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In this paper, the system of nonlinear partial differential-algebraic equations is solved by the well-
known variational iteration method and the results with high accuracy are obtained by only one 
iteration. Furthermore, some nanoelectronics models are expressed by partial differential-algebraic 
equations and one of them is successfully solved by the proposed method. Although solving nonlinear 
PDAEs is difficult but it is shown that the variational iteration method using Taylor expansion is an 
efficient method to solve these nonlinear problems. 
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INTRODUCTION 
 
The mathematical model of dynamical systems often 
results from some network approach, which yields time-
dependent systems of differential algebraic equations 
(DAEs). That is, we consider ideally joint lumped 
elements, without spatial coordinate, but with the 
topology information given by the incidences of these 
elements. In contrast, spatial physical effects are 
described by partial differential equations (PDEs) in 
space or time/space. Thus an enhanced model requires a 
coupling of DAEs and PDEs, which yields systems of so-
called partial differential algebraic equations (PDAEs). 
Such systems of PDAEs arise in many technologies like 
mechanical engineering as coupled multibody systems 
with sole or flexible/plastic systems (Buttner and Simeon, 
2003); in nanoelectronics and others (Ali et al., 2005; 
Bartel, 2004; Bodestedt and Tischendorf, 2007; Gunther 
and Feldmann, 1997). 

Furthermore, the wording PDAE is also used for 
singular implicit PDEs, that is, where singular matrices 
arise in front of partial derivatives. In case of electronic 
circuits, a specific multivariate model yields an efficient 
representation of amplitude and/or frequency modulated 
signals   including   widely   separated   time  scales.  The 
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introduction of different time variables (for the occurring 
scales) transforms the circuit’s DAE into a PDAE in the 
sense of a singular PDE. 

In this paper, we present a different approach for 
solving PDAEs. The main aim of this paper is to use the 
variational iteration method (VIM), proposed by the 
Chinese mathematician (He, 1997) to find the solution of 
nonlinear PDAEs. The VIM and its modifications have 
successfully been applied to many situations (Ates and 
Yildirim, 2009; Ghorbani and Saberi-Nadjafi, 2009; 
Hosseini et al., 2010; Tatari and Dehghan, 2009). We 
have illustrated the efficiency and accuracy of this 
method by presenting some numerical examples and the 
last gives some applications of PDAEs. 
 
 
VARIATIONAL ITERATION METHOD 
 
The VIM, which is a modified general Lagrange’s 
multiplier method, has been shown to solve effectively, 
easily and accurately a large class of nonlinear problems 
(Abbasbandy, 2007; Biazar and Eslami, 2010; He, 2008; 
Jafari et al., 2010; Mohyud-Din et al., 2009; Noor and 
Mohyud-Din, 2008; Soltanian et al., 2009).  The main 
feature of the method is that the solution of a 
mathematical problem with linearization assumption is 
used  as  initial  approximation  or  trial  function.  Then  a  
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more highly precise approximation at some special point 
can be obtained. 

This approximation converges rapidly to an accurate 
solution. To illustrate the basic concepts of the VIM, we 
consider the following nonlinear differential equation: 
 

                                                        (1) 

 

Where  is a linear operator,  is a nonlinear operator, 

and  is an inhomogeneous term. According to the 

VIM (He, 1999; He et al., 2010), we can construct a 
correction functional as follows: 
 

             (2) 

 

Where  is a general Lagrangian multiplier, which can be 

identified optimally via the variational theory, the 

subscript  denotes the nth-order approximation,  is 

considered as a restricted variation (He, 1999; He et al., 

2010), that is . 

 
 
NUMERICAL EXAMPLE 
 
In this section, to show the ability and efficiency of the 
proposed method an example is provided. In mentioned 

example, to perform the VIM, for natural number 20=ν , 

every coefficient of function ),( txgk is expressed by 

MTaylor series. 
Consider the nonlinear PDAE system: 
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With .0)0,(,1)0,( == xuxu t    

Where 3,2,1),,( =itxg i are computable to the exact 

solutions: 
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To solve the PDAE, in the following we expand the 

coefficient of functions 3,2,1),,( =itxg i  at tx,  by 

MTaylor expansion with ν = 20.  
 
To solve by means of He’s variational iteration method, 
system (3) can be written as: 
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Where ),(~ ][
txu

n
is considered as restricted variations, 

which mean 0),(~ ][ =txu
nδ . The Lagrange multiplier, 

therefore, can be identified as: 
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   and the following variational iteration 
formula is obtained: 
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Using initial solution  ,1),(
]0[ =txu  we have: 
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Note that, the MTaylor series of the exact solutions (4) 
with order 20 are as: 
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It is easy to see that the obtained results in the first 
iteration (5) are same with the MTaylor expansion of the 

exact solutions (6) with 20=ν , and this shows that a 

very suitable solution is obtained only with one iteration. 
Also it illustrates the high rate of convergence of the  VIM 



 
 
 
 
for this PDAE.  
 
 
APPLICATIONS OF PDAEs 
 
In this paper, we focus on PDAE models in 
nanoelectronics setting with PDE-enhancement of DAE 
models, rather than singular PDEs. Modified nodal 
analysis yields large systems of DAEs for ideal circuits 
(Gunther and Feldmann, 1997). We write such a system 
in the general form: 
 

],,0[:,0),',(,: TIttYYfRIRRf kkk =∈=→××
            

(7) 

 

Where 
k

RIY →: denotes unknown node voltages and 

branch currents. A consistent initial value 0)0( YY =  

completes the usual electric network model. In addition, 
we formulate schematically a system of PDEs 
corresponding to a parasitic effect via an operator: 
 

,,,0),,(,: ItRDxvtxLRVIDL dm ∈∈∈=→××
                

(8) 

 

With a solution 
m

RIDv →×: in some function space 

V  . Initial and/or boundary conditions have to be 

specified appropriately. Coupling the systems (7) and (8) 
using some variables/functions results in a PDAE. The 
coupling can be done via artificial variables, source 
terms, boundary conditions (BCs) or even more 
sophisticated constructions. 

In the following classifications of some important PDAE 
models arising in ongoing research with in the field of 
nanoelectronics have been introduced. 

After that an example of PDAE which mentioned in the 
above classifications has been solved to show the 
efficiency and accuracy of our proposed method. 
 
 
Refined modeling 
 
Usually semiconductors, transmission lines and other 
components with spatial distribution are given by sub 
circuits of lumped electric elements (companion models). 
To obtain a somewhat more precise model (also 
considering down-scaling phenomena), we replace one 
or several of these sub circuit descriptions by a PDE 
model for the corresponding electric effect in the network. 
These can be one or several semiconductor elements, 
which behave critical in an electronic network, and where 
it makes sense to simulate these elements more detailed. 
Another possibility is to replace a transmission line model 
based on DAEs by an according PDE. This is a natural 
way, which bypasses a huge number of more or less 
artificial parameters of the companion model. 

This approach is called refined modeling. It has a 
special  type  of  coupling.  Boundary  conditions  for   the 
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Ohmic contacts of the PDE model are the node potentials 
of the connect network nodes (Dirichlet condition). At the 
remaining boundaries in multiple dimensions, where 
there is no electric contract, one may have von-Neumann 
conditions with no flux or field conditions at insulated 
contacts. On the other hand, the output of the PDE model 
is an electric current, which is eventually a source term to 
the network’s DAE. Abstractly, we obtain systems of the type  
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Where DL  represents a differential operator with respect 

to space. The involved PDE can be of mixed type (elliptic, 
hyperbolic and parabolic). Thereby, the coupling is 

performed via the input λ  ¸ and the boundary conditions 

g and h (where we have a decomposition of the 

boundary:
21

Γ∩Γ=∂D . Furthermore, analyzing 

complex systems (9) may yield simpler but still highly 
accurate companion models for the underlying 
component. In nanoelectronics, the PDAE systems, 
which have been considered in the literature or are part 
of ongoing research, can principally be categorized into 
the following cases: 
 
1. Semiconductors: Here transistors are described by 
drift-diffusion or quantum mechanical equations coupled 
with the electric network. Existence and uniqueness 
results for no stationary and stationary drift-diffusion 
network systems are found in Ali et al., 2005; for an index 
analysis of the arising PDAE, we refer to Bodestedt and 
Tischendorf, 2007. Currently, efficient numerical codes 
are being developed. 
2. Transmission line effects: Also down-scaling causes a 
decreasing distance of transmission lines and thus an 
undesired interaction arises. Telegrapher’s equation 
describes the underlying physical effect. The coupling of 
PDEs and DAEs accords to the form (9). Now the 
involved PDE is exclusively of hyperbolic type, which 
implies a specific numerical treatment. 
3. Electromagnetic fields: The DAEs (7) result from a 
network approach to avoid a simulation of the complete 
circuit using Maxwell’s equations. However, if some 
crucial parts of the circuit demand a refined model, a 
separation from the network can be done. Thus we apply 
Maxwell’s equations to represent the small part, whereas 
we use the network DAEs for the major part. 
 
 
Multiphysical extension 
 
This modeling is much more  complex,  since  we  do  not 
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add a physical dimension to the electric network, but 
have a distributed additional effect: 
 
1. Thermal aspects: The increase of the clock rate in 
chips causes a higher power loss in the electronic 
network. Thus we have to consider heat distribution and 
conduction between the circuit’s elements. In contrast to 
the effects described above, the heat evolution runs in 
parallel to the time-dependence of voltages and currents. 
Thus a thermal network can be associated to the electric 
network. In the thermal part, specific 0D elements can be 
refined into elements with spatial distribution or elements 
can be located in macro structures. Combining the heat 
equation for the spatial elements with the network yields 
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In this case, the included PDE is of parabolic type 
(Fourier Law). The coupling is present in the source 
terms and boundary conditions s, µ, g: Here dissipated 
power is not only entering the boundary conditions, but is 
also a source term for the evolution equation; on the 
other hand, the temperature enters the electric network 
as parameter and thus causes a more general 
dependence. For further details, we refer to Bartel, 2004.  
2. Electromagnetics: In principle, one can interpret an 
electromagnetic field influencing the complete circuit as a 
multiphysical case, too. Consequently, the contribution of 
the field to each component has to be modeled 
appropriately. 
 
Example: Consider the nonlinear PDAE system in form 
(10): 
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With 0)0()0(),0(,1),0( ==== zytvtu  .  

Where 5,4,3,2,1),,( =itxg i are computable to the exact 

solutions: 
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To solve the PDAE (11), in the following we expand the 

coefficient of functions  5,4,3,2,1),,( =itxg i  
 at tx,   by  

 
 
 
 
MTaylor expansion with ν = 20.

 
To solve by means of 

He’s variational iteration method, system (11) can be 
written as:
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By using the variatinal iteration method it is clear 

that 1)()()()( 4321 −==== τλτλτλτλ . Finally by 

assuming 0)()(),(,1),(
]0[]0[]0[]0[ ==== tztytxvtxu  

the following results are obtained 
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Note that, the MTaylor series of exact solution (12) with 
order 20 is as: 
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The obtained results in the first iteration (13) are same 
with the MTaylor expansion of the exact solutions (14) 

with 20=ν , and this shows that an high appropriate 

approximate solution can be obtained with only one 
iteration. Also it illustrates the high rate of convergence of 
the VIM for this PDAE. 



 
 
 
 
CONCLUSION 
 
In this paper, a new and effective approach has been 
proposed for solving nonlinear system of PDAEs. 
Appropriate solutions were obtained by only one iteration 
of the VIM. It was shown that some nanoelectronics 
models, which presented by PDAEs, can be easily solved 
by using VIM. Using the mentioned method for system of 
PDAEs with higher index could be a subject of further 
researches.   
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