; Deng et al., 2006). Feng and Northwood (2004) 
studied the electrochemical properties of metal hydride 
(MH) electrode micro-encapsulated Cu, which showed 
higher exchange current density and apparent activation 
energy when compared with untreated ones. Wei et al. 
(2008) revealed that the Cu coating of Co-free alloy 
La(NiMnAlFe)5 increased the maximum discharge capacity 



 
 
 
 
from 282 to 307 mAh/g, and also enhanced its high-rate 
discharge ability and cycle life. Zhang et al. (2010) 
investigated the influence of experimental process on Cu 
coating mass of electroless copper plating, and found out 
that the coating mass has obvious effects on the 
discharge capacity and cycle stability. Therefore, 
controlling the experimental parameters within a suitable 
range to achieve the optimal coating mass is becoming 
more and more significant in the process of electroless 
copper plating for enhancing the performance of 
hydrogen storage alloy. Since the electroless copper 
plating is a complex process, and is greatly influenced by 
two or more factors simultaneously, the conventional 
“change-one-factor-at-a-time” method is not appropriate 
for copper plating experimental design. Orthogonal 
experimental design combined with mathematic model is 
an effective methodology to explore variation law of alloy 
coating. In this study, motivated by Zhang's previous 
work, a novel computational strategy, using support 
vector regression (SVR) (Vapnik, 1995) combined with 
particle swarm optimization (PSO) (Kennedy and 
Eberhart, 1995) was proposed to analyze the effect of the 
experimental parameters (temperature, pH value and Ni

2+
 

concentration) on the mass change of the electroless Cu 
coating over the hydrogen storage alloy. 
 
 
MATERIALS AND METHODS 
 
Theory of support vector regression 
 
Support vector machine (SVM) is a statistical learning approach 
based on structural risk minimization principle, which was proposed 
and developed by Vapnik and co-worker (1995). It has been 
successfully used for classification or regression in real applications 
(Cai et al., 2003a, b; Wen et al., 2009; Wang et al., 2011). The 
basic idea of SVR is to map the x into a higher-dimensional feature 
space F via a nonlinear mapping Φ(x), and then to perform a linear 
regression in this space. Therefore, SVR is to find the linear relation 
Equation 1 based on a given training dataset (x1, y1), …, (xn, yn). 
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where w is a vector for regression coefficients and b is a bias. They 
are estimated by minimizing the regularized risk function R(C): 
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where n is the number of training samples, C is a penalty factor, ε is 

a prescribed parameter controlling the tolerance to error. 
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To get the indices of w and b for Equation 1, build the Lagrange 
equation:  
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where αi and αi

* are Lagrange multipliers to be solved. Only the 
nonzero values of Lagrange multipliers are useful in construction of 
the regression line, and their corresponding samples are known as 
support vectors (SVs). Minimum L(w, ξi, ξi

*) is obtained by making 
partial differential coefficients for w, b, ξi, ξi

* equal to zeros. Finally, 
the function of SVR is as follows: 
 






l

i

iii bkf

1

* ,),()()( xxx                                                  (5) 

 
where l is the number of SVs and  k(x, xi)=Ф(x)•Ф(xi) is a kernel 
function. In this study, radial basis kernel was adopted as the kernel 
function: 
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Choosing of SVR parameters with particle swarm optimization 
 
PSO is a population method based on stochastic optimization 
technique developed by Kennedy and Eberhart (1995), and it is 
inspired by social behavior of bird flocking or fish schooling. The 
generalization ability of SVR depends entirely on ε of the ε-
insensitive loss function, the penalty constant C and the radial basis 
kernel function parameter γ. Therefore, it is a key issue to find the 
optimal parameters (ε, C, γ) for SVR model. In this study, the PSO 
algorithm is employed to rapidly and efficiently search the optimal 
parameters (ε, C, γ) for SVR.  

According to the PSO theory, a problem can be optimized by 
iteratively trying to move a specific number of particles in the search 
space based on mathematical formulae to find the optimal solution. 
In this study, each of the particle swarm is made up of a parameter 
vector (ε, C, γ). Suppose in a 3-dimensional space, the ith particle is 
looked as a point and represented as ui = (ui1, ui2, ui3)

T, its velocity 
is represented as vi = (vi1, vi2, vi3)

T, which will be influenced by its 
local best known position pibest, and the global best position gbest. At 
each iterative process, each particle will transfer its position by 
tracking its local best value, global best value and its present 
velocity. Their iterative equations are as follows (Yoshida et al., 
2000): 
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where v(t), v(t + 1), u(t) and u(t + 1) are, respectively, the speed and 
position   of  the present moment and the  next moment; rand() is  a
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Table 1. Measured and calculated electroless Cu coating mass under different experimental parameters. 
 

No. 

Experimental parameter  Cu coating mass (g) 

Temperature 
(ºC) 

pH 
Nickel sulfate 

(g/L) 
 Exp. 

Quadratic 
model 

APE (%) SVR-LOOCV APE (%) 

1 65 7.5 1.2  0.424977 0.412501 2.94 0.425028 0.01 

2 65 7.5 2.8  0.315097 0.339418 7.72 0.315211 0.04 

3 65 9.5 1.2  0.302814 0.316515 4.53 0.303028 0.07 

4 65 9.5 2.8  0.311701 0.307297 1.41 0.311958 0.08 

5 85 7.5 1.2  0.189247 0.200419 5.90 0.194871 2.97 

6 85 7.5 2.8  0.197991 0.191058 3.50 0.207553 4.83 

7 85 9.5 1.2  0.212724 0.195171 8.25 0.219449 3.16 

8 85 9.5 2.8  0.230432 0.249676 8.35 0.230658 0.10 

9 62.85 8.5 2  0.45055 0.435126 3.42 0.421572 6.43 

10 87.15 8.5 2  0.274182 0.271281 1.06 0.274113 0.03 

11 75 7.285 2  0.24701 0.235750 4.56 0.246707 0.12 

12 75 9.715 2  0.220115 0.213049 3.21 0.219765 0.16 

13 75 8.5 1.028  0.249371 0.255592 2.49 0.249538 0.07 

14 75 8.5 2.972  0.268852 0.244305 9.13 0.268581 0.10 

15 75 8.5 2  0.247283 0.275214 11.29 0.258297 4.45 
 
 
 

random value between 0 and 1; c1 and c2 are both learning factors, 
normally was set as 2; ω is a weighting factor to accelerate the 
convergence rate, its value should be automatically regulated with 
the iterative time of algorithm extending, and defined generally as: 
 

,/)()( maxminmaxmaxmin iteriteriter         (9)                        

 

where ωmax and ωmin are the biggest and smallest weighting factors, 
respectively, commonly set as 0.9 and 0.4, iter is the number of 
current iteration and itermax is the total number of iterations.  

In this study, mean absolute percentage error (MAPE), which 
directly reflects the performance of SVR model, is selected as the 
fitness function: 
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where n denotes the number of training samples, yi represents the 

actual measured value and iŷ  is the estimated value for the ith 

training sample. 
 
 

Dataset, modeling strategy and model evaluation 
 

The experimental dataset used in this study was generated by 
Zhang et al. (2010), which is listed in Table 1 with a total of 15 
samples. Zhang et al. (2010) conducted chemical Cu plating for 
AB5-type hydrogen storage alloy via varying various factors, 
including temperature, pH value and Ni2+ concentration. The 
detailed experimental information can be referred to the work of 
Zhang et al. (2010). 

In the modeling process, the values of the Cu coating mass acted 
as the dependent variables, while three experimental parameters 
(temperature, pH value and Ni2+ concentration) acted as the in-
dependent variables. All the inputs were normalized within a closed 
interval (-1, 1). The new scaled variables were calculated using the 
following formula:   
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where, x is the variable to be scaled, xmin is the minimum value of the 
variable, xmax is the maximum value of the variable in the dataset to 

be scaled and x  is the scaled value. 

Leave-one-out cross validation (LOOCV) was adopted to evaluate 
the prediction performance of SVR models. Besides MAPE, the root 
mean square error (RMSE) and correlation coefficient (R) were also 
utilized to evaluate the generalization performance of SVR. They are 
formulated as follows: 
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where y  represents the mean value of actual measured values, 

and ŷ  is the mean value of estimated values for all test samples. 

 
 
RESULTS AND DISCUSSION 
 
Performance comparison between the second-order 
polynomial model and SVR model 
 
The second-order polynomial modeling is a conventional 
regression methodology, and has been employed to 
analysis  the   experimental   data   of  electroless  copper 
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Table 2. Evaluation results for SVR-LOOCV and quadratic model. 
 

Regression method MAPE (%) RMSE (g) R
2
 

SVR-LOOCV 1.51 0.0087 0.996 

Quadratic model 5.18 0.0156 0.977 
 
 
 

plating by Zhang et al. (2010). The relevant second-order 
polynomial model refined by us is expressed as follow: 
 

2 2

1 2 3 1 2
2

3 1 2 1 3 2 3

3.3338 0.1093 0.3658 0.2178 0.000528 0.0344

0.0267 0.0023 0.002 0.0199 ,

y x x x x x

x x x x x x x

     

       
(14)           

 

where y denotes the Cu coating mass, x1 represents the 
temperature (°C), x2 means the pH value and x3 is the 
concentration of nickel sulfate (g/L).  

Table 1 also presents the comparison between the 
experimental value of Cu coating mass and estimated 
results by the second-order polynomial model and SVR-
LOOCV model, respectively. It can be viewed from Table 
1 that the absolute percentage errors of 6 out of 15 
samples by the model of Equation 14 are greater than 
5%, accounting for two-fifths of total samples. On the 
other hand, except only one sample (#9), the absolute 
percentage errors of other 14 samples predicted by SVR-
LOOCV model are all within the range from 0 to 5%. And 
the maximum absolute percentage error predicted by 
SVR-LOOCV model is 6.43%, which is smaller than 
11.29% calculated by the model of Equation 14. 

Table 2 gives the evaluation results calculated by the 
second-order polynomial model of Equation 14 and SVR-
LOOCV models, respectively. It can be found that the 
MAPE of the second-order polynomial model (5.18%) is 
greater than that of SVR-LOOCV (1.51%). This 
demonstrates that the accuracy of the SVR model is 
much greater than that of the second-order polynomial 
model. Moreover, the superiority of the SVR-LOOCV 
model can also be revealed from other two evaluation 
indices, that is, both RMSE and R of the SVR-LOOCV 
model (0.0087 g and 0.996) are better than those of the 
second-order polynomial model (0.0156 g and 0.977), 
respectively. These results illustrate that the accuracy 
and reliability of the constructed SVR model are superior 
to those of the second-order polynomial model. 

All the aforementioned results can be intuitively viewed 
from Figure 1, which displays the comparison of the 
measured and estimated values for Cu coating mass by 
using SVR-LOOCV model and the second-order 
polynomial model of Equation 14, respectively. Figure 1 
shows that the estimated values predicted by SVR-
LOOCV are very close to the best-fit line with slope of 1. 
At first glance, most of the plot points (○) are almost 
located on this line. In contrast to the results of SVR-
LOOCV, the estimated points (■) calculated by the 
second-order polynomial model deviate significantly from 
the best-fit line. This indicates in empirical that SVR 
models can perform strong generation ability. 

Statistical analysis for SVR-LOOCV models 
 

Bland and Altman (1986) presented a statistical method 
for assessing agreement of the mathematic model. 
According to Bland’s theory, it is expected that more than 

95% of the differences lie between the limit )2( ee   

and 
( 2 )ee  

 if the differences are normally distributed. 
where ē denotes the mean value of the difference e (= rp 

– r), rp represents the predicted value by SVR-LOOCV 

model, r stands for the experiment value and e is the 

standard deviation of difference e. The statistical 
distribution of differences predicted by SVR-LOOCV 
models for Cu coating mass is plotted as shown in Figure 
2. It can be obtained from Tables 1 and 2 that the mean 
difference e  of the SVR-LOOCV models for Cu coating 

mass is equal to 0.0043 g and the standard deviation e  

is 0.0087 g. The lower limit of agreement is equal to 

)2( ee  (= -0.013 g), and the upper limit of agreement 

is equal to ( 2 ) (0.022 )ee g   . Thus, it can be seen 

from Figure 2 that, except only one sample (#9), the 
differences of the other 14 samples all lie within the limit 

scope between )2( ee   and )2( ee  . Therefore, the 

differences of nearly close to 95% samples lie within the 
limit scope. This indicates that the SVR approach can be 
employed reliably in the application of modeling and 
analysis for the Cu coating process. 
 
 

Influence analysis of multi-process parameters 
 

The created SVR model can also be utilized to analyze 
the influence of the experimental parameters on Cu 
coating mass of AB5-type hydrogen storage alloy. 
According to the established SVR model, the maximum 
Cu coating mass (0.45055 g) were searched out under 
experimental parameters of temperature 62.83°C, pH 
value 8.5 and Ni

2+
 concentration 1.99 g/L. The three-

dimensional profile and two-dimensional contour lines of 
the Cu coating mass varying with different process 
factors are illustrated in Figures 3 to 5. Figure 3 shows 
the interaction effect of pH value and temperature on the 
Cu coating mass with the Ni

2+
 concentration fixed at its 

optimal value. Figure 4 illustrates the interaction effect of 
temperature and   Ni

2+ 
concentration on Cu coating mass 

with pH value at their optimal value. The interaction effect 
of pH value and Ni

2+
 concentration on the Cu coating 

mass are displayed in Figure 5. They illustrate intuitively 
the influence of temperature, pH value and Ni

2+
 

concentration on the Cu coating mass.  
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Figure 1. Comparison of experimental and estimated values calculated by SVR-LOOCV 
and quadratic model. 

 
 
 

 
 

Figure 2. Statistical distribution of differences calculated by SVR-LOOCV models for Cu coating 
mass. 

 
 
 

It can be seen from Figure 3 that the high amount of Cu 
coating mass appears in the region of low temperature 
range (60 to 65°C) and a moderate pH range (8 to 9). 
The Cu coating mass appears to have a clear second-
degree parabola relation with the pH value under the 
above-mentioned condition. When the temperature 
further rises above 65°C, the influence of temperature 
and pH value on the Cu coating mass is less obvious.  

The effective tendency of temperature and Ni
2+

 
concentration on Cu coating mass as shown in Figure 4 
is quite similar to that showed in Figure 3. It is obvious  in 

Figure 4 that, when the temperature varies in the range 
from 60 to 70°C, the Cu coating mass would increase first 
and then would decrease with the Ni

2+
 concentration 

increasing from 1 to 3 g/L, but the Cu coating mass tend 
to be kept in a lower range of 0.25 to 0.3 g after the 
temperature is over 70°C. Previous findings (Zhang et al., 
2010) showed that Cu coating mass appears a trend from 
little fluctuation at 65 to 70°C to slowly increase at 70 to 
75°C, subsequently, increased rapidly after temperature 
rise to over 75°C, and reached its maximum value in the 
range of 75 to 85°C. Our modeling result reveals that  the
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Figure 3. Interaction effect of pH value and temperature on the Cu coating mass with Ni2+ concentration = 1.99 g/L. 

 
 
 

  
 
Figure 4. Interaction effect of Ni2+ concentration and temperature on the Cu coating mass with pH value = 8.5. 

 
 

 

  
 
Figure 5. Interaction effect of Ni2+ concentration and pH value on the Cu coating mass with temperature = 
62.83ºC. 

 
 
 

peak amount of Cu coating emerges ahead of 
temperature reaching 70°C. This can be understood, 
because with temperature rising, the rough micropores 
formed on the surface of precipitate would obstruct the 
Cu coating (Zhang et al., 2010).  

It can be viewed from Figure 5 that a peak amount of 
Cu coating mass emerges in the region of pH value from 
7 to 7.5 and Ni

2+
 concentration from 1 to 1.4 g/L, and then 

another higher peak value presents with pH value 
increasing from 8.3 to 8.7 and Ni

2+
 concentration increasing  
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from 1.8 to 2.2 g/L. Whereafter, the Cu coating mass 
would drop to a lower range from 0.28 to 0.32 g 
accompanied with pH value or Ni

2+
 concentration 

increasing. This is because an overdose of OH
-
 would 

promote the generation of Cu2O, which would prevent the 
Cu ions from coating, and when the proportion of Ni

2+
/Cu 

is too large, the stability of electrolyte would be destroyed, 
which would slowdown the reaction of electroless plating 
(Zhang et al., 2010; Ishikawa et al., 1995). 

Zhang et al. (2007, 2010) found out from their previous 
experiment that Cu coating can efficiently improve the 
discharge capacity and cycle stability of the coated 
hydrogen storage alloy, and a proper amount of Cu 
coating mass could achieve the maximum discharge 
capacity. It is noticed that the less the coated mass, the 
greater the maximum discharge capacity. Thus, the 3D 
changing tendency of coating mass on various plating 
conditions deduced via the created SVR model is helpful 
for the relevant experiment. 
 
 

Conclusion 
 
In this study, an empirical model for quantitative 
prediction of Cu coating mass on the surface of AB5-type 
hydrogen storage alloy was set up via support vector 
regression combined with particle swarm optimization for 
its parameter optimization. The accuracy and reliability of 
the established mathematical model was tested by leave-
one-out cross validation. The predicted results of SVR 
were also compared with those of the second-order 
polynomial model. It was found out by statistics that the 
coating amounts predicted by SVR models are more 
consistent with experimental results than those of the 
second-order polynomial model. These results demonstrate 
that the SVR model consistently possesses excellent 
simulation and generalization ability than traditional 
polynomial nonlinear regression. According to the 
established SVR model, the interaction effect of different 
experimental factors on the Cu coating mass was further 
investigated. The optimal experimental parameters can 
be determined according to the SVR model and three-
dimensional profile. These suggest that the SVR model 
can be used to assist in experiment design, and optimize 
the process of electroless copper plating with available 
optimal process parameters. 
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