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The purpose of this work is to identify a linear ti me-invariant dynamic model of wastewater treatment 
plants with multilevel pseudo random signals as an excitation input. The plants naturally aim to remov e 
suspended substances, organic material and phosphat e. An activated sludge process becomes the 
best technology available to control the discharge of pollutants. For this purpose, state-space models  
that emphasize on subspace-based method such as num erical subspace state-space system 
identification (N4SID) and ‘robust’ N4SID besides p redictive estimation models are explored.  The 
performance of identified models perturbed by multi level input signal is validated by variance 
accounted for and compared to pseudo random binary input signal. It was proved that the estimated 
model with multilevel input offers good predicted b ehavior’s as compared to two-level input signal. 
Benchmark simulation model (BSM1) was applied as da ta generator for identification procedures. 
 
Key words:  Multilevel input signal, multivariable subspace state-space identification, wastewater plant. 

 
 
INTRODUCTION 
 
In general, a multiple-input-multiple-output (MIMO) 
system has more complex internal structure.  Due to this 
reasons, the state-space model is most commonly used 
to describe a MIMO physical system due to its simple 
mathematical equation form as compared to polynomial 
models. This invites system identification approach that 
deals with a problem in estimating a model of dynamic 
systems based on input and output data. Basically, there 
are two approaches for linear identification, and they 
include optimization-based referred to predictive error 
method (PEM) and subspace-based method, such as 
numerical subspace state-space system identification 
(N4SID), multivariable output-error state-space model 
identification (MEOSP) and canonical variate analysis 
(CVA). Zhu (2001) states that a good identification test 
needs some priori  knowledge of the process, such as the 
dominant   time   constant,   bandwidth  of  the  dynamics, 
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nonlinearity and disturbance characteristics. This can be 
done through a step test, staircase test, impulse test or 
even white noise experiment. For a step test, the process 
is operating in open-loop without the presence of any 
controller where each input is stepped separately and the 
step responses are recorded. 

Furthermore, a perturbation signal is commonly used at 
the input in obtaining informative data. According to Ljung 
(1987) and Sodestrom and Stoica (2001), perturbation 
signal must be persistently exciting so that the bandwidth 
of the perturbation signal may span with respect to the 
system. Zhu (2001) explains some minimum 
requirements that needed to be obeyed by the test signal 
to guarantee for a unique estimation solution. 
Nevertheless, crucial problem in identification comes in 
defining the behavior of the perturbation signal. Basically, 
two aspects need to be considered in selecting the tests 
signal, and they include the shape of the signal and the 
power spectrum. For a linear system, pseudo random 
binary sequences (PRBS) are commonly used in 
identification     due     to     similarity    of    white     noise 
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Figure 1.  Subspace and PEM methods in system identification. 

 
 
 
autocorrelation function besides easy implementation. 
However, the resulting data of two levels PRBS may not 
provide sufficient information in perturbing a nonlinear 
signal. Furthermore, the estimation of the linear kernel 
may be bias for a large magnitude of PRBS. On the other 
hand, multilevel pseudo random signal (MPRS) allows 
the user to highlight nonlinear system behavior while 
manipulating the harmonic contents of the signal and 
hence reducing the effect of nonlinearities (Godfrey, 
1993). In this paper, the theoretical frameworks of 
multilevel signal suggested (Braun et al., 1999; Jose and 
Basilio, 2003) are explored. 

No doubt, a wastewater treatment plants (WWTP) are 
strongly known with the complexity of the model structure 
and the wide number of states and parameters. WWTP 
aims to remove suspended substances, organic material 
and phosphate before releasing to the recipients. Ololade 
et al. (2009) investigates the quality of surface water and 
underground water due to the impact of indiscriminate 
dumping of household wastes. Meanwhile, the 
effectiveness of aquatic plants in removing nutrients from 
wastewater was investigated by Christine et al. (2011), 
while the use of activated carbon from local raw material 
was analyzed by Fayomi and Popoola (2011). Referring 
to Lindberg (1997) and Rahmat et al. (2011), nitrogen is 
an essential nutrient for biological growth and acts as one 
of the main constituents in all living organisms. However, 
higher nitrogen in effluent wastewater invites a numbers 
of problems. As a result, two biological processes called 
nitrification (ammonium removal) and denitrification 
(nitrate removal) are proposed. Due to the complexity 
factors besides that emphasized on both processes were 
suggested. There are numbers of works on wastewater 
identification, such as Lindberg (1997) that presents a 
multivariable    model    for    describing   nitrification   and 

 
 
 
 
denitrification using subspace identification where PRBS 
and white noise were used in exciting the plant. Similarly, 
a linear identification for dissolve oxygen and nutrient 
removal was applied to cost simulation (Wahab et al., 
2009). Meanwhile, PEM with generalized binary noise 
input signal has been used as model estimator and 
excitation input signal of nitrate removal in cascade 
control structure as discussed in the work of Hongbin et 
al. (2010) and Hongbin and ChangKyoo (2011). 
However, Oscar et al. (2003) introduced multilevel 
random signal to identify ASWWTP-USP wastewater 
plant. This leads to the application of multilevel 
pseudorandom test signal in multivariable identification 
for benchmark simulation model (BSM1). 
 
 
STATE-SPACE IDENTIFICATION METHODS 
 
In this paper, the state-space estimation models emphasized on 
subspace identification method (SIM) that offers an attractive 
approach to input and output measurement for a MIMO system. 
Initially, a weighted projection of the row space of Hankel matrices 
is considered. From this projection, the observability matrix, 

iΓ  

and/or the state sequence, Xi were retrieved. It then followed by 
determining the system matrices. Basically, input and output data is 
given and SIM will estimates the matrices with respect to the 
number of order within a similarity transformation and Kalman filter 
gain. A sequence of state vectors can be determined directly from 
the input and output data in SIM but not in PEM.  The different 
approach between subspace methods and PEM is summarized as 
shown in Figure 1 and the details of SIM algorithms can be referred 
to the work of Overschee and Moor (1999). 

This work focused on a state-space model of combined 
deterministic-stochastic system as shown in Equation 1. 
 

1k k k kx Ax Bu Ke+ = + +  

k k k ky Cx Du e= + +  
              (1) 

 

where 
m

ku ∈ℜ is the m-dimensional input, 
n

kx ∈ℜ is the n-

dimensional state, 
l

ky ∈ℜ is the l-dimensional output, K is the 

steady state Kalman gain and 
l

ke ∈ℜ is an unknown innovation 

with covariance matrix E [eke
T

k ] = Re.  
Notice that the model is in relation with stochastic state space 

model as: 
 

1k k k kx Ax Bu v+ = + +  

k k k ky Cx Du ω= + +  
                 (2) 

 

where
m

kv ∈ℜ and 
l

kω ∈ℜ are the process and the 

measurement noise with covariance matrices [ ]T
k kE v v Q= , 

[ ]T
k kE Rω ω = , [ ]T

k kE v Sω = . The process noise represents 

the disturbances entering the system and the measurement noise 
represents   the   uncertainty    in    the    system   observations.    In 
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Figure 2.  A generator of a q-level pseudo random binary 
sequence using shift register and modulo q addition. 
 
 
 
conjunction, the algorithm for combined deterministic-stochastic for 
‘robust’ N4SID can be referred to in Equations 3 to 8.   
 
1. The oblique, Oi and orthogonal projections, Zi and Zi+1 are 
calculated as: 
 

1, ,p p
i f f p i f i f

f f

W W
Y U W Y Y

U U

+
−

+ −

  
Ο = Ζ = Ζ =     

            (3) 
 
where f and p denote future and past, while Wp indicates the joint 
past. Noted that the superscript ‘+’ stands for ‘add one block row’ 
while the superscript ‘-’ stands for ‘delete one block row’.

 
2. The SVD of the weighted oblique projection are then determined 

as in Equation 4. Here, 
f

U
⊥Π denotes the orthogonal projection of 

matrix U. 
 

f

T
i

U
U S V⊥Ο Π =

                                   (4) 
 
3. Next, the model’s order and the SVD is partitioned in obtaining 
U1 and S1. These values are then used in calculating the extended 

observability matrices, iΓ  and 1i−Γ
 
where: 

 

1i i−Γ =Γ
 
and 

1/2
1 1i U SΓ =

           
(5) 

 
4. To find the matrices of A and C, solve: 
 

†
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where †• denotes the Moore-Penrose pseudo inverse of matrix • 

and ρ denotes the residuals.

 
5. Similarly, Equation 7 is solved to find matrices of B and D. 
 

2† †
1 1

,

, argmin . . . ( , ).
ii

i i i i f F
B D Y

A
B D Z B D U

C
κ− +

   = Γ − Γ Ζ −           (7) 
 
where ||•||F denotes the Frobenius norm of a matrix.

 
 
6. Finally, with E as, an expected value operate the covariance 
matrices are then it is calculated as: 
 

( ). T T
j vT

v

Q S
E

S R
ω

ω

ρ
ρ ρ

ρ
   

=    
                              (8) 

 
For dynamic linear multivariable system identification, SIM offers an 
advance computational simplicity and effectiveness in calculating a 
good state-space model without any prior knowledge of the system. 
These algorithms are numerically robust and do not involve 
nonlinear optimization techniques. Alternatively, PEM that has 
excellent statistical properties is explored. The prediction error filter 
produces an error vector which is then used to define a nonlinear 
least squares criterion of fit. This criterion is then minimized. 
However, PEM model can sometimes be overwhelmingly difficult, 
especially when it deals with highly order system. Ljung (1987) and 
Sodestrom and Stoica (2001) worked on PEM. Here, estimated 
approach using ‘robust’ N4SID is highlighted and the performances 
in identification are then compared to N4SID and PEM. 
 
 
DEVELOPMENT OF MULTILEVEL PSEUDORANDOM INPUT 
SIGNALS 
 
The generation of MPRS is based on multilevel maximum length 
signals. The signal is periodic, deterministic and is similar to white 
noise autocorrelation function. MPRS exist for the number of levels, 
q and the length, N of signal is represented by qnr−1, where nr is an 
integer. The sequences will repeat itself after N digits. The shift 
register configuration of MPRS is as shown in Figure 2. Basically, 
the sequences can be generated by a q-level shift register with 
feedback to the first stage consisting of the modulo q sum of the 
outputs of the other stages that are multiplied by coefficients [C1, 
..,Cn]. Definitely, the integers lie within the range of [0, q−1]. The 
number of levels m should be at least one greater than the 
nonlinearity order of the model. The important properties of q-level 
MPRS were discussed (Vergara et al., 2005; Vergara, 2006). 

In developing the MPRS, several steps as discussed (Jose and 
Basilio, 2003) were considered.  Initially, the excitation signal 
bandwidth, ωs that places the power of the input signal in the 
frequency range is calculated as shown in Equation 9. It needs the 
fast dominant time constant, τHdom and the slowest dominant time 
constant, τLdom that can be measured form preliminary step test on 
the system. Meanwhile, αs and βs that are related to the high and  

low frequency content are selected. The typical values of αs = 2 
or 3 and βs = 5. 
 

upslow ωωω ≤≤            (9) 

 

where,
H

doms

low τβ
ω 1=  and 

L
doms

s
up τβ

αω =  
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Figure 3. The Plant Layout of the BSM1. 

 
 
 
The switching time, Tsw can be calculated as: 
 

s

L
dom

swT
α
τ78.2

≤                           (10) 

 
It was viewed that the signal must have a minimum number of 
levels, depending on the highest order of nonlinearity degree. 
Meanwhile, the low frequency limit as in Equation 13 can be 
obtained by measuring the length of the signal N, that is given in 
Equations 11 and 12. Also, with respect to N, the signal cycle time, 
Tcyc can be determined as in Equation 14. 
 

sw

H
doms

T
N

τπβ2
≥          (11)  

 

1−= nrqN                           (12) 

 

lown
sw

rqt
ωπ ≤

− )1(

2
                                         (13) 

 
Tcyc= (N)(Tsw)                                                         (14) 
 
Other characteristics, such as the delay of signal, the number of 
non suppressed harmonics and mapping choices can be further 
referred to in the work of Jose and Basilio (2003). 
 
 
BENCHMARK SIMULATION MODEL 1 (BSM1) 
 
ASP becomes a common concepts for biological process in which 
microorganism are oxidized to organic matter. There are several 
models describing the biological processes in the bioreactor, but 
the most widely used is the IAWQ Activated Sludge Model No. 1 
(ASM1) (Henze et al., 1987). Thirteen state variables and eight 
dynamic processes include anoxic growth of heterotrophs, aerobic 
growth of heterotrophs and autotrophs, decay of heterotrophs and 
autotrophs, ammonification of soluble organic nitrogen, hydrolysis 
of entrapped organics and finally hydrolysis of entrapped organic 
nitrogen are involved. In wastewater, there are several forms of 
nitrogen components like ammonia (NH3), ammonium (NH4+), 
nitrate (NH3−), nitrite (NO2−) and organic (Wahab et al., 2009). 

The plant layout of BSM1 is as shown in Figure 3. The bioreactor 
consists of five reactors where the first two compartment are anoxic 

 
 
 
 
zones (pre-nitrification) followed by three aerobic ones (nitrification) 
and a secondary settler. The plant is designed for an average 
influent dry-weather flow rate of 18,446 m3/day and an average 
biodegradable COD in the influent of 300 g/m3. The biological 
reactor volume and the settler volume are both equal to 6,000 m3. 
The wastage flow rate is equal to 385 m3/day. Meanwhile, the 
secondary settler is modeled as a 10 layers non-reactive unit. The 
settler has an area of 1,500 m2. The height of each layer is equal to 
0.4 m, for a total height of 4 m. Therefore, the settler volume is 
equal to 6,000 m3. The model proposed by Takács et al. (1991) was 
chosen to resemble the behavior of the secondary settler. In 
addition, three dynamic input files include dry, rain and storm 
events that has realistic variations in influent flow rate and 
composition have been developed for uniform testing and 
evaluation. In default benchmark control strategy, dissolved oxygen 
(DO) and nitrate (SNO) concentrations are commonly used as 
measurement signals with control handle of air flow rate and 
internal recirculation flow rate, respectively. Copp (2002) and Alex 
et al. (2008) did much work on BSM1. 
 
 
RESULTS 
 
MPRS signal 
 
It was observed that the dominant time constants of the 
ASP, τdom

H = 3.5 days and τdom
L= 0.0135 days. αs= 2 and 

βs=3 were used. Meanwhile, the signal bandwidth of 
0.095 rad/day ≤ ωs ≤ 148.15 rad/day and the switching 
time was set to Tsw = 0.017 day. Minimum length of the 
signal was calculated to 3509.2. It then verified that the 
signal with q = 17 and nr = 3 meets the low frequency 
requirements with the maximum number of harmonics. 
AGF (17) with primitive polynomial of degree 3 is 
selected. For a good MPRS excitation, 77% of the total 
power should be inside within the bandwidth, ωs. 
 
 
System identification procedures 
 
For nitrogen removal, ammonium is oxidized to nitrate 
under aerobic condition while the nitrate formed was 
converted to gaseous nitrogen under anoxic condition. 
For this purpose, a multivariable control structure covers 
the process of nitrate (SNO2) in the second anoxic tank 
and dissolve oxygen (DO5) in the last aerated tank were 
explored. The input signals are the internal recirculation 
rate (Qintr) and the oxygen transfer coefficient (KLa5) in 
the second anoxic and the last aerobic tank, respectively. 
However, influent flow rate (Qin), influent ammonium (Snh) 
and influent soluble substrate (SS) were used as 
measurable disturbances as to improve the quality of 
identified model. The signals used in the identification 
procedure are summarized in Figure 4. 

Identification can be performed by perturbing the plant 
inputs while the response on the plant outputs is 
recorded. KLa5 and Qintr were excited using MPRS input 
signals. Their amplitudes and frequencies are chosen in 
optimizing the information within the bandwidth of each 
reactor. Two different operating conditions  include  constant
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Figure 4. Signals for state-space identification. 
 
 
 
and dry influent flows are applied in testing the estimated 
model. For a better identification result, the raw data set 
is pre-treatment. Initially, the sample mean was 
subtracted from data set and it is aimed to remove the 
offsets for non zero operating point. All data signals are 
then normalized to ensure that the input and output data 
are in comparable scales. Finally, the data set is 
detrended in removing the linear trends from input and 
output data. 

In addition, it is an important role to choose the best 
order of estimated model. For subspace identification, a 
gap in the spectrum of the singular values decomposition 
(SVD) was detected while the estimation errors were 
compared in PEM. Figure 5 shows an example of SVD 
for constant influent. As a result, n=4 was chosen for both 
constant and dry influent flow. The preprocessed data of 
perturbation input signals and the disturbances are as 
shown in Figures 6 and 7. The process is assumed to be 
at steady state conditions for input values of uss= [55338 
84]. The state-space estimation models; N4SID, ‘robust’ 
N4SID and PEM are investigated. For constant influent, 
the identification procedure was  carried  out  off-line  with 

the first 60000 data while the remaining 25000 data were 
applied in validation purposes. Similarly, simulation was 
continued for dry influent but with different samples 
where 800 data are used in identification and 650 data in 
validation.  Due to a good performance in estimating a 
linear model, identification and validation data for 
constant and dry influent that estimated by ‘robust’ N4SID 
are presented in Figure 8 and 9.  The solid lines denote 
the real data while the dotted lines represent the 
predicted data. 
 
 
Identified result 
 
The estimated model using ‘robust’ N4SID with MPRS 
excitation input signal that emphasized on dry influent 
that has realistic variations in influent flow rate and 
composition was expressed in Equation 15. Meanwhile, 
the poles’ were located at 0.9678 ± 0.1583i, 0.9718 and 
0.9470 as shown as in Figure 10. It can be observed that 
the poles are nearer to unit circle that are mostly referred 
to the slower dynamic system. 
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Figure 5 . A singular value decomposition. 
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Figure 6.  MPRS signals for Qintr and Kla5. 
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Figure 8.  Identification and validation data for constant influent with ‘robust’ N4SID. 
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Figure 9. Identification and validation data for dry influent with ‘robust’ N4SID. 
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Figure 10. Poles’ location of dry influent estimated model.  

 
 
 
are nearer to unit circle that are mostly referred to the 
slower dynamic system. are as shown in Figures 8 and 9. 
The solid lines denote the real data while the dotted lines 
represent the predicted data. validation. Due to a good 
performance in estimating a linear model, identification 
and    validation   data    for   constant   and   dry   influent 

estimated by ‘robust’ N4SID’. 
 
 
Comparison with PRBS 
 
To show the advantages of MPRS as an  excitation  input
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Table 1.  VAF analysis for constant influent. 
 

Identification 
and    validation   
data 

PRBS  MPRS 
Best fit (%) VAF (%)  Best fit (%) VAF (%) 

SNO2 SO5 Identification Verification  SNO 2 SO5 Identification Verification 
N4SID 91.05 97.84 98.7155 98.7362  80.55 93.38 98.0705 96.1588 
‘robust’ N4SID   97.7285 90.7285 93.5026 92.1231  94.5434 99.5434 96.0052 98.7438 
PEM 94.18 96.24 98.8800 98.8585  82.05 93.74 98.1909 96.1675 
 
 
 

Table 2. VAF analysis for dry influent. 
 

Identification 
and    validation   
data 

PRBS  MPRS 
Best fit (%) VAF (%)  Best fit (%) VAF (%) 

SNO2 SO5 Identification Verification  SNO 2 SO5 Identification Verification 
N4SID 76.19 56.49 88.8516 83.7800  85.58 72.17 91.6393 83.7435 
‘robust’ N4SID   92.2937 61.8152 79.1916 78.6576  92.6643 77.0410 85.9251 84.7905 
PEM 62.3 64.24 75.1650 72.2481  77.53 73.85 85.6741 80.1245 

 
 
 

signals for a nonlinear identification, the performance of 
identified models are then compared to PRBS with the 
same identification behaviors. In this case, 13 of shift 
registers were used and hence the length of PRBS 
sequences was set to 8191. 
 
 
Validation data 
 
Definitely, model validation aims to investigate the 
performance of identified model in estimating the, 
physical behavior of the system.  The model is cross- 
validated on validation data. Meanwhile, variance 
accounted for (VAF) was used to identify the quality of 
the models. The best-identified models are indicated by 
smaller deviations obtained between measured and 
predicted output. Tables 1 and 2 represent the VAF 
analysis for constant and dry influents.  It was observed 
that slight improved VAF was recorded for constant 
influent for the three state-space methods with MPRS 
test signal.  In contrast, the effect of nonlinearities in 
estimating linear models for dry influent was reduced with 
MPRS where a good model obtained compared to PRBS 
input signal.  This is in line with N4SID, ‘robust’ N4SID 
and PEM estimation methods. 
 

0 .9 6 5 3 0 . 0 4 2 3 0 .0 4 5 1 0 .0 0 9 1

0 .0 1 3 4 0 .9 6 9 8 0 .1 0 3 1 0 .0 7 2 2

0 .0 3 0 1 0 . 0 7 5 6 0 . 9 5 6 3 0 . 1 7 7 8

0 . 0 0 6 4 0 .0 0 6 7 0 .0 8 3 1 0 .9 6 2 9

A

− − − 
 − − =
 −
 − 

 

0 .0 0 2 1 0 .0 0 7 2 0 .1 6 1 6 0 .0 8 3 4 0 .2 4 3 1

0 .0 0 0 3 0 .0 2 1 0 0 .4 0 0 7 0 .4 0 1 8 0 .0 3 5 7

0 .0 0 0 5 0 .0 5 3 3 0 .0 9 4 2 0 .1 3 4 5 0 .0 0 2 8

0 .0 0 2 1 0 .0 4 8 2 0 .1 2 5 2 0 .0 5 7 3 0 .3 8 6 9

B

− − 
 − − =
 − − − − −
 − − − 

 

0 .2 7 6 1 0 .0 5 1 6 0 . 0 7 2 2 0 .0 0 2 2

0 . 1 9 6 7 0 . 2 1 3 3 0 .1 5 6 8 0 .1 4 3 4
C

− − 
=  − − − − 

 

0 0 0 0 0

0 0 0 0 0
D

 
=  

 
  

    (15)  

Conclusions 
 
Identification is a process to find models from collected 
data. A crucial problem in identification comes in defining 
the behavior of the perturbation signal. It was shown that  
MPRS and PRBS were used as an excitation signals to 
identify LTI discrete-time MIMO state-space model for 
nitrate in the second anoxic tank and dissolves oxygen in 
the last tank of an activated sludge process. The 
performances of model estimation using PEM, N4SID 
and ‘robust’ N4SID are investigated. It was observed that 
a tricky problem arises in resulting good estimation 
models since both nitrate and dissolve oxygen deal in 
different time scales. The best identification results were 
obtained for the MPRS with 17 levels and harmonics of 
multiple 2 suppressed as compared to binary input signal. 
The harmonic contents of the signal are manipulated, and 
hence, minimizing the effect of nonlinearities in 
estimating a linear model, so that multilevel input signal 
offers a good option as perturbation signal definitely for a 
nonlinear systems in obtaining more informative data in 
signal excitation. Besides, it would be more interesting to 
identify MIMO systems with respect to variables’ 
operational time where multi-rate sampling strategy may 
prefer to be considered in selecting the sampling time. As 
a result, the quality of identified model and its effect on 
control performances would be improved. A good 
identified model then leads to superior performances of 
control design in satisfying a stricter effluent demands in 
optimizing nitrate and ammonium removal. 
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