
International Journal of Physical Sciences Vol. 7(13), pp. 2085 - 2092, 23 March, 2012
Available online at http://www.academicjournals.org/IJPS
DOI: 10.5897/IJPS12.072
ISSN 1992 - 1950 ©2012 Academic Journals

Full Length Research Paper

A novel method for improving the efficiency of
automatic construction of ontology from a relational

database

Saeed M. Sedighi1* and Reza Javidan2

1
Department of Computer Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran.

2
Department of Computer Engineering, Islamic Azad University-Beyza Branch, Fars, Iran.

Accepted 15 March, 2012

With the development of the semantic web, ontology is playing an increasingly important role in many
research areas such as semantic interoperability and knowledge base. However, constructing ontology
manually is complicated and needs the supports of domain experts in knowledge acquisition as well, so
it is time-consuming, error-prone and tedious-work. Learning ontology from existing resources is a
good solution. We can use relational database for building ontology, because relational database is
widely used for storing data. This paper proposes an approach of learning ontology web language
(OWL) from data in relational database. Compared with existing methods, our approach can acquire
ontology from relational database automatically. In addition, our proposed method, unlike other
existing methods, all types of relationships between tables are considered. The proposed method is
implemented using Jena and MySQL and is applied on a sample relational database (RDB). The
resulting ontology was shown as an OWL file. The evaluation of the generated ontology will use FaCT +
+ and Pellet.

Key words: Ontology building, OWL, Relational database, Semantic web, mapping rules.

INTRODUCTION

Storage and dissemination of information on the web is
done with ease, but this type of storage on the web, have
many problems for later retrieval and use of information.
Semantic web (Berners-Lee et al., 2001) is a key solution
to solve this problem, which aims to share information on
the web as more intelligent, so that it will be
understandable to both humans and machines. Ontology
is the core of the semantic web. Ontology (Chang-rui et
al., 2006) is a modeling tool of conceptualization in
semantics and knowledge level, which provides explicit
description and modeling methods for information and
knowledge. At present, most of the ontologies are made
manually. Constructing ontology manually is complicated
and needs the supports of domain experts in knowledge
acquisition as well, so it is time-consuming, error-prone
and tedious-work. Learning ontology from existing

*Corresponding author. E-mail:
Saeed.mohamadsedighi@gmail.com.

resources is a good solution. Existing resources may
contain different types of data structures (Cullot et al.,
2007): data may be structured as databases, semi-
structured as XML documents and/or non-structured as
web pages or other type of documents. In this paper, we
focused only on the construction of local ontology from a
relational database and propose an approach of learning
ontology web language (OWL) from data in relational
database. Compared with the existing methods, our
approach can acquire ontology from relational database
automatically. In addition, our proposed method, unlike
other existing methods, all types of relationships between
tables are considered.

RELATED WORK

At least, two issues exist in the field of relational
databases (RDBs) and ontologies:

1. Mapping between RDB and ontology.

2086 Int. J. Phys. Sci.

Figure 1.Mapping versus transformation.

2. Building ontology from RDB.

These issues are quite different. As shown in Figure 1a,
in mapping, both the ontology and the corresponding
RDB are assumed to exist. One should map RDB
concepts to the corresponding ones in the ontology. But
in building (Figure 1b), no constructed ontology exists.
Some methods are applied to transform each concept in
RDB to ontology.

There are several approaches for construction of
ontology from a relational database. Zhou and Meng
(2010) presents a prototype tool for translating relational
databases schema into ontology. The key feature of the
tool is that it can directly and automatically translate
relational database schema into ontology. But in this tool,
database structure is assumed to be simple and
transformed only the structure and not the data. Zhang
and Li. (2011) proposed a tool named ontology automatic
generation system based on relational database
(OGSRD), for automatic ontology building using the
relational database resources to improve the efficiency.
This tool Firstly, mapping analysis of ontology, and
database is done. Secondly, construction rules of
ontology elements based on relational database, which
are used to generate ontology concepts, properties,
axioms and instances are put forward. Thirdly, OGSRD is
designed and implemented. Finally, the practical
experiments prove the method and system feasibility. Hu
et al. (2008) proposed three mapping rules from relational
database schema to ontology class and property. Based
on these rules, an initial ontology of material science that
can be modified later is built and ontology instances can
be generated. He-ping et al. (2008) proposed technology
of ontology automatic construction based on relational
databases. Then, an ontology generator named
OWLFROMDB was implemented, which can
automatically convert a relational database to OWL
ontology. The technology strategy includes four steps: (1)
extract entity relationship (ER) model from relational

database by reverse engineering tool or querying for
database system tables; (2) analyze the ER model from
step1, transfer ER model to OWL ontology model by
schema conversion mechanism; (3) transfer database
data to ontology instances in batch by data conversion
mechanism; (4) evaluate and verify the integral OWL file
by existing ontology engineering tool and output the
object OWL ontology. Astrova et al. (2008), proposed a
novel approach to extract ontologies from relational
schemata. A relational schema is represented in SQL,
while ontology is represented in OWL. This approach
maps all constructs of the relational schema, with the
exception of stored procedures, triggers, default
constraints and check constraints that do not use
enumeration. In addition, a number of other existing
approaches are of these studies (Zhou ., 2011; Yang et
al., 2010; Ge et al., 2010; Alalwan et al., 2009; Brank et
al., 2005; Fortuna et al., 2006; Jiang et al., 2010; Xu et
al., 2011; Secer et al., 2011; Ochoa et al., 2011; Secer et
al., 2011). However, all approaches suffer from at least
one of the following problems:

1) They are not implemented.
2) They transform only the structure and not the data.
3) They are semi-automatic and require much user
interaction.
4) Transformed structures are so simple: e.g. primary
keys assumed to be single-column, foreign keys
assumed to be single-column and relationship assumed
only to be 1:1.

To solve the aforementioned problems, a novel approach
is proposed. In this paper, we designed and implemented
tool to be more efficient than existing methods. Our
proposed method is fully automatic. It means no user
interaction is needed. Also, in addition to structure
conversion mechanism, it has data conversion
mechanism. So, all types of relationships between tables
is considered (As 1:1, 1: N and M:N).

PROPOSED CONSTRUCTION OF ONTOLOGY
APPROACH

Databases include so full conceptual models and
information resources that can be taken as the
conceptualization repository of ontology. Through
analysis, the formal corresponding relationships between
relational databases and OWL ontologies are as follows:
a relational database contains several tables, a table
contains several fields and records are the collection of
fields value; on the other hand, an OWL ontology
contains several classes, a class contains several
properties and instances are the collection of property
value. The formal corresponding relationships between
tables, fields and records in relational databases and
classes, properties and instances in OWL ontologies
make it possible to convert one schema to another. The

Figure 2. Proposed method architecture.

main purpose of the proposed approach is to try to make
use of the existing relational databases to generate
ontology automatically, hence reducing the manual
tedious work, saving developing time and improving
efficiency of ontology. The proposed method architecture
(Figure 2) includes the following four steps:

1) Extract metadata from relational database by Java
Database Connectivity (JDBC) component.
2) Analyze the metadata from step1, transfer conceptual
model to OWL ontology model by rules library.
3) Transfer database data to ontology instances by data
conversion mechanism.
4) Evaluate and verify the obtained ontology by FaCT++
and Pellet components.

Defining the mapping rules

Definition 1

A relational database schema is a tuple D = (N, col,

Sedighi and Javidan 2087

datatype, pk, fk, assoc, subof), where,

- N is a finite name set partitioned into: (1) a subset ET of
entity table names; each entity table contains rows of
instance data describing entities in the real world, (2) a
subset RT of relationship table names; each relationship
table contains rows of instance data describing the
relationships between entities, and (3) a subset DT of
datatype names; each datatype is a predefined relational
database management system (RDBMS) datatype,
specifying a value range of the relevant instance data.
Furthermore, for each t ∈ ET∪RT, there is a finite

nonempty set col(t) of column names each c ∈ col(t) has

an associated datatype, denoted datatype(c) ∈DT.

- For each t ∈ ET  RT there is exactly one primary key
pk(t) whose values uniquely determine each row of the

instance data in t, where either pk(t) ∈ col(t) (in this case
pk(t) is a single-attribute key and t is an entity table) or

pk(t) ∈col(t) (in this case pk(t) is a composite key with
more than one attribute, and t is a relationship tables).

- For each t є ETRT, there are n (n>0) foreign keys fk

(t,r) where r ∈ET;each fk(t,r) ∈ col(t) references the values

of the single-attribute primary key of entity table r , and it

holds that value(fk(t, r)) ⊆value(pk(r)) ∪{null} where

value(*) denotes the value range of ‘*’ and pk(r) ∈col(r) .

- assoc ⊆ RT × ET × ET is a ternary relation over RT and
ET that models an association relation between one
relationship table and two entity tables (we assume
without loss of generality that n-nary (n ≥ 3) relationships

do not exist in the ER schema). For some t∈RT and r,

s∈ET , assoc(t, r, s) is satisfied if ∃fk(t, r), fk(t, s)∈col(t)

such that pk(t) = {fk(t, r), fk(t, s)}⊆ col(t) .
- subof ⊆ ET × ET is a binary relation over ET that
models an inheritance relation between two entity tables.

For some t, r∈ET , subof(t, r) is satisfied iif ∃fk(t, r)∈col(t)
such that either fk(t, r) = pk(t) (single inheritance) or fk(t,
r)∈pk(t) (multiple inheritance). Here t is a subentity table,
r is a superentity table, and all the related tables form a
generalization hierarchy of entity tables.

Definition 2

An OWL ontology is a tuple O = (ID, Axiom), where

- ID is a finite OWL identifier set partitioned into: (1) a
subset CID of class identifiers including userdefined
identifiers plus two predefined classes (OWL:Thing and
OWL:Nothing); classes are either entity classes
describing entities or relationship classes describing the
relationships between entities; (2) a subset DRID of data
range identifiers; data range identifiers are predefined
XML schema datatypes, such as xsd:integer; (3) a subset
OPID of object property identifiers, object properties link
individuals (that is, entities) to individuals; and (4) a
subset DPID of datatype property identifiers, datatype

2088 Int. J. Phys. Sci.

Table 1. Data type transformation.

MYSQL data type Jena data type

Numeric type

Tinyint xByte

Smallint Xint

Mediumint Xint

Int Xint

Integer integer

Bigint Xlong

Float(x) Xfloat

Float Xfloat

Double Xdouble

Double precision Xdouble

Real Xdouble

Decimal(m,d) Decimal

Numeric(m,d)

Data and time type

Date Date

Datetime Datetime

Timestamp

Time Time

Year Gyear

String type

Char(m) xstring

Varchar(m) Xstring

Tinyblob, tinytext Xstring

Blob, text Xstring

Mediumblob, mediumtext Xstring

Longblob, longtext Xstring

Enum('v1', 'v2', …) Xstring

Set('v1', 'v2', …) Xstring

properties link individuals to data values.
- Axiom is a finite OWL axiom set partitioned into a
subset of class axioms and a subset of property axioms;
each axiom is formed by applying OWL constructs to the
identifiers or descriptions that are the basic building
blocks of a class axiom and describe the class either by a
class identifier or by specifying the extension of an
unnamed anonymous class via the construct restriction.

Mapping rules

A relational database consists of tables, columns, rows,
datatypes, primary keys, foreign keys, etc. Similarity,
ontology consists of classes, object, properties, datatype
properties, individuals, etc. An approach is designed that
transform RBD structure and data to the equivalent from
in ontology. Each part is transformed from RDB to the

corresponding part in the ontology. Here, the
transformation process is explained.

Tables to classes

Each table is transformed into a class (concept) in the
ontology. Tables in RDB can have relationships to other
tables through freeing keys that are discussed in
subsequently in the relationship. But, we can divide
tables into the following groups according to their
relationships:

1. Tables that have no relationship
2. Tables that have 1: relationship
3. Tables that have 1: N relationship
4. Tables that have M: N relationship

The first group is the simplest one and requires no
additional transformation, but the others need some
additional attention. Of course, we cannot have M:N
relationship in RDBs directly, but it can be implemented
through adding a third table that breaks M:N into two 1:N
relationship. It can be recognized through foreign keys
relations to other tables. If primary key of a table is multi-
column and at least two subset of it are foreign keys to
two other tables, then this table is the third table and the
two other tables had M:N relationship that has been
broken to two 1:N relationships.

Columns to properties

Each table in RDB consists of columns that could be
primary key, foreign key or a simple column. So, the
columns are classified to three groups: simple columns,
primary keys and foreign keys. Each column, in each of
the aforementioned groups, could have the restriction
that should not be null. To transform this restriction, we
should create min cardinality restriction with the value of
1 in the ontology.

The other constraint on columns is the uniqueness that
forces one column not to have two rows with the same
value in this column. Inverse functional property in
ontology can be a good transformation for this constraint.
Simple columns in RDBs are columns that contain a data
item with a determined datatype. They are transformed to
datatype properties in ontology. Each datatype property
should have a domain, in which the class it belongs, and
a range, from which class it takes the value. The domain
of each datatype property is the class (table) it belongs
to. For the range, OWL has XSD datatypes. Each
datatype in RDB is transformed to XSD, as shown in
Table 1.

A primary key is a column (or columns) that are unique
and not null. Both inverse functional property and min
cardinality restriction should be added. All previous

Figure 3. An example of multi-column primary key.

(1) <owl:Class rdf:about=NS + "#sample_table"/>

(2) <owl:Class rdf:about=NS +"#sample_table_pk_class"/>

(3) <owl: InverseFunctionalProperty rdf:about=NS+ "#sample_table_pkOP">

(4) <rdfs:range rdf:resource=NS + "#sample_table_pkClass"/>

(5) <rdfs:domain rdf:resource=NS + "#sample_table"/>

(6) </owl: InverseFunctionalProperty>

(7) <owl:DatatypeProperty rdf:about=NS + "#sample_table_PK1">

(8) <rdfs:domain rdf:resource=NS + "#sample_table_pkClass"/>

(9) <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

(10) </owl:DatatypeProperty>

(11) <owl:DatatypeProperty rdf:about=NS + "#sample_table_PK2">

(12) <rdfs:domain rdf:resource=NS + "#sample_table_pkClass"/>

(13) <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

(14) </owl:DatatypeProperty>

(15) <owl:Restriction rdf:about=NS + "#sample_table_pkMinRes">

(16) <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1

(17) </owl:minCardinality>

(18) <owl:onProperty rdf:resource=NS + "#sample_table_pkOP"/>

 (19) </owl:Restriction>

Figure 4. The transferred ontology for multi-column primary key.

researches concentrated on single-column primary keys.
If primary key becomes multi-column, then not null is
applied to each column of the key, but uniqueness is not
mandatory for each column and should be applied to the
set of columns. To overcome this, a class for primary key
(e.g. pk_class) is considered. Each column of primary
key has pk_class for its domain. To relate pk_class to the
original class, an object property is defined that relates
two classes in ontology. This object property has the
original class in its domain and pk_class in its range. To
apply uniqueness on primary key, the created object
property should become an inverse functional property.
Figure 3 shows an example for two column primary key.
Figure 4 illustrates the transferred ontology. NS in Figure
4 is the name of the namespace for the ontology. As

Sedighi and Javidan 2089

displayed in Figure 4, sample_table is transformed to a
class (line 1) and a class named sample_table_pk_class
is created for its primary key (line 2). To relate these two
classes, an object property named sample_table_pkOP is
added that its domain is sample_table and its range is
sample_table_pk_class. To apply uniqueness on the
primary key, the object property is determined as an
inverse functional property (lines 3 to 6). Lines 7 to 14
show how to add PK1 and PK2 as datatype properties.
Both of them have sample_table_pk_class as their
domain and according to their datatypes in the related
table, they have corresponding datatype in their range
through Table 1. At last in lines 15 to 19, min cardinality
restriction is applied to guarantee not-nullable for the
primary key.

A foreign key is a column (or columns) that relate two
tables. As described in defining the mapping rules, RDBs
can contain three kinds of relationships: 1:1, 1:N and M:N
(tacitly). Here, an approach is presented to recognize
type of relationship and convert it into ontology.

Relationships

1:1 Relationships: If two (or more) tables are related to
each other through their primary keys, it could be 1:1
relationship. If both the primary keys of the related tables
have the same number of columns, certainly it is 1:1
relationship. It means that the primary key of a table is
also its foreign key. So, we follow the rules of the primary
key, but each column is an object property that has the
source table as its range and destination table as its
domain. Figure 5 shows a sample of 1:1 relationship.

1:N Relationships: When two tables are related to each
other and not matched to 1:1 relationship, then it is 1:N
relationship. It contains the following cases:

1. When foreign key is a simple column (not a primary
key). Figure 6 shows a sample example. So, an object
property is added to the ontology that its domain is the
destination table and its range is the source table.
2. When foreign key is a part (not the whole) of primary
key, but other parts of primary key are not foreign keys
(as shown in Figure 7). Like the previous case, an object
property is added with the same range, but its domain is
the pk_class that is inserted in the ontology for the
primary key of the destination table, because this
column(s) is also a part of a primary key that has some
features.

It should be mentioned that 1:N relationships and 1:N
relationships that are the result of M:N relationships
divisions are discriminated here.

M:N Relationships: If tables are connected as follows,
then M:N relationship occurred: if the primary key of a
table consists of more than one foreign key to other

2090 Int. J. Phys. Sci.

Figure 5. A sample of 1:1 relationship.

Figure 6. A sample of 1:N relationship (the first case)

Figure 7. A sample of 1:N relationship (the second case).

Figure 8. A sample of M:N relationship that is divided into two
1:N relationships.

tables, then this table is the one which must be added
since M:N relationships is not supported explicitly in
RDBs (as described in tables to classes). Figure 8

illustrates an example of this case. Regardless of M:N
relationship, 1:N relationships are transformed according
to the rules of 1:N relationships.

Rows to individuals

Each row is converted into an individual in the ontology.
For each row, if the table has primary key, an individual
for its pk_class is created, first. Then, relation between
these individuals is created (that is, the object property).
For each simple column, a datatype property is added to
the individual. After all classes were created, foreign keys
(object properties) are added. For each value of a foreign
key, the primary key individual should be found and
related to it.

IMPLEMENTATION

The proposed method is implemented using Jena 2.5.7
(http://jena.hpl.hp.com/). To examine it, the new method
should be applied to an RDB. A sample RDB named,
BIRT sample database, from Eclipse
(http://www.eclipse.org/birt/) is used. It is implemented
using MySQL 6.0. Other RDMSs could be used, but BIRT
is in MySQL. It consists of 8 tables as follows and their
relations as shown in Figure 9. It also includes some test
data in the package.

1. Offices: sales offices;
2. Employees: all employees, including sales reps who
work with customers;
3. Customers: customers info;
4. Orders: orders placed by customers;
5. Order details: line items within an order;
6. Payments: payments made by customers against their
account;
7. Products: the list of scale model cars;
8. Product lines: the list of product line classification.

Table 2 illustrates the comparison between existing
methods and the proposed method. The result ontology
is too long to be displayed here. Therefore, a part of
offices table and some of its individuals in the ontology
are as shown in Figure 10. As stated earlier, NS is
replaced by the corresponding namespace, for example
http://www.um.ac.ir/. As illustrated in Figure 10, a class
for offices table, named offices, is created and another is
created for its primary key, that is, offices_pk_class (lines
1 to 2). Primary key for this table is named officeCode
and is of varchar type; therefore a datatype property,
named offices-officeCode, is created that has
offices_pk_class in its domain and string in its range
(lines 12 to 15). To relate offices_pk_class to offices
class, an object property named offices-pkOP, that is an
inverse functional property, is inserted with
offices_pk_class in its range and offices in its domain

http://www.um.ac.ir/

Sedighi and Javidan 2091

Figure 9. ER diagram for BIRT sample database.

Table 2. Comparison of existing methods with proposed method.

Method Mode Relationship Data transform Implementation

Zhuo (2007) Auto 1:1 NO YES

Hu et al. (2008) Semi - Auto 1:1 NO NO

OGSRD Semi - Auto 1:1 YES YES

OWLFROMDB Auto 1:1 YES YES

Proposed method Auto 1:1,1:N,1:M YES YES

(lines 3 to 6). To apply uniqueness on the primary key,
offices-pkOP is determined to be an inverse functional
property. And for the not null, a min cardinality restriction
named offices-pkMinRes is inserted (lines 7 to 11). For
each simple column a datatype property is created. Here,
two columns territory and city are displayed (lines 16 to
23). Column names in the ontology are accompanied with
their table names. The reason is that, database might
have same column names in different tables. If only
column names are transformed to the ontology, then it is
assumed to be the same objects and the result is the
union of both definitions. So, their table names are
included in naming objects in the ontology, such as
offices_territory. A sample row is transformed to an
individual as shown in lines 24 to 47. In lines 24 to 30,
primary key transformation is displayed and in the rest
(lines 31 to 47) simple columns are transferred. The other
tables are transferred like this sample. Each row is
transformed to an individual like the example.

As stated earlier, no user interaction is needed. He/she
is needed to enter the name of the database. The written
application in Jena is automatic and read the structure of
the database, that is, tables, columns and all their
information, primary keys, foreign keys, etc. It is possible
as the database schema is available in RDBMSs (as
meta-data). For example in MySQL, it is available in
MySQL information_schema database. The transferred
ontology is validated through Jena features, first. Any
conflict is reported to the user. If validation is OK, the
reasoning is started. Although, several reasoning
methods are supported in Jena, for simplicity, Protégé
software was used instead. FaCT++
(http://owl.man.ac.uk/factplusplus/) and Pellet (Sirin,
2007) are supported in Protégé 4.0. Both of them were
used to evaluate the new ontology. No conflict was
reported. Now, one can write queries which could be
applied on OWL files to extract knowledge from the
ontology. Protégé has DL Query tab, and also, SPARQL

8

2092 Int. J. Phys. Sci.

(1)

(2)

(3)

(4)
(5)

(6)

(7)

(8)

(9)

(10)

(11)
(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)
(25)

(26)

(27)

(28)

(29)

(30)
(31)

(32)
(33)

(34)

(35)

(36)
(37)

(38)

(39)

(40)

(41)
(42)
(43)

(44)

(45)

(46)

(47)

<owl:Class rdf:about= NS + "#offices"/>

<owl:Class rdf:about= NS + "#offices_pk_class"/>

<owl:InverseFunctionalProperty rdf:about=NS+"#offices-pkOP">

<rdfs:range rdf:resource=NS+ "#offices-pk_class"/>

<rdfs:domain rdf:resource=NS+ "#offices"/>

</owl: InverseFunctionalProperty>

<owl:Restriction rdf:about=NS+ "#offices-pkMinRes">

<owl:minCardinality

rdf:datatype=http://www.w3.org/2001/XMLSchema#string>

</owl:minCardinality>

<owl:onProperty rdf:resource=NS+ "# offices-pkOP"/>

</owl:Restriction>

<owl:DatatypeProperty rdf:about=NS+ "#offices-officeCode">

<rdfs:domain rdf:resource=NS+ "# offices–pk_Class"/>

<rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about= NS +"#offices_territory">

<rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource= NS +"#offices"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about= NS +"# offices_city">

<rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource= NS +"#offices"/>

</owl:DatatypeProperty>

<NS:offices>

<NS:offices-pkOP>

<NS:offices-pk_Class rdf:about=NS+ "#pk_offices1">

<NS:offices-officeCode rdf:datatype =

"http://www.w3.org/2001/XMLSchema#string">36A90

</NS: offices-officeCode>

</NS: offices-pk_Class>

</NS:offices-pkOP>

<NS: offices_city> San Francisco

</NS: offices_city>

<NS: offices_phone>+1 650 219 4782

</NS:offices_phone>

</NS:offices_addressLine1>Suite 300

</NS:offices_addressLine1>

<NS: offices_addressLine2>100 Market Street

</NS: offices_addressLine2>

<NS:offices_state>CA

</NS:offices_state>

<NS:offices_postalCode>94080

</NS: offices_postalCode>

<NS:offices_country>USA

</NS:offices_country>

<NS:offices_territory> NA

</NS: offices_territory>

</NS:offices>

Figure 10. A part of the result ontology for offices table.

could be used.

CONCLUSION AND FUTURE WORK

In this paper, a novel approach to transfer RDB to
ontology is proposed. Different parts of a relational

database, such as tables, columns, primary keys, foreign
keys, etc., are transferred into the corresponding map in
the ontology. In previous works, primary keys and foreign
keys were supported to be single-column , but in the
proposed method all cases are considered. Data is
transformed into individuals, too. The proposed approach
was implemented using Jena and MySQL (but not limited
to MySQL). No conflicts were reported either in Jena or in
Protégé. For future work, we decide to apply our
proposed method to extract new information from
ontology or even proposed new design for RDBs.

REFERENCES

Alalwan N, Zedan H, Siewe F (2009). Generating OWL Ontology for

Database Integration. 3rd Int. Conf. Adv. Semantic Process., pp. 22-
31.

Astrova I, Korda N, Kalja A (2006). Toward the Semantic Web:
Extracting OWL Ontologies from SQL Relational Schemata. IADIS Int.
Conf. WWW/Internet, pp. 62-66.

Berners-Lee T, Hendler J, Lassila O (2001). The semantic web. Sci.
Am., 284: 34-43.

Brank J, Grobelnik M, Mladenić D (2005) A survey of ontology
evaluation techniques. Proc. Conf. Data Min. Data Warehouses
SiKDD, 1: 166-170.

Chang-rui YU, Hong-wei W, Fu J (2006). Development Method of
Domain Ontology Based on Reverse Engineering. Appl. Res.
Comput., pp. 1-5.

Cullot N, Ghawi R, Yétongnon K (2007). DB2OWL: A Tool for Automatic
Database-to- Ontology Mapping. In Proc. 15th Italian Symp. Adv.

Database, pp. 491‐494.
Fortuna B, Mladeni D, Grobelnik M (2006). Semi-Automatic construction

of topic ontologies. In: Semantics, Web Min. Lect. Notes Comput.
Sci., 4289: 121-131.

Ge JK, Chen ZQ (2010). Constructing Ontology-based Petroleum
Exploration Database for Knowledge Discovery. Inf. Technol. Manuf.
Syst., pp. 975-980.

He-ping C, Lu H, Bin C (2008). Research and Implementation of
Ontology Automatic Construction Based on Relational Database. Int.
Conf. Comput. Sci. Softw. Eng., pp. 1078-1081.

Hu C, Li H, Zhang X, Zhao C (2008). Research and Implementation of
Domain-Specific Ontology Building from Relational Database. 3rd
IEEE Int. Conf. ChinaGrid Annu., pp. 289-293.

Jiang X, Tan AH (2010). CRCTOL: A semantic-based domain ontology
learning system. J. Am. Soc. Inf. Sci. Technol., 61: 150-168.

Ochoa J, Hernلndez-Alcaraz M, Valencia-Garcيa R, Martيnez-Béjar R
(2011). A semantic role-based methodology for knowledge acquisition
from Spanish documents. Int. J. Phys. Sci., 6(7): 1755-1765.

Secer A, Sonmez C, Aydin H (2011). Ontology mapping using bipartite
graph. Int. J. Phys. Sci., 6(17): 4224-4244,

Xu G, Liu L (2011). An Approach for Ontology Construction Based on
Relational Database. Int. J. Res. Rev. Artif. Intell., pp. 102-108.

Yang S, Zheng Y, Yang X (2010). Semi-automatically Building
Ontologies from Relational Databases. ICCSIT, pp. 1024-1029.

Zhang L, Li J (2011). Automatic Generation of Ontology Based on
Database. J. Comput. Inf. Syst., pp. 1148-1154.

Zhou L (2007). Ontology learning: State-of-the-art and open issues. Inf.
Technol. Manage., 8: 241-252.

Zhou S, Meng G (2010). Tool for Translating Relational Databases
Schema into Ontology for Semantic Web. 2nd Int. Workshop Educ.
Technol. Comput. Sci., pp. 101-108.

