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An artificial-neural-network (ANN) model is developed for the analysis and prediction of correlations 
between processing planetary milling parameters and the crystallite size of ZnO nanopowder by 
applying the back-propagation (BP) neural network technique. The input parameters of the BP network 
are rotation speed and ball-to-powder weight ratio. The nanopowder was synthesized by planetary 
mechanical milling and the required data for training were collected from the experimental results. The 
synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and Scanning Electron 
Microcopy (SEM). The crystallite size and internal strain were evaluated by XRD patterns using 
Williamson – Hall method. It was found that, artificial neural network was very effective providing a 
perfect agreement between the outcomes of ANN modeling and experimental results. An optimization 
model is then developed through the analysis on the evaluated network response surface and contour 
plots to find the best milling parameters (rotation speed and balls to powder ratio) producing the 
minimal average crystallite size. 
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INTRODUCTION  
 
Various techniques have been used to synthesize ZnO 
nanoparticles and can be categorized into either chemical 
or physical methods (Klabunde, 2001). For example, 
hydrothermal (Ni et al., 2005), solvothermal (Wang et al., 
2005), sol–gel (Ristic et al., 2005), direct chemical 
synthesis (Wu et al., 2006) and ball milling (Damonte et 
al., 2004), etc. Among these synthetic routes, Mechanical 
milling has proved to be an effective and simple 
technique, to produce nanocrystalline powders and the 
possibility of obtaining large quantities of materials. 
However, properties of nanopowders obtained by milling 
method are affected by various parameters such as 
milling time, ball to powder mass ratio, rotation speed, 
balls diameters, etc. Several  groups  were  interested  by  
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ball milling process modeling, mainly based on the 
mechanistic (Abdellaoui and Gaffet, 1995) and D’Incau et 
al. (2007), and thermodynamic (Badmos and Bhadeshia, 
1997), Lu et al. (1997) and Suryanarayana (2001); 
approaches to achieve a general understanding at the 
atomic and phenomenological level. 

Recently, Artificial Neural Network (ANN) becomes one 
of the most powerful modelling techniques, in conjunction 
with the statistical approach. It is suitable for simulations 
of the correlations which are hard to be described by 
physical models (Sha and Edwards, 2007). The 
advantages of ANN modeling are reduction of time and 
cost in all the required experimental activities. It can be 
used for the prediction of the mechanical milling outputs. 
However, there only limited work on the application of 
neural networks in the field of mechanical milling 
(Dashtbayazi et al., 2007) and Maa et al. (2009). The aim 
of this work is to develop a neural network model to the 
prediction and optimization  of  the  planetary  ball  milling  
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process for synthesizing ZnO nanocrystalline. The 
process parameters, including milling times, rotation 
speed and ball-to-powder mass ratio are applied to the 
neural network inputs, to provide information relating to 
crystallite size. The network is then trained to output the 
prediction on the powders particles size. An optimization 
model is then developed to find the best parameters 
producing the minimal average crystallite size.  
 
 
EXPERIMENTAL  
 
Samples preparation 
 
Commercially, ZnO powders with average particle size of about 1 
�m and 99.9% of purity were introduced into a planetary milling – 
“PULVERISETTE 7 premium line”. The bowls and balls made of 
Zirconia to avoid contamination were used. The powder was ground 
in vial with 2 g of ZnO and mixture of Zirconia balls (10 and 15 mm 
in diameter). The rotation speed and balls to powders mass ratio 
were varied in the range of 300 to 400 rpm and 10 to 20 
respectively.  
 
 
Structural characterization  
 
X-ray powder diffraction (XRD) measurements were performed 
using Shimadzu diffractometer (�-2�) equipped with Cu-K� 
radiation (�=1.5418 Å). It is known that X-ray diffraction line 
broadening is influenced by the particles size and the internal 
strains. In order to obtain these parameters, Williamson – Hall was 
used and the analysis includes two steps: 
 
First step: The width (�exp) of every peak was measured as the 
integral breadth. The instrumental broadening (�inst) was 
determined from polycrystalline silicon standard. The peak breadth 
due to sample (strain + size), B was calculated according to 
Gaussian profile:  
 
B2 = �2exp – �2inst                                                           (1) 
 
Second step: The crystalline size and internal strain were obtained 
by fitting the Williamson – Hall equation:  
  

θελθ sin2cos +=
D

K
B

                                                      (2)  
 
Where D is the coherent scattering length (crystalline size); � is the 
wave length used, � the brag reflection peak, K is a constant whose 
value is approximately 0.9; B the integral width of the sample (in 
rad) calculated in the first step and � the inhomogeneous internal 
strain (in %). Particles morphology was investigated using Nova 
200 NanoLab field emission scanning electron microscope (FE-
SEM). 
 
 
Neural networks modeling procedure 
 
Artificial neural networks provide a mapping of inputs to outputs and 
consist of computer programs based on the structure of brain. As 
such, they can be trained to recognize patterns within data. In the 
human brain, a neuron is a nerve cell which processes incoming 
information and outputs a signal to the relevant part of the body 
accordingly. Some inputs are stronger than the others, that is, they 
are  ‘weighted’.  The  total  effect  of  the  inputs  is  the  sum  of  the  

 
 
 
 
weighted signals, and, if this exceeds the neuron threshold, a 
response is produced. By comparison, in an artificial neural 
network, a number of inputs are applied simultaneously, via 
weighted links, and the node calculates a combined total input. The 
relation between the input and output is specified by a transfer or 
activation function, which describes the threshold for deciding on 
the state of the output of that particular node. A number of nodes 
may be combined to form a layer, and layers may be 
interconnected to form a complete network. The procedure of 
designing the neural network architecture is described in detail as 
follows.  
 
 
RESULTS AND DISCUSSION 
 
Characterization of ZnO nanopowder 
 
Figure 1 represents the evolution of XRD patterns of ZnO 
powder for the samples prepared under different milling 
condition such as balls to powder ratio, time milling and 
rotation speed. It can be shown that, all Bragg peaks of 
the XRD patterns showed only the ZnO reflections, 
indicating that, there is no phase transformation during 
the milling have occurred. With increasing balls to powder 
ratio and rotation speed, the diffraction peaks became 
broader and their relative intensity decreases. This effect 
is typical behavior of materials after milling and attributed 
usually to the presence of particles with small size and 
internal strain induced by mechanical deformation. It is 
well known that the peak broadening can be caused by 
both a reduction in crystallite size and an increase in 
lattice strain. For a quantitative comparison, the physical 
broadenings for the sample with balls to powder mass 
ratio of 10:1 are presented in Figure 2. It can be observed 
that, broadenings of breadth peaks increase with rotation 
speed. The variation of the integral breadth vs. diffraction 
angle shown in Figure 2 can be related to the Bragg’s 
angle effect. 

The crystallite size and internal strain were estimated 
from the Williamson-Hall method. The five most intensive 
reflection peaks of the samples were used in the line 
broadening analysis. Figure 3 shows Williamson-Hall plot 
for sample with balls to powder ratio (10:1) and rotation 
speed of 300 rpm. From this curves we can estimate the 
crystalline size (intercept at sin� = 0, from the Equation 
2), and internal strain (slop). The results are summarized 
in Table 1. Figure 4 shows the evolution of crystallite size 
with rotation speed for different balls to powder mass 
ratio. For increasing rotation speed and for different ball 
to powder ratio, the crystallite size decreases, while the 
internal strain increases (Figure 5). This behaviour is 
explained by the formation of defects during the milling 
process. The evolution of crystallite size with rotation 
speed can be divided in three stages: 
 
1. For rotation speed of 300 rpm, the crystallite size 
decrease with increasing balls to powders ratio. 
2. For rotation speed of 350 rpm, the crystallite size 
obtained  for  balls to powder ratio of 10 is lower than that  
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Figure 1. X-ray diffraction patterns for ZnO powders milled for 5 h and for different balls to powder ratio.  
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Figure 2. Change in the integral breadth of the samples milled at different rotation speed. 
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Figure 3. An example of Williamson –Hall plot showing X-ray peak broadening (B) as function of 
Bragg angle (�) for the sample: balls to powder ratio (10:1) and rotation speed of 300 rpm. 

 
 
 
Table 1. Crystallite size and internal strain values. 
 

Balls to powder mass ratio 
(R = balls weight/powder weight) 

Rotation speed Crystallite size (nm) Internal strain (%) Times milling (h) TM 

10 300 25.5 0.003 
10 350 19.6 0.005 
10 400 17.6 0.006 
15 300 20.18 0.006 
15 350 20.5 0.009 
15 400 16 0.01 
20 300 20 0.007 
20 350 12 0.018 
20 400 10 0.003 

5 h 
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Figure 4. Evolution of crystalline size as function of rotation speed and balls to powder ratio. 
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Figure 5. The variation of internal strain with the ratio speed and balls to powder mass ratio.
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obtained for balls to powder ratio of 15. 
3. For rotation speed of 400, again the crystallite size 
decrease with increasing balls to powders ratio. 
 
Similar behavior has been reported in previous work 
(Lemine et al., 2009; Damonte et al., 2004). In their 
studies, a clear reduction of grain size and increase of 
the internal strain for longer milling times of ZnO powder 
were observed. However, only in this current work the 
internal strain decreases at 400 rpm for ratio of 20:1. This 
phenomenon can be explained by annealing effect during 
milling. If the grain size reached its saturation value, the 
impact of milling is to anneal the highly stressed particles 
(Bégin-Colin et al., 2000). As a result, the lattice strain 
decreases or remains constant. A same phenomenon 
was observed in the milling of hematite nanocrystalline 
(Lemine, 2009). Another difference with previous work is 
that, the time milling was fixed and others milling 
parameters (balls to powders ratio and rotation speed) 
were modified but the same effects are produced. 

SEM micrographs of the samples rotation speed of 400 
rpm and for different balls to powder mass ratio are 
shown in Figure 6. It is clear that after milling, a reduction 
of the crystalline size can be observed with relatively 
better homogeneity. High magnification images (right) 
reveal clearly that, large particles are in fact 
agglomerates of much smaller particles.  
 
 
Artificial neural networks simulator 
 
An artificial neural network simulator has been 
developed, to find out the relationship between the 
experience's inputs (the mass ratio of ball to powder and 
the rotation speed) and the experience's output (the 
average particles size). A multi-layer perceptron with 
back propagation training has been implemented on 
MATLAB. The network is composed of 3 layers. There 
are 6 nodes in the input layer corresponding respectively 
to Ratio (R), Speed (S), R*R, S*S, R*S, and the constant 
coefficient, which is set equals to one. There is only one 
node in the output layer corresponding to the particles 
size (PS). There is one hidden layer composed of 6 
nodes. The tanh is used as activation function for the 
hidden layer. Figure 7 illustrates this network's 
architecture. 

This artificial neural network was trained using the 
retropropagation algorithm that minimizes the mean 
squared error over a training set of 8 experiences as 
given in Table 2. This training algorithm was efficient. In 
few seconds, the mean squared error has reached 
almost zero. The steady state is given by two matrixes. 
The first 2-dimension matrix, representing the input 
weights that connect the input layer to the hidden layer, is 
as follows: 
 
 1.7354 -0.1161 1.2265 -0.4221 -1.4681 -1.9683 

 
 
 
 
 -0.0645 -1.9287 1.0436 1.8058 -0.6235 1.0526 
 0.3221 1.4076 -1.8150 -1.9193 -1.3368 -0.0809 
 0.9154 -0.2033 -0.3074 -0.3687 0.8175 1.8338 
 1.8942 0.5128 1.6107 1.2831 -0.7151 -0.1424 
 1.4629 0.7562 0.2426 -1.3742 -0.3230 -1.1312 
 
The second 1-dimension matrix, representing the hidden 
weights that connect the hidden layer to the output node, 
is as follows: 
 
1.3477 -0.5214 -1.2066 0.7726 1.6688 -1.3457 
 
The particle size is then given by the following formula: 
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Where wi and wh are respectively the input and hidden 
weights. The inputs xi are R, S, R*R, S*S, R*S, and 1. 
The obtained value is multiplied by the standard deviation 
and added to the mean, as input data were normalized in 
order to speed up the training algorithm. 

In order to assess the validity of the networks and their 
accuracy, it is often useful to perform regression analysis 
between the network response and the corresponding 
target. This artificial neural network was very effective 
providing a perfect link between the inputs and the 
outputs. In fact, using MINITAB software, we find the 
following multiple regression coefficients: 
 

 SpeedRatio 0.07360.6954PSreg −−=  

 
The mean absolute deviation obtained with this 
regression is 1.46.  

The results of the regression are shown in Table 2. It’s 
is clear from that there is a consistence agreement 
between the outcomes of ANN modeling and 
experimental results as well as the current knowledge of 
mechanical milling process exists. It is noted also that, 
the error obtained by ANN model is by far better than 
multiple linear regressions. 

This agreement between the outcomes of ANN and 
experiments was obtained by (Dashtbayazi et al., 2007) 
and Maa et al. (2009) but in our model the relative errors 
was better. The difference in the errors between ours 
models can be explained by the numbers of output 
parameters. In our model we were only interested by the 
crystallite size parameters. For their models the output 
was strain and crystallite size. It is interesting also to note 
that in our work planetary milling machine was used (they 
used vibrant milling). After constructing the ANN model 
and evaluating its accuracy and modeling error by 
regression analysis and total error estimation of the ANN 
network, one can use this network for prediction and 
optimization  of  the planetary mechanical milling process 
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                     Figure 6. SEM of milled ZnO powder for rotation speed of 400 rpm: Low magnification (left) and high. magnification (right). 
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Figure 7. The artificial neural network. 
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Table 2. Comparison between the network and regression estimations. 
 

Experimental particles size (nm) Network estimations Regression estimation 
25.5 25.5 25.02 
19.6 19.6 21.34 
17.6 17.6 17.66 

20.18 20.18 21.57 
20.5 20.5 17.89 
16 16 14.21 
20 20 18.12 
12 12 14.44 
10 10 10.76 

 
 
 

Rotation speed 

Crystallite size (mm) 

Balls to powder ratio (R) 

                           Surface plot of crystallite size vs rotation speed, balls to powder 

 
 
Figure 8. Surface responses of particle size. 

 
 
 
for synthesizing of ZnO nanopowders. 

Figure 8 shows the response surfaces of powder 
properties with the milling parameters. In order to clarify 
the response surfaces, contour plots for the crystallite 
size of the ZnO nanopowders in terms of the milling 
parameters (balls to powder ratio and rotation speed) is 
demonstrated in Figure. 9. There is only one region 
where the crystallite size is in the minimum level (about 
12 to 16 nm) with the high rotation speed (v � 360 rpm) 
and large balls to powder ratio (20:1). A similar result was 
found by Maa et al. (2009) for the mechanically alloyed 
WC–18 at %MgO nanocomposite powders. They 
obtained a small crystallite size for higher rotation (v�300 
rpm) speed and for balls diameter (d�8mm). Some 
experiments will be conducted in the future in order to 
validate the above parameters obtained from the 
optimization.  

Conclusions 
 
An artificial-neural-network (ANN) model was developed 
to estimate the crystallite size of ZnO nanopowders, as a 
function of the planetary milling parameters (rotation 
speed and balls to powder ratio). It was found that 
artificial neural network model was very effective, 
providing a perfect agreement between the outcomes of 
ANN modeling and experimental results.  

Furthermore, the optimization of the planetary milling 
process for fabricating the nanocrystalline ZnO powder, is 
carried out through the analysis on the evaluated network 
response surface and contour plots. The optimized 
milling parameters were rotation speed (350 rpm < v � 
400 rpm) and balls to powder ratio (20:1). In addition, the 
neural network model developed can be used for the 
prediction   of   other   parameters  such as strain, lattices  
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  Contour plot of crystallite size vs rotation speed, balls to powder 

 
 
Figure 9. The contour plot of crystallite size. 

 
 
 
parameters.  
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