
International Journal of Physical Sciences Vol. 6(4), pp. 671-676, 18 February, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS11.123 
ISSN 1992 - 1950 ©2011 Academic Journals 

 
 
 
 
 
 
 

Full Length Research Paper 

 

Equations of unsteady flow in curved trapezoidal 
channels 

 

Alireza Mosalman1*, Mohammadreza Mosalman2 and H. Mosalman Yazdi2 
 

1
Faculty of Engineering, Islamic Azad University, Mehriz Branch, Iran. 

2
Faculty of Engineering, Islamic Azad University, Maybod Branch, Iran. 

 
Accepted 18 February, 2011 

 

Investigation of unsteady flows in curved channels and solving the related equations are one of the 
main issues in hydraulics. In this study, the numerical model proposed by ‘beam and warming’ using 
the finite difference method is presented to solve unsteady flow equations in curved-trapezoidal 
channels and it has been used by taking advantage of modified εK  Model (regarding some 

modification upon K and ε  adjacent to the wall) and resistance control by satisfaction of Courant–
Friedrichs conditions. In this model the effect of modified frictional slope has been simulated. This 
model was applied to the two hydraulics engineering related issues (flows created as a result of dam 
failure and flow in a curvature channel of 180 degree). The results of numerical model are compared 
with the Miller laboratory data, which show a high level of agreement. 
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INTRODUCTION 
 
Nowadays, water resources have a significant role on the 
development of countries, and very important on the 
economical progresses. In this regard, many researches 
have made on the open channels, water planning and the 
serviceability of these resources to improve the water 
distribution, flood controlling, energy production and 
controlling sediments. 

Studies of unsteady flows were done at first by Saint-
Venant while considering prismatic channels. Two or 
three dimensional models are used in curved and non 
prismatic channels. Copper and Verden Hill proposed a 
preliminary mathematical model for solving two 
dimensional equations of depth average (Molls et al., 
1998). The model of depth average was proposed in 
1978 by Rodi and Rastogi. Moreover, in most of the 
proposed models by researchers for investigation of the 
hydraulic flows, the standard frictional slope is used (Rodi, 
1980; Younus and Chaudhry, 1994; Jiang  and  Li,  2010). 
 
 
 
*Corresponding author: E-mail: mosalmanyazdi@yahoo.com. 

Turbulence models investigation 
 
Turbulence models are categorized based on the Eddy-viscosity 
concept. In the simple turbulence models which the Eddy-viscosity 
are used in, the transformation of production rate and turbulence 
loss from a point to another one are not considered and thus it will 
not be a correct way to show it. To consider the significance of 
turbulence transformation, some models are introduced where the 
transport equations are used for explanation of turbulence qualities. 
In these models, all transport equations are used in the differential 

form for the Reynolds stress 
jiuu  and scalar qualities such as K  

and ε  . However in some models, in addition to the transport 

equation for speed scale, another equation is used for the length 
scale. However, different models based on the used equation can 
be categorized to different models such as the zero, one and two 
models (Hanjalic, 1994; Nagano et al., 1997; Ferrey and Aupoix, 
2006). 

Zero equation model is a model that does not have transport 
equation for turbulence flow qualities. This turbulent model is based 
on the Eddy-viscosity concept that was obtained from experiments 
by trail and error method and some empirical formulas and 
therefore according to the Eddy-viscosity, this model is completely 
different with the fixed Eddy-viscosity model, Prandtl free-shear-
larger and mixing- length models (Prandtl, 1925; Ferro and 
Baiamonte, 1994; Jiang and Li, 2010). 
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One equation model was proposed by Prandtl and Kolmogorov to 
overcome the limitation of Prandtl mixing length in which the Eddy-
viscosity turbulence can be expressed by some algebra equations 
better than the zero equation model. In this model considering a 
transport equation for velocity oscillation scale and using mixing 
length assumptions are so important. Based on their assumptions, 
Eddy-viscosity is proportional to the velocity oscillation movement 
and the length scale (Prandtl, 1925; Huai et al., 2009; Samanta et 
al., 2009). 
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Where, L is a length scale, the same as mixing which affects the 

transportation process, it is similar to kinetic energy K . The most 

important physical scale for oscillation velocities is K  where K  

is the energy of turbulence flow and states the intensity of 
turbulence in three directions. Thereby, Prandtl and Kolmogorov 

obtained the K  equation with consideration of aforementioned 
suppositions (Prandtl, 1925; Hanjalic, 1994; Moryossef and Levy, 
2006). 

Two equation model does not have the difficulty of one equation 

model in determining a relationship between tυ  and L  as the 

length scale which can be used for many different flows. In the 
other words, this model some of equations are used for velocity 
oscillation scale and length scale. Hence, there are two equation 
models. As mentioned before, turbulent displacement is not taken 
into account in the zero models. Consequently, physical influence 
of flow of previous history is not considered in the simple algebra 
models. In order to take this physical effect, the transport equation 
can be written based on Navier-stokes. The most common method 

for turbulence flow is turbulent flow ( εK ). This model introduces 

two transportation equations for K  and ε . Where, K  is the 

turbulence kinetic energy and ε is its relative losses rate of it (Rodi, 

1980; Wilson, 2004; Tang and Knight, 2008). 
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These equations are generally similar to Navier-stokes equations 
and can be solved with the same method. With some modification 
using the Reynolds stress and Anishtain sum rule along with 

continuity equations, the general equation form of the εK model for 

the unsteady flows of semi practical transport will be as (Fabian et 
al., 1975): 
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Turbulence method introduces five constant proposed by Launder 
Spalding as shown in Table 1 (Ferro and Baiamonte, 1994; Hanjalic, 
1994; Moryossef and Levy, 2006). 
 
 

Modified frictional slope equations )( fS  

 

For solving two dimensional equations, the channel cross section is 
divided to many small rectangular (Figure 1), then, depth average 
velocity, cross section area, the wet perimeter of each element is 
calculated. Following that, the modified frictional slope is calculated 
by using the equations below. The frictional slope equation in 
direction s(Molls et al. 1998): 
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The frictional slope equation in direction n: 
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Effective stress investigation 
 

In the depth average process, some estimations for channel bottom 
stress, stress due to wind blowing and effective stresses which 
excludes Reynolds stress, stresses due to the turbulence and 
momentum dissipation are considered. Effective stresses are 
imposed to the vertical sides of element as a tangent. These 
stresses are calculated in accordance with the turbulence viscosity 
concept. The effective stress is obtained by consideration of the 
Boussinesy turbulence viscosity concept and taking into account 
the depth average velocity in it. Now, using the assumptions of 
Boussinesy, effective stresses equations, continues equation, 

momentum, average depth also K  equation (the distribution of the 
depth average turbulence kinetic energy) and ε  equation (kinetic 

energy rate of dissipation) are as follows: 
Depth averaged continuity equation: 
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Depth averaged momentum equation in s-direction: 
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Table 1. Constant values of εK  model. 

 

µC  1εC  2εC  Kσ  εσ  

0.09 1.43 1.92 1.0 1.3 

 
 
 

 
 
Figure 1. Trapezoidal channel cross section for frictional slope calculation. 

 
 
 
Depth averaged momentum equation in n-direction: 
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K  equation is: 
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ε  equation is: 
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Where, 090= .µC , 441=1 .C , 921=2 .C , 10= .D , 1=Kσ , 
3.1=εσ

and 

αtglhh ×−=′
. Turbulence viscosity which is calculated by εK  

model, cannot be used directly for curved channels because this 
model does not consider flow line curves. Leschziner and Rodi 
correction coefficient is used to modify this default. It is noticeable 
that these coefficients are introduced while considering the flow 
lines curved to be in the horizontal plane (Cheng and Farokhi, 1992; 
Younus and Chaudhry, 1994; Ye and Mccorquodale, 1998). 

 
 
RESULTS AND DISCUSSION 
 
Numerical calculations and experimental models 
 
In   this   study,   the   recent   model    of    sensitivity    is
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Table 2. Test condition at the channel entrance (Miller and Chaudhry, 1989). 
 

Test no. Depth (cm) Velocity (m/s) Froude no. 

1 12.19 2.01 1.84 

2 10.36 1.70 1.68 

3 8.23 1.31 1.46 

4 6.7 1.03 1.27 

5 5.18 0.75 1.05 

 
 
 

 
 
Figure 2. Experimental and calculational results comparison, test 1, station 1. 

 
 
 

 
 
Figure 3. Experimental and calculational results comparison at internal beach, test 1, station 2. 

 
 
 
investigated to compute and investigate the flow after 
dam fracture with experimental data stated by the Miller 
model. Unsteady conditions with variation of values at 
upstream are simulated. As shown in Table 2, the flow 
created at the down stream channel is super critical at 
most of the times. 

The results calculations for one case of the 
aforementioned   cases   are   shown  in  Table  2.  These 

results are compared with the experimental data. The 
calculated wave's heights and their arrival times to three 
stations which are located at distances of 2.74, 5.16 and 
6 m in downstream are compared with the experimental 
values. The results comparisons of first test at depth of 
12.19 cm are shown in Figures 2 to 6. At this station the 
wave head was one dimensional and the surface of water 
did not have any  variation.  As  indicated  in  figures,  the
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Figure 4. Experimental and calculational results comparison at external beach, test 1, station 2. 

 
 
 

 
 
Figure 5. Experimental and calculational results comparison at internal beach, test 1, station 3. 

 
 
 

 
 
Figure 6. Experimental and calculational results comparison at external beach, test 1, station 3. 

 
 
 
calculation data, similar to the experimental values, get to 
the summit at the same times. Hence, it confirms the 
mathematical results. In the third station, which is located 

at a 90 degrees curve, the water height difference 
between the internal and external curves is more than the 
second station. 
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Conclusions 
 
In this paper, a numerical model for investigation of 
unsteady flow in the curve channel and examining the 
influence of effective stresses due to turbulence by using 
modified frictional slope is proposed. Two dimensional 
equations of depth average are obtained in the channel 
which the coordinates are fitted based on the laws of 
motion and conservation of mass. In this model 
turbulence stresses are modeled based on the 
Boussinesy assumptions and by the introduction of the 
εK  model which presented by Chapman and Kuo. In 

addition the modified frictional slope equation of Thomas 
Molls is used for frictional slope calculations. The 
Leschziner and Rodi correction coefficient is used to 
consider the effect of flow lines on the turbulence 
viscosity of the εK  standard model. Results comparison 

of numerical model with experimental data indicates a 
good correspondence and it also indicates that the 
turbulence energy variations and losses rate are affiliated 
to the velocity variations. 
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