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This article proposed an approach to construct high-order balanced M-band (M>2) orthogonal 

multiwavelets with symmetric property, and demonstrated the advantages of our constructed 

multiwavelet systems in digital elevation model (DEM) generalization application over some other 

wavelet systems. We studied the theories related to the key properties of M-band multiwavelets, such as 

orthogonality, symmetry, flipping and the particular issue and balancing. According to the theories, we 

then discussed the construction procedures of the M-band multiwavelet systems integrating all the key 

properties, and presented their realization process based on Gröbner base technique. Three families of 

orthogonal multiwavelets were achieved in this way, including three-band symmetric family, three-band 

flipped family and four-band symmetric family. Each family was indexed by a increasingly balanced order 

ρ (ρ∈{1,2,3}), and supported with the minimal length according to every balanced order. We finally 

tested their practical performance in DEM generalization application. The results show the superiority of 

the constructed M-band multiwavelet systems over other widely-used wavelet systems, including 

multiwavelet of two-band and scalar wavelets of M-band and 2-band, and justified the effectiveness of 

high-order balanced property of these proposed multiwavelet systems in preserving main trend features 

of signals. 
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INTRODUCTION 
 
Multiwavelets have some particular advantages over 
scalar wavelets, mainly shown in the design of finite 
impulse response (FIR) filter banks (FB) with orthogonal 
and symmetric properties (Strela et al., 1999; Daubechies, 
1992). Since these properties are significant to 
two-dimensional (2D) signal processing, multiwavelets 
greatly trigger the interests of researchers. Compared with 
two-band multiwavelets, M-band multiwavelets (M>2) offer 
greater flexibility in choosing time-frequency tiling, and  has  
become   a   focus  of  recent  studies  (Heller  and  
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Resnikoff, 1993; Bhatti and Özkaramanli, 2002). However, 
a crucial problem existed for M-band multiwavelets in their 
design and application just as in the case of two-band and 
application just as in the case of two-band multiwavelets, 
that is the approximation power property does not ensure 
the preservation/cancellation of discrete-time polynomial 
signals by the lowpass/highpass branch of the FB (Lebrun 
and Vetterli, 1998, 2001). Mallat (1998) once said the main 
advantage of wavelets is its approximate ability to practical 
functions with less nonzero wavelet coefficients. Hence, this 
problem seriously limits their applications. 

Meanwhile, researchers have designed strategies for the 
problem, such as to intricately preprocess discrete- time 
data, or to particularly transform multiwavelet basis, but 
they always destroy certain pretty properties that the 
multiwavelet  basis  originally   owns,   such   as   symmetry 



 

 

 
 
 
 
ororthogonality, for example (Lebrun and Vetterli, 2001). 
Besides these, directly constructing specialized balanced 
multiwavelets is another way for the problem. Fortunately, 
it also enables a single wavelet system to integrate all the 
pretty properties above together. By using Gröbner base 
technique, several families of two-band orthogonal 
multiwavelets indexed by increasing balanced orders were 
presented in previous studies (Lebrun and Vetterli, 1998, 
2001; Selesnick, 1998, 1999, 2000). However, the related 
discussion about their M-band counterpart is few. Both 
M-band multiwavelet systems and high-order balanced 
property are very useful in some application. For instance, 
they are greatly necessary in the application of digital 
elevation model (DEM) generalization, as an important and 
well-known requirement in many photogrammetric, remote 
sensing, and geographic information system application. 
Wavelet transforms (WT) provide us with an efficient 
image multiple-level sparse representation approach. 
Recent studies justified the feasibility of using the WT to 
generate hierarchically multiple-level-of-detail (LOD) 
databases from raw DEM data, and obtaining the 
generalized DEM in different generalized scale by using 
the WT with different decomposition level (Devarajan et 
al., 1996; Zhu, 1999; McArthur et al., 2000; Yang et al., 
2009). However, it is suggested that integrating the 
M-band multiwavelet systems and high-order balanced 
property together would improve the performance of this WT 
based DEM generalization method. 

On one hand, M-band systems achieve the problem that 
two-band systems fail to solve in this area; they enable 
many kinds of generalized scales that the latter could not 
provide. Using a two-band system, only the generalized 
scales of 1/2, 1/4, …, 1/2

k
 are accessible (k is a positive 

integer), whereas using an M-band system, many other 
scales beside these will be available, such as 1/3, 1/5, 1/6. 
In addition, M-band multiwavelets lead to less accumulated 

error resulted from multi-level decompositions compared 
with the two-band counterparts, since they requires 
fewer-level decompositions in obtaining the generalized 
DEM with a specified generalized scale (Zhu, 1999; 
McArthur et al., 2000; Zhang and Yang, 2005; Lv et al., 
2007). As the development of M-band wavelets, M-band 
multiwavelets should be introduced into this area. On the 
other hand, the higher-order balanced property in 
multiwavelet systems is very necessary in the application 
of DEM generalization not only because it avoids the 
oscillations created during the reconstruction from lowpass 
subband coefficient (or approximate coefficient), but also 
ensures more smooth features (or trend features) to be 
preserved by lowpass FB branch (Lebrun and Vetterli, 
1998, 2001). Therefore, it is meaningful to integrate 
high-order balanced property with M-band multiwavelet 
systems that is to directly design the high-order balanced 
M-band multiwavelet systems.  

In this study, three families of high-order balanced 
M-band   multiwavelets  were  constructed  by   using   the  
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Gröbner base technique, inspired by the construction 
scheme of Selesnick (1998, 1999, 2000) and Lebrun (1998, 
2001) used in their two-band counterpart construction. The 
article was organized as follows; the fundamental theories 
on the key properties of M-band multiwavelets were first 
studied, such as orthogonality, symmetry, flipping and 
balancing as well. According to the theories and the key 
instructions for designing M-band multiwavelet, we then 
constructed three families of orthogonal multiwavelets. 
Every family is of the multiplicity of two, orthogonal and 
symmetric (or flipped), indexed by an increasing balanced 
order ρ (ρ€{1,2,3}, that is the balanced order of the 
multiwavelets in each family ranges from one to three), and 
supported by the minimal length according to each 
balanced order.  

To test the practical performance of these constructed 
multiwavelet systems, we applied them in the DEM 
generalization application and analyzed their advantages 
over other widely-used wavelet systems. Finally, we 
summarized the results of this study as well as the 
subsequent tasks in future. 

 
 
THEORIES ON THE KEY PROPERTIES OF 

MULTIWAVELETS 

 
An r-dimensional (rD) column vector function 

r

jj 10,0 )(   , rj 1  is called a matrix refinable 

function if; 
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or equivalently,    0 0 0
ˆ ˆ( )w P w m w m   . Here and below, 

)(0 kp  is an rr  real matrix,  
k

kwekpP 1

00 )( , 

, ,k m r , and 2, rm . A compactly support refinable 

function 
0  is called an orthogonal scaling function if the 

integer shifts 
,0( )j k  , rj 1  form an orthogonal 

basis of their closed linear span in 2 ( )L . A set of rD 

column vector function r

jiji 1, )(   , mi 1 , defined by 
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or equivalently,    0
ˆ ˆ( )i iw P w m w m    for some 

matrix
ip and matrix filters

iP , is called a set of multiwavelet 

with the dilation factor m , if its components , ( )q

j i m x k  , 

1 j r  , 1 i m  , q , constitute an orthogonal basis of 
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Orthogonality 
 

A necessary condition for )(0 x  to be an orthogonal 

scaling function, or )(xi , mi 0  to be a set of 

orthogonal multiwavelet is given by Jiang (1998a), that is: 
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0
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Here, i is a Dirac sequence; 
rI  is an rr  identity 

matrix, and B  
denotes the Hermitian adjoint of a matrix 

B . If a set of 
iP , mi 0 , satisfies Equation 3 and 

belongs to FIR, and )(0 x defined by Equation (1) is 

L
2
-stable, thus )(0 x  is an orthogonal scaling function, 

and  ,1i i m   , defined by Equation 2, is a set of 

multiwavelet function. Under this condition, it is said that 

0P  generates an orthogonal scaling function 
0 , and 

 ,0iP i m     generates a set of orthogonal 

multiwavelet function ,1i i m   . Finally, the set   here 

is called an M-band multiwavelet filter bank. 
During the construction of each M-band multiwavelet in 

this study, condition of Equation 3 then would be converted 
to several particular constrained equations to be added 
into the equation system, so as to attach orthogonality to 
the constructed multiwavelet. Different from scalar 
wavelet, vectorization of input signals is required for 
multiwavelet. In the case of 1D signal, the input signal 
should be vectorized to be an rD form. Splitting a 1D signal 
into its polyphase components is a national way to do that, 
and this is defined as: 
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Here, kwez 1  and mi 1 . Then, an M-band 

multiwavelet system can be considered as an mr  

channel filter bank. A crucial problem occurs when the 

spectral behavior of each component )(0, zy j
, rj 0  is 

different. In this case, the polyphase method of 
vectorization will lead to a mixing of the approximate 
coefficients and detail coefficients, and will finally bring 
strong oscillations to the result signal reconstructed from 
the approximate coefficients only (Lebrun and Vetterli, 
1998). Therefore, in order to rationally reconstruct the 
signal from the approximate coefficients, the spectral 
behavior of )(0, zy j

 must be same. A balanced M-band 

multiwavelet does this well. 

 
 
 
 

High-order balancing 
 

Balancing 
 

The idea of balancing is to impose some class of smooth 
signal to be preserved / cancelled by the lowpass / 
highpass branch. Its definition is as follows; Lebrun and 

Vetterli (1998) defined 
0L to be the block Toeplitz operator 

related to lowpass filter branch as shown in Equation 4, 

and
iL , mi 1  to be the block Toeplitz operator related to 

each highpass filter branch in the same way. Let 
T[  ( 2)  ( 1)  0  1  2   ]l l l l l

lv    , l  (that 0v  is a constant 

signal can be seen here). 
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Definition 1: An orthogonal M-band multiwavelet system 
is said to be balanced (or 1-order balanced) if the lowpass 

operator 

0L  preserves the constant signals, that 

is 000 vvL 
. 

 

Theorem 1: The 1-order balancing is equivalent to each 
condition below (Lebrun and Vetterli, 1998; Mao, 2004; 
Huang and Cheng, 2006; Yang and Cao, 2006); 
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For an orthogonal multiwavelet system, it also means 

00 
vLi

, mi 1 . Hence, a constant signal 0v  can be 

preserved/cancelled by this lowpass/highpass branch. 
 
 
High-order balancing 
 
Generally, considering high-order balanced M-band 
multiwavelet systems, it is a natural improvement of the 
1-order balanced idea to let higher degree discrete-time 
polynomial signals to also be preserved by the lowpass 
branch. Its definition is presented below (Lebrun and 
Vetterli, 1998); 
 

Definition 2: An orthogonal M-band multiwavelet system 

is said to be ρ-order balanced if the lowpass operator 

0L  

preserves discrete-time polynomial signal of degree l, 
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Theorem 2: The  ρ-order  balancing  is  also  equivalent to  



 

 

 
 
 
 
each condition below (Lebrun and Vetterli, 1998; Mao, 
2004; Yang and Cao, 2006). 
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Theorem 2 ① is an approach to verify the balanced order 
of an orthogonal M-band multiwavelet system, and 

Theorem 2 ② is a method to attach high-order balanced 
property to an M-band multiwavelet system. During the 
construction of the M-band multiwavelets in this study, 

Theorem 2 ② was converted to several equations added 
into the whole equation system for obtaining ρ-order 

balancing, and Theorem2 ① was applied to verify the 
result. 
 
 

Symmetry and flipping property 
 
It is necessary to attach symmetric property to M-band 
multiwavelet systems for its importance in image 
processing. Therefore, in the first part of this section, we 
would discuss the theories about a kind of M-band 
multiwavelet system in which every scaling function is 
symmetric, and every wavelet function is symmetric/ 
antisymmetric. Next, another kind of M-band multiwavelet 
system, whose scaling functions are flipped with each 
other and wavelet functions are symmetric/antisymmetric 
separately, would be studied in the second part because 
this kind always gain some particular merits at the cost of 
the symmetry of its scaling functions. 
 
 
Symmetry 
 

Introduce a vector 
0 1,0 ,0( , , ) r

rC c c   and a matrix; 
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Theorem 3: Define  ),,( 0,0,0 jj    to be a compact 

support refinable vector with 0)0(ˆ
0  , and 

0P  to be its FIR 

matrix filter, just as the definition above. If 
0P  

satisfies )()()()( 0000 wPwDwPmwD  , then 0,j is 

symmetric/antisymmetric about  ,0 2( 1)jc m  (Jiang, 

2000). 
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Introduce a vector 
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Theorem 4: Define  ),,( ,, ijiji   to be a column 

vector function, and 
iP , mi 1 , to be its FIR matrix filter, 

as the definition above. Meanwhile, 
0P  and 

0  meet 

Theorem 3. If 
iP  satisfies )()()()( 00 wPwDwPmwD ii  , 

then 
ij , is symmetric/antisymmetric about  , 2( 1)j ic m  

(Jiang, 2000). 
 
 
Flipping 
 
Flipping provides another kind of symmetry. It focuses on 
the symmetry among the r scaling functions instead of the 
symmetry within each separate scaling function. In the 
case of r = 2, the two components of the lowpass branch in 

a M-band flipped multiwavelet system, 
0,0 ( )y z  and 

1,0 ( )y z , have a clear relationship,  

 

)()( 1
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12

0,1

 zyzzy 
                        (5) 

 
as presented by Lebrun (1998) and Weidmann (1998). 
Here,   is a unique integer related to the maximal 

polynomial degree between 
0,0 ( )y z  and 

1,0 ( )y z . Flipping 

is not a complete symmetry, although complete 
symmetric/antisymmetric wavelet functions can be 
obtained from flipped scaling functions. But at this cost, it 
brings other advantages such as shorter support length 
with same smooth level, or higher smooth level with same 
support length, compared with the completely symmetry 
discussed above. Likewise, for every constructed 
symmetric/flipped multiwavelet system below, Theorem 3 
and Equation (2) was used to add symmetric/flipped 
property to its scaling functions, and Theorem 4 was used 
to add symmetric (or antisymmetric) property to its wavelet 
functions. 
 
 

CONSTRUCTIONS OF MULTIWAVELETS 
 
The WT is always implemented as an iterated digital filter 
bank tree, so the design of a WT amounts to the design of 
an FB. The FB designing problem is always achieved by 
solving a multivariate polynomial system of equations,
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Figure 1. Scaling functions (left) and wavelet functions (right) of 1-order balanced case in family 1. 

 
 
 
especially when additional constraints are imposed. 
Accordingly, the Gröbner base algorithms extend 
Gaussian elimination to multivariate polynomial systems, 
and offer an efficient way to obtain solutions, since the 
equation system is always too complicated to be solved 
directly. Lebrun (1998, 2001) and Selesnick (1998, 1999, 
2000) used Singular software to carry out the Gröbner 
base computation in designing wavelets and multiwavelet 
systems, and presented the detailed procedures and 
complete programs in their homepages. We analyzed the 
procedures and improved these programs according to the 
particular properties of M-band multiwavelet system, and 
finally constructed three families of multiwavelets in the 
similar way. The specific procedures were presented 
below: 
  

(1) Construct 
0P  using fewest free variables at start, 

whose number is associated with the support length of the 
scaling functions. 
(2) Establish the equation system related to lowpass FB 

coefficients. With the variables in 
0P , convert the condition 

related to every property (that is ρ-order balancing, 
orthogonality, symmetry or flipping, respectively) to several 
particular equations as discussed above, then group them 
together as an equation system. 
(3) Solve the equation system based on the Gröbner bases 
technique. Increase the numbers of variables (that is to 
increase the support length) and go back to step (1) when 
no solution exists (Lebrun and Vetterli, 1998; Buchberger, 
2001). 
(4) Chose the smoothest from the solutions. In the case 
that many solutions exist, assess the smoothness of the 
solutions using an efficient indicator (Sobolev exponent for 
example, according to study of Jiang in 1998b, is used in 
this study and abbreviated as S below) and select the best. 
Thus, the lowpass FB coefficients with the properties 
imposed in step (2) are obtained. 

(5) Construct ,1
i

P i m  , as in step (3). 

(6) Establish another equation system related to the high 

pass FB coefficients. With the variables in 
iP , convert the 

condition related to every property (that is orthogonality, 
symmetry or flipping) to equations and get an equation 
system again, like the step (3). Then replace the lowpass 
variables in these equations with the coefficients obtained 
in step (4). 
(7) Solve the equation system based on the Gröbner base 
technique again. Finally, the highpass FB coefficients with 
the properties imposed in step (6) are obtained too. 
 
We also used the Singular software to carry out the 
Gröbner base computation in this work, and used Maple or 
Matlab software to calculate the exact or numerical 
solution from the Gröbner base system. For every 
multiwavelet system constructed below, only numerical 
solution was listed out, since few cases (with low ρ) 
obtained exact solutions due to greatly calculation burden. 
 
 

Family 1: Three-band symmetric multiwavelets 
 
The three-band multiwavelets, orthogonal and symmetric, 
with the balanced order ranging from 1 to 3 and the 
minimal support length for every balance order, were 
present here. 
 
 
1-order balanced case 
 

As displayed in Figure 1, the two scaling functions are of 
lengths (5, 9) (that is the degree of y0,0(z) and y1,0(z) 
respectively), and are symmetric about (1/2,1) (that is the 
symmetric place of the two scaling functions, respectively). 
The S exponent is 0.6789.  

Among the four wavelet functions displayed in this 
Figure, the first and the last are symmetric about (1/2,1), 
while the second and the third are antisymmetric (1/2,1). 
The solution is presented in Table 1. 
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Table 1. Coefficients of 1-order balanced case in family 1. 

 

p0(0) *,p0(1),p0(2)
 0.03867513 0.43301270 0.78867513 0.43301270 0.03867513 0.00000000 

0.00000000 -0.03170907 -0.10566243 0.17604664 0.53867513 0.57735027 

       

p0(3),p0(4),p1(0) 
0.00000000 0.00000000 0.00000000 0.00000000 0.25149132 -0.53033009 

0.53867513 0.17604664 -0.10566243 -0.03170907 0.00000000 0.03883552 

       

p1(1),p1(2),p1(3) 
0.55767754 -0.53033009 0.25149132 0.00000000 0.00000000 0.00000000 

0.12940952 -0.21561221 -0.65973961 0.00000000 0.65973961 0.21561221 

       

p1(4),p2(0),p2(1) 
0.00000000 0.00000000 -0.25444773 0.65973961 0.00000000 -0.65973961 

-0.12940952 -0.03883552 0.00000000 0.02242170 0.07471462 -0.12448377 

       

p1(2),p2(3),p2(4) 
0.25444773 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

-0.38090084 0.81649658 -0.38090084 -0.12448377 0.07471462 0.02242170 
 

 

*The three symbols here are defined above and now index the following three 2×2 matrixes at the same row respectively. 
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Figure 2. Scaling functions (left) and wavelet functions (right) of 2-order balanced case in family 
1. 

 
 
 
2-order balanced case 
 
To the 2-order balanced case of this family, the two scaling 
functions have the same minimal support length of 9, and 
are symmetric (1,3/2), as seen in Figure 2. Furthermore, 
the first and the last wavelet functions are symmetric at the 
two points, and the other two are antisymmetric at the two 
points, respectively. The S exponent for the case is 1.0186, 
and the solution is given in Table 2. 
 
 
3-order balanced case 
 
The 3-order balanced case was obtained by increasing the 
support lengths of the two scaling functions to 17. With the 
S exponent of 1.6886 as shown in Figure 3, they are 
smoother than the two cases above. The two scaling 
functions are symmetric about (2,5/2). Similar to the two 
cases above, two of the wavelet functions are symmetric at 
these points respectively, and the other two are 
antisymmetric. The solution is presented in Table 3. 

Family 2: Three-band flipped multiwavelets 
 
Also, every one in this family is orthogonal, of ρ-order 
balancing (ρ€ {1,2,3}), and with the minimal support length 
for its  balanced order. 
 
 
1-order balanced case 
 
As shown in Figure 4, the two scaling functions are flipped 
at 1/2, whereas the four wavelet functions are symmetric/ 
antisymmetric at the same place. Both support lengths are 
same as 6, and the S is 0.5000. We presented this solution 
in Table 4. 
 
 
2-order balanced case 
 
At the place of 5/4, the two scaling functions in this case 
are flipped, and their four wavelet functions are 
symmetric/antisymmetric, as seen in Figure 5. The



 

 

1890          Int. J. Phys. Sci. 
 
 
 

Table 2. Coefficients of 2-order balanced case in family 1. 
 

p0(k),k=0,1,2 
-0.02138334 -0.08553337 0.17106675 0.42766687 0.74841702 0.42766687 

0.00000000 0.00000000 0.00000000 -0.02138334 -0.08553337 0.17106675 

       

p0(k),k=3,4,5 
0.17106675 -0.08553337 -0.02138334 0.00000000 0.00000000 0.00000000 

0.42766687 0.74841702 0.42766687 0.17106675 -0.08553337 -0.02138334 

       

p1(k),k=0,1,2 
-0.07560154 -0.30240614 0.60481228 -0.12096246 -0.21168430 -0.12096246 

0.00000000 0.00000000 0.00000000 -0.07856742 -0.31426968 0.62853936 

       

p1(k),k=3,4,5 
0.60481228 -0.30240614 -0.07560154 0.00000000 0.00000000 0.00000000 

0.00000000 0.00000000 0.00000000 -0.62853936 0.31426968 0.07856742 

       

p2(k),k=0,1,2 
-0.07856742 -0.31426968 0.62853936 0.00000000 0.00000000 0.00000000 

0.00000000 0.00000000 0.00000000 -0.07560154 -0.30240614 0.60481228 

       

p2(k),k=3,4,5 
-0.62853936 0.31426968 0.07856742 0.00000000 0.00000000 0.00000000 

-0.12096246 -0.21168430 -0.12096246 0.60481228 -0.30240614 -0.07560154 
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Figure 3. Scaling functions (left) and wavelet functions (right) of 3-order balanced case in family 1. 

 
 

 

support lengths are (12,12), the S is equal to 1.6462, and 
the solution is given in Table 5. 
 
 

3-order balanced case 
 

As displayed in Figure 6, the scaling functions here are 
flipped at 7/4, and the four wavelet functions are 
symmetric/antisymmetric at the same place. Compared 
with the two cases above, the lengths are longer, same as 
16, and the smoothness is better, with the S of 2.3596. 
This solution is presented in Table 6. 
 
 

Family 3: Four-band symmetric multiwavelets 

 
For each balanced order in this family, every pair of scaling 

functions constructed here are symmetric, but their 
wavelet functions obtained are antisymmetric. For a pair of 
scaling functions, 3 pairs of wavelet functions exist here. 
The rapidly increasing variables and equations make the 
equation systems so hard to solve, so that some equations 
related to specified property have to be removed from the 
equation system in order to find the solution. Hence, the 
orthogonal wavelet functions without symmetry were 
obtained. 
 
 

1-order balanced case 
 
The minimal support lengths of two scaling functions are 
same as 7, and the symmetric points of the two functions 
are (1/2,1), as seen in Figure 7. The S exponent equals 
0.5918, and the solution is presented in Table 7. 
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Table 3. Coefficients of 3-order balanced case in family 1. 

 

p0(0),p0(1),p0(2) 
-0.0124966
5 

0.02420801 0.02017305 -0.0366076
0 

-0.0546323
4 

-0.0364798
5 0.00000000 0.00000000 0.00000000 0.00073633 0.00142640 0.00911996 

 

p0(3),p0(4),p1(5) 
0.13077436 0.48189215 0.69838856 0.48189215 0.13077436 -0.0364798

5 0.02369307 -0.1023754
7 

-0.0806921
9 

0.20949685 0.48858543 0.63207005 
 

p0(6),p0(7),p0(8) 
-0.0546323
4 

-0.0366076
0 

0.02017305 0.02420801 -0.0124966
5 

0.00000000 

0.48858543 0.20949685 -0.0806921
9 

-0.1023754
7 

0.02369307 0.00911996 
 

p0(9),p1(0),p1(1) 
0.00000000 0.00000000 0.01084908 -0.0210164

0 
-0.0175138
8 

0.02392975 

0.00142640 0.00073633 0.00000000 0.00000000 0.00000000 0.00136490 
 

p1(2),p1(3),p1(4) 
0.03221925 -0.0644634

4 
0.23377684 -0.5027259

6 
0.60988952 -0.5027259

6 0.00264403 0.01690458 0.07083686 -0.2419057
4 

-0.1943333
5 

0.24113364 
 

p1(5),p1(6),p1(7) 
0.23377684 -0.0644634

4 
0.03221925 0.02392975 -0.0175138

8 
-0.0210164
0 0.58331659 0.00000000 -0.5833165

9 
-0.2411336
4 

0.19433335 0.24190574 
 

p1(8),p1(9),p2(0) 
0.01084908 0.00000000 0.00000000 0.00000000 -0.0165489

9 
0.03205803 

-0.0708368
6 

-0.0169045
8 

-0.0026440
3 

-0.0013649
0 

0.00000000 0.00000000 
 

p2(1),p2(2),p2(3) 
0.02671494 -0.0289012

8 
-0.0344235
0 

0.19342988 -0.5022788
0 

0.45416445 

0.00000000 0.00114924 0.00222627 0.01423345 -0.1388411
5 

0.18081647 
 

p2(4),p2(5),p2(6) 
0.00000000 -0.4541644

5 
0.50227880 -0.1934298

8 
0.03442350 0.02890128 

0.15633309 -0.3166163
9 

-0.2576100
5 

0.71661812 -0.2576100
5 

-0.3166163
9  

p2(7),p2(8),p2(9) 
-0.0267149
4 

-0.0320580
3 

0.01654899 0.00000000 0.00000000 0.00000000 

0.15633309 0.18081647 -0.1388411
5 

0.01423345 0.00222627 0.00114924 
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Figure 4. Scaling functions (left) and wavelet functions (right) of 1-order balanced case in family 2. 
 
 
 

2-order balanced case  
 

As shown in Figure 8, both scaling functions have the 
minimal support length of 11, meanwhile, they are 
symmetric about (1, 3/2). The S is 1.0975, and the solution 
is given in Table 8. 
 
 

3-order balanced case 
 

Due to a more complicated equation system compared 

with all the cases above, the solutions for this case was 
obtained in a difficult way. As shown in Figure 9, its minimal 
lengths are (19, 21), and the smoothest has the S of 
1.4254. The symmetric centers of the two scaling functions 
are (3/2, 2). We presented this solution in Table 9. 

 
 
Comparison among the three families 

 
The followings about  the  two  families  of  three-band (that
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Table 4. Coefficients of 1-order balanced case in family 2. 
 

p0(k),k=0,1,2 
0.65278390 0.63063138 0.26652261 0.31082766 -0.05328111 -0.07543363 

-0.07543363 -0.05328111 0.31082766 0.26652261 0.63063138 0.65278390 

       

p1(k),k=0,1,2 
-0.32088976 -0.25521402 0.57610378 0.57610378 -0.25521402 -0.32088976 

0.37277870 -0.42447770 -0.42527018 0.42527018 0.42447770 -0.37277870 

       

p2(k),k=0,1,2 
0.30965409 -0.29317322 0.56406011 -0.56406011 0.29317322 -0.30965409 

-0.47996155 0.51787946 -0.03791791 -0.03791791 0.51787946 -0.47996155 
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Figure 5. Scaling functions (left) and wavelet functions (right) of 2-order balanced case in family 2. 
 
 
 

Table 5. Coefficients of 2-order balanced case in family 2. 
 

p0(k),k=0,1,2 
-0.02935033 -0.07539946 0.11656702 0.54599215 0.67456492 0.43552648 

0.00269145 0.01786142 -0.0031086
1 

-0.08210029 -0.0396766
2 

0.16848267 

       

p0(k),k=3,4,5 
0.16848267 -0.03967662 -0.0821002

9 
-0.00310861 0.01786142 0.00269145 

0.43552648 0.67456492 0.54599215 0.11656702 -0.0753994
6 

-0.0293503
3        

p1(k),k=0,1,2 
0.11112611 -0.32019185 0.36003541 -0.29500579 -0.2091412

0 
0.35317731 

0.12908517 -0.44294091 0.47178362 -0.13492226 -0.0862115
9 

0.19729201 

       

p1(k),k=3,4,5 
0.35317731 -0.20914120 -0.2950057

9 
0.36003541 -0.3201918

5 
0.11112611 

-0.19729201 0.08621159 0.13492226 -0.47178362 0.44294091 -0.1290851
7        

p2(k),k=0,1,2 
-0.03320796 0.19051291 -0.1377052

0 
-0.18932062 -0.0256215

8 
0.63807568 

-0.07466410 0.36422861 -0.3356214
1 

-0.23805488 -0.1337077
7 

0.41781954 

       

p2(k),k=3,4,5 
-0.63807568 0.02562158 0.18932062 0.13770520 -0.1905129

1 
0.03320796 

0.41781954 -0.13370777 -0.2380548
8 

-0.33562141 0.36422861 -0.0746641
0  

 
 

Family 1 and 2) can be found; (1) Compared to the 
symmetric family, the advantages of the flipped family is 
shown, that is to 2-order balancing, it has the higher S, 
while to 3-order balancing, it has the shorter length as well 
as the higher S. (2) For the two families, the support length 

and the smoothness both increase as the balanced order 
rises. 

Moreover, for the two families with complete symmetry 
(Family 1 and 3), the followings can be seen: (1) The 
higher the balanced order is, the longer the support length  
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Figure 6. Scaling functions (left) and wavelet functions (right) of 1-order balanced case in family 2. 
 
 
 

Table 6. Coefficients of 3-order balanced case in family 2. 

 

p0(0)p0(1),p0(2) 
0.03439931 -0.00893307 -0.11981516 -0.03111451 0.21014029 0.43136001 

-0.00626427 0.00162675 0.01990598 0.00516934 -0.02728008 -0.03686995 

       

p0(3),p0(4),p1(5) 
0.64594205 0.55913299 0.12543278 -0.07078164 -0.03686995 -0.02728008 

-0.07078164 0.12543278 0.55913299 0.64594205 0.43136001 0.21014029 

       

p0(6),p0(7),p1(0) 
0.00516934 0.01990598 0.00162675 -0.00626427 0.06014722 -0.01561949 

-0.03111451 -0.11981516 -0.00893307 0.03439931 0.07011644 -0.01820837 

       

p1(1),p1(2),p1(3) 
-0.15092729 -0.03919394 0.03101509 0.51988485 -0.44600922 0.04070278 

-0.14970069 -0.03887541 -0.11457647 0.55100855 -0.13418676 -0.36889873 

       

p1(4),p1(5),p1(6) 
0.04070278 -0.44600922 0.51988485 0.03101509 -0.03919394 -0.15092729 

0.36889873 0.13418676 -0.55100855 0.11457647 0.03887541 0.14970069 

       

p1(7),p2(0),p2(1) 
-0.01561949 0.06014722 -0.01637756 0.00425305 0.04587948 0.01191433 

0.01820837 -0.07011644 -0.04469703 0.01160726 0.08066135 0.02094675 

       

p2(2),p2(3),p2(4) 
-0.03591981 -0.21016117 0.45771976 -0.49244439 0.49244439 -0.45771976 

0.15786498 -0.33061507 -0.36696801 0.47119978 0.47119978 -0.36696801 

       

p2(5),p2(6),p2(7) 
0.21016117 0.03591981 -0.01191433 -0.04587948 -0.00425305 0.01637756 

-0.33061507 0.15786498 0.02094675 0.08066135 0.01160726 -0.04469703 
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Figure 7. Scaling functions of 1-order balanced case in family 3. 
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Table 7. Coefficients of 1-order balanced case in family 3. 
 

p0(k),k=0,1,2 
-0.05618622 0.25000000 0.55618622 0.50000000 0.55618622 0.25000000 

0.00000000 0.00000000 0.00000000 0.00000000 -0.05618622 0.25000000 

       

p0(k),k=3,4,5 
-0.05618622 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

0.55618622 0.50000000 0.55618622 0.25000000 -0.05618622 0.00000000 

       

p1(k),k=0,1,2 
-0.07841752 0.17708318 0.01167638 0.15397548 -0.42426777 0.43977614 

-0.15495567 0.29177101 -0.23567084 0.12021065 -0.22305823 0.31287882 

       

p1(k),k=3,4,5 
0.10911770 -0.33944805 0.09125419 -0.36070294 -0.26116081 0.48111402 

-0.62585870 0.52079752 -0.02415754 0.05074705 0.04107684 -0.07378091 

       

p2(k),k=0,1,2 
-0.08803161 0.20760586 0.05231708 0.20074341 -0.06971180 -0.53546958 

0.05418614 -0.13545043 -0.06629784 -0.14781627 0.34536411 -0.26981678 

       

p2(k),k=3,4,5 
0.24342685 0.49007453 -0.29703934 -0.36727758 -0.11659822 0.27996041 

-0.41036113 0.03331574 0.55776897 -0.11075276 -0.28304116 0.43290142 

       

p3(k),k=0,1,2 
-0.22595926 0.35108925 -0.67459805 -0.06011032 0.51338159 0.12999256 

-0.20618261 0.44519092 -0.06012502 0.34024035 -0.26466040 -0.45527679 

       

p3(k),k=3,4,5 
0.23572886 -0.12394280 -0.10054764 -0.06846835 -0.00443860 0.02787277 

-0.02594669 -0.32695591 0.36704979 0.30178934 0.04871827 -0.16384125 
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Figure 8. Scaling functions of 2-order balanced case in family 3. 

 
 
 
and the smoother the system is. (2) A contradiction exists 
between the following two sides, one side is the support 
length and another side is the balanced order as well as 
the smooth level. 
 
 

PERFORMANCE IN APPLICATION 
 
DEM generalization belongs to data compression in 
essence; while the data compression is a key application 
area for the WT. In order to evaluate the practical 
performance of the constructed M-band multiwavelets, we 

applied them in DEM generalization application.  
For  the  algorithm  of  WT  based  LOD  DEM  database 

generalization, as demonstrated in Figure 10, we used a 
simple generalization algorithm followed that of Zhu (1999), 
McArthur (2000) and Wu (2001): first to perform a 
multi-level WT to the original data, and then to perform the 
inverse WT with all high subband wavelet-domain 
coefficients zeroed out, while the low subband coefficients 
kept no changes. That way, one can observe to what 
extent the method is efficient without the use of more 
complex generalization algorithm. 

With the experiments in this section, we first tested the



 

 

Wang et al.          1895 
 
 
 

Table 8. Coefficients of 2-order balanced case in family 3. 

 

p0(0),p0(1),p0(2) 
0.00000000 -0.03759203 -0.08106594 0.08740797 0.25000000 0.45018406 

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 -0.03759203 
       

p0(3),p0(4),p0(5) 
0.66213187 0.45018406 0.25000000 0.08740797 -0.08106594 -0.03759203 

-0.08106594 0.08740797 0.25000000 0.45018406 0.66213187 0.45018406 
       

p0(6),p0(7),p1(0) 
0.00000000 0.00000000 0.00000000 0.00000000 -0.02055628 -0.01185112 

0.25000000 0.08740797 -0.08106594 -0.03759203 0.14296382 -0.25211743 
       

p1(1),p1(2),p1(3) 
-0.06997655 -0.01336025 0.12949384 0.36838902 0.23000544 -0.44941826 

0.26378848 -0.20430870 -0.10566565 0.09997311 -0.24928489 0.19840616 
       

p1(4),p1(5),p1(6) 
-0.32691694 -0.44187187 0.17333346 0.49840223 0.04629340 -0.03192512 

0.47294058 -0.43257684 -0.17902300 0.21339610 0.34625981 -0.25636991 
       

p1(7),p2(0),p2(1) 
-0.03440349 -0.04563750 0.18619493 -0.30810719 0.37014408 -0.27634496 

0.02691483 -0.08529645 -0.17820404 0.20431061 -0.38715382 0.12482305 
       

p2(2),p2(3),p2(4) 
-0.22329864 0.27119560 0.20192979 -0.53116979 0.16753287 0.34294369 

0.35021266 0.27017987 -0.32999347 -0.39388400 0.49663287 0.11296833 
       

p2(5),p2(6),p2(7) 
-0.01025356 -0.24060304 -0.04774765 0.06125736 0.00517847 0.03114804 

-0.19746299 -0.05268454 -0.00739401 -0.01024349 0.00119249 -0.00329951 
       

p3(0),p3(1),p3(2) 
0.04794479 -0.06921858 0.09951101 -0.05668782 -0.07425294 -0.04985476 

0.07138057 -0.23912769 0.04478819 -0.17789195 0.24923760 0.54034011 
       

p3(3),p3(4),p3(5) 
-0.06494215 0.09412137 0.19557575 0.02018473 -0.24895931 0.49971031 

-0.51524879 0.29457834 -0.36987951 0.11304024 0.10946486 -0.12343223 
       

p3(6), p3(7) 
-0.68527252 0.35245378 -0.10993600 0.04962234 - - 

-0.11379884 0.08217632 -0.00050288 0.03487564 - - 
 

RMSE, Root mean square of error; Max, maximum; Min, minimum; Std, standard deviation. 
 
 
 

 
 

Figure 9. Scaling functions of 3-order balanced case in family 3. 
 
 
 

advantages of the proposed M-band multiwavelet systems 
over other widely-used wavelet systems, and then 
evaluated the effectiveness of high-order balanced 
property in these multiwavelet systems. Figure 11 displays 
the original DEM data used in the experiments. The area 

covered by this DEM is situated in YanHe Basin, Loess 
Plateau, China. It has a spatial resolution of 5 m, and has a 
relatively complex terrain so as to gain a deeper study. All 
the experiments in this section were implemented in 
Matlab and ArcGIS environments. 
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Table 9. Coefficients of 3-order balanced case in family 3. 

 

p0(k),k=0,1,2 
0.00613368 0.01040717 -0.00882906 0.01257815 -0.09790565 -0.10322554 

0.00000000 0.00000000 0.00000000 -0.01421447 0.02686301 0.02580638 
       

p0(k),k=3,4,5 
0.13993715 0.29901870 0.46066388 0.56244303 0.46066388 0.29901870 

-0.02955839 -0.03243474 -0.05644699 -0.04162869 0.09847849 0.23505236 
       

p0k),k=6,7,8 
0.13993715 -0.10322554 -0.09790565 0.01257815 -0.00882906 0.01040717 

0.46066388 0.65483831 0.46066388 0.23505236 0.09847849 -0.04162869 
       

p0(k),k=9,10,11 
0.00613368 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

-0.05644699 -0.03243474 -0.02955839 0.02580638 0.02686301 -0.01421447 
       

p1(k),k=0,1,2 
-0.00507810 0.00710181 -0.01935942 0.04917695 -0.04254842 -0.01762121 

0.04051591 -0.06998946 0.17707304 -0.23952936 0.06518977 -0.13612278 
       

p1(k),k=3,4,5 
0.01609149 -0.00441760 0.06074225 0.14175608 -0.42625823 0.28280820 

0.11536280 0.16438176 -0.00659978 -0.27868970 -0.05725630 0.28706846 
       

p1(k),k=6,7,8 
-0.04562502 0.35563403 -0.41229657 -0.04938046 -0.01894017 0.06373708 

0.26473226 -0.27935334 0.28942177 -0.55932075 0.01415034 0.25774835 
       

p1(k),k=9,10,11 
-0.18632926 0.17445261 0.44832319 -0.37087654 -0.00974105 0.00864837 

-0.10656798 -0.02013836 0.16220799 -0.13139715 0.09571695 -0.04860444 
       

p2(k),k=0,1,2 
0.00790494 -0.02994372 0.06218494 -0.08675014 0.10262490 0.04361557 

0.00421909 0.00863645 -0.00858057 0.09678407 -0.23604435 -0.23160855 
       

p2(k),k=3,4,5 
-0.10627920 -0.24160565 0.46654923 -0.29261344 0.07058849 -0.09853232 

0.29457813 0.44423142 -0.15587671 0.16503185 -0.40850408 -0.35975842 
       

p2(k),k=6,7,8 
0.14522218 0.06329775 -0.37104674 0.09372048 0.29307836 0.28588643 

0.30395673 -0.04764542 -0.04637334 0.14560605 0.18862365 0.08705382 
       

p2(k),k=9,10,11 
-0.24626305 -0.27202198 -0.11579851 0.09983854 0.26612762 -0.13978469 

-0.13121451 -0.15927459 -0.11303930 0.09522204 0.13569191 -0.07171538 
       

p3(k),k=0,1,2 
-0.06476933 0.11561026 -0.28939031 0.48035677 -0.29066549 0.04220370 

0.01875298 -0.02205369 0.06441282 -0.23692976 0.25743375 0.16557629 
       

p3(k),k=3,4,5 
0.01624537 -0.02244176 0.01227753 0.02125586 0.20869753 -0.17055466 

-0.15522965 -0.04872922 -0.60664982 0.42092753 0.27459941 -0.07017058 
       

p3(k),k=6,7,8 
-0.29670535 0.23742069 0.21937759 -0.41747654 0.10089807 0.25918173 

0.04009557 0.02958624 -0.18699614 -0.09627342 0.14969217 0.21205933 
       

p3(k),k=9,10,11 
-0.14145084 -0.10389656 0.05739531 -0.04437259 0.14703631 -0.07623328 

-0.17743833 -0.11759138 0.04342681 -0.03330788 0.15569253 -0.08088557 
 
 
 

Advantages of M-band multiwavelets over other 

wavelets 
 
It is the advantage of M-band wavelet systems over 

two-band wavelet systems that fewer-level decompositions 
bring less accumulated errors, as demonstrated by Zhu 
(1999) and Zhang (2005). For instance, using a two-band 
wavelet    system,   the   decomposition   of   2k-level   to   an  
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Figure 10. The WT based LOD database generalization algorithm. The Hi and Lo denote the high and 
low subband coefficients respectively; the IWT denotes the inverse of WT; the WT k denotes the 
generalized DEM using the WT with k-level decomposition, the same below. 

 
 
 

 
 

Figure 11. Original DEM data. 

 
 
 
original DEM obtains the generalized DEM with the 
generalized scale of (1/2)

2k
, whereas using a four-band 

wavelet system, just the decomposition of k-level can do 
this. Thus, the accumulated errors caused by the 
multi-level decompositions can be reduced, and 
consequently the deviation between the original and the 
generalized result can be lessened. In addition, 
multiwavelets outperform scalar wavelets in FB 
construction as discussed above. In order to examine the 
advantages above, we carried out the experiments from 
two aspects; the assessment to generalized scale and the 
analysis to generalized deviation for every generalized 
result. We attempted to finally clarify that for each specified 
generalized scale, so as  to  know  which  one  of  these  
systems  result  in  less deviation. For this purpose, only 
four-band systems and two-band systems were 
considered in the experiments. It is reasonable to require 
the compared multiwavelet systems having a same 
balanced order, so the four-band 3-order balanced case 
constructed here and the two-band 3-order balanced case 
designed by Selesnick in 2000 (named symbal3o there) 

were taken into account in the comparison (abbreviated as 

four-band MWT and two-band MWT below, respectively). 
Furthermore, two scalar wavelets of two-band and 
four-band respectively were also used to evaluate the 
advantages of multiwavelet. Here, the two-band wavelet 
known as Daubechies 6 and the four-band wavelet 
proposed by Steffen and Heller in 1993 (the system with 
the regularity of 4 in the paper) were chosen for their 
similar smoothness to other compared systems. 
Meanwhile, since the Daubechies 6 was also proposed 
and used by McArthur (2000) in his DEM generalization 
application, we chose it to make a fair comparison. For 
simplicity, the two scalar wavelets are denoted as 
two-band SWT and four-band SWT below respectively. 

The generalized scale of each generalized result 
compared with the original was analyzed in three ways: 

 
(1) At first, it can be approximately assessed by energy 
ratio ER (Wu and Zhu, 2001). Using H

*
 to represent a 

generalized DEM, its energy can be calculated by its norm 
||H*||; using H to represent the original DEM, its energy can 
be calculated by ||H||. Then, ER can be computed via the 
formula in Equation 6. The similarity between the original 
and the generalized result is relatively demonstrated by the 
indicator. 
(2) Next, another tool to indirectly assess the generalized 
scale is gained from length of contours, the ratio LR, with 
the expression in Equation 6. There, L and L* are the total 
length of the contours derived from the original DEM and 
the generalized DEM respectively (with a specified contour 
interval). LR can be an indirect indicator to represent 
generalized scale, because there is a close relationship 
among length of contours, complexity of terrain, and scale 
of generalization (Yang et al., 2008). It ranges from zero to 
one, and is generally closer to zero/one if the generalized 
scale is higher/lower. 
(3) In addition, slope frequency curve, as an effective way 
to visually display generalized scale, is also used here 
(Yang et al., 2008). Its horizontal axis represents every 
slope value, and vertical axis represents the distribution 
count of every slope value. When generalized scale is 
higher/lower, more/less flat slopes will be generated from  

http://adsabs.harvard.edu/cgi-bin/author_form?author=Steffen,+P&fullauthor=Steffen,%20P.&charset=UTF-8&db_key=PHY
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Table 10. Indicators representing the generalized level of each generalized DEM. 

 

Indicator 
Energy Contour 10m

* 
Contour of 20m 

Norm ER (%) Length (m) LR (%) Length (m) LR (%) 

Original DEM 907772.9 100.000 643794.9 100.00 333756.7 100.000 

       

2-band SWT 2 907034.9 99.919 639832.3 99.385 329769.6 98.805 

2-band MWT 2 906340.4 99.842 641112.2 99.583 330769.2 99.105 

4-band SWT 1 906803.4 99.893 641688.4 99.673 331811.9 99.417 

4-band MWT 1 906929.6 99.907 642457.7 99.792 332067.9 99.494 

       

2-band SWT 4 900759.4 99.227 571429.1 88.760 284935.1 85.372 

2-band MWT 4 901859.7 99.349 573276.8 89.047 289845.0 86.843 

2-band SWT 2 901574.6 99.317 569325.2 88.433 284184.5 85.147 

4-band MWT 2 900730.4 99.224 567661.0 88.174 287399.9 86.111 

        

2-band SWT 6 890566.1 98.105  458369.1  229237.8 68.684 

2-band MWT 6 889492.2 97.986  463793.1  246486.0 73.852 

4-band MWT 3 888089.7 97.832  465989.7  234721.4 70.327 

4-band MWT 3 889938.8 98.035  461289.3  231312.8 69.306 
 

*Means the total length of contours with the contour interval of 10 m. 
 
 
 

generalization, and consequently the main body of the 
curve will move toward the right/left side. 
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The deviation between the original DEM and every 
generalized DEM was analyzed based on the following 
elevation indicators, the middle error, max height, min 
height, and mean height of the generalized DEM 
(abbreviated as RMSE, Max, Min, Mean below, 
respectively). The middle error was computed through the 
formula in                                              (6), where hi and hi* 
represent the cell values of the original and the generalized 
result respectively. 

 
 
Discussion on generalize scale of results 

 
The following is shown from Table 10: First, the regular 
decrease of ER along with the rise of the k can be seen 
here. Secondly, we can also find that LR decreases 
regularly as the k rises gradually for each case of the 
contour interval. It is demonstrated by both indicators that 
the generalized scale regularly increases as the 
decomposition level rises. Moreover, it is shown from both 
indicators that the generalized scales obtained from the 
four-band systems with the decomposition level of k are 
close to those from the two-band systems with the 

decomposition level of 2k (k∈1,2,3}). 
Figure 12 displays the slope frequency curves derived 

from the original DEM and several generalized DEMs. The 
followings are shown: At first, the overall distribution of the 
slope values is moving towards the left side as k is rising in 
each case of wavelet system. That generalizations bring 
slope decay into generalized results is obviously displayed 
here. Next, the two curves related to four-band MWT k and 
two-band MWT 2k respectively are approximately 
distributed (k∈ {1,2}). This implies their similar generalized 
scales. 

The generalized DEMs obtained from the four-band 
multiwavelets constructed in this work as well as the 
original DEM were presented in Figure 13. It is shown that 
along with the rise of k, the local detail features in the 
original DEM are gradually eliminated, whereas the overall 
trend features are well retained. 
 
 

Discussion on generalized deviation of results 
 

The values of the indicators applied to analyze the 
generalized deviation were presented in Table 11. The 
followings could be observed: As shown, the Max related 
to every wavelet system decreases, and conversely the 
Min increases as the k rises. This demonstrates that the 
generalized scale increases with the rise in the k for every 
wavelet system. Meanwhile, that the Mean varies little in 
this process indicates the overall trend of the original DEM 
is well preserved at every decomposition level. Secondly, 
the decrease of the Std along with the rise of the k shows 
the generations gradually cancel the random features of 



 

 

the original DEM, and the generalized DEM gradually 
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Figure 12. Slope frequency curve resulted from different wavelet systems. 
 
 
 

 
  

 

  
 

Figure 13. The original DEM (a), and the generalized DEMs (b),(c),(d) resulted from 4-band MWT 
k, k=1,2,3 respectively. 

 
 
 

Table 11. Elevation indicators of each generalized DEMs. 
 

Indicator RMSE Max(m) Min(m) Mean(m) Std 

Original DEM - 1417.788 1080.396 1231.798 62.746 

      

2-band SWT 2 0.224 1417.709 1080.439 1231.799 62.746 

2-band MWT 2 0.219 1417.608 1080.338 1231.794 62.346 

4-band SWT 1 0.184 1417.418 1080.532 1231.842 62.582 

4-band MWT 1 0.206 1417.692 1080.329 1231.706 62.726 

      

2-band SWT 4 4.925 1413.749 1089.581 1231.789 61.228 

2-band MWT 4 5.091 1415.245 1086.397 1231.773 61.530 

4-band SWT 2 4.736 1415.441 1087.358 1231.534 61.318 

4-band MWT 2 4.235 1412.306 1092.783 1231.489 60.901 

      

2-band SWT 6 23.499 1397.487 1100.722 1231.652 58.774 

2-band MWT 6 22.197 1395.248 1102.775 1231.675 58.108 

4-band SWT 3 20.422 1400.296 1107.353 1231.668 59.383 

4-band MWT 3 19.105 1402.686 1095.641 1231.679 59.207 



 

 

 

RMSE, Root mean square of error; Max, maximum; Min, minimum; Std, standard deviation. 
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Figure 14. Scale functions of the Asim 3-band multiwavelet. 

 
 
 
becomes smooth during the process, just like the display in 
Figure 13.  
  In addition, with the discussion on the generalized scale, 
two facts relating each generalized scale are shown from 
the indicators Max, Min and especially RMSE. First, the 
deviations from the four-band wavelet systems are less 
than those from the two-band systems in most cases, and 
this phenomenon becomes more obvious as the 
generalized scale becomes higher. Next, the four-band 
multiwavelet system always results in less deviation 
compared with that from the four-band scalar wavelet 
system. In conclusion, the outperforming of the four-band 
multiwavelet over the other wavelets (also including the 
Daubechies 6 wavelet proposed by McArthur, 2000) is 
shown here. 

 

 

Effectiveness of high-order balancing 
 
As discussed above, the high-order balanced property of a 
lowpass/highpass filter branch is the ability to precisely 
preserve/cancel the trend feature in a signal. The higher 
balanced order, the more precisely the trend features in a 
DEM signal can be preserved in approximation coefficient, 
and the less trend features (or more random features) 
remain in detail coefficient. This ability can be evaluated by 
analyzing the spatial self-correlation of the detail 
coefficient, since the self-correlation will be less significant 
provided that the coefficient consists of more random 
features. The Global Moran (GM) indicator, as a common 
approach to calculate the spatial self-correlation of a 2D 
data, can be used here to gain a quantitative analysis. It 
was computed via the expression in Equation 7, where x  

is the mean of ix , and 
ijw  is a weight matrix 

demonstrating the interaction between ix  and 
jx  caused 

by their spatial adjacency. The indicator will be closer to 
zero if the analyzed signal consists of more random 
features. 
 

    
2

1 1 1 1 1

N N N N n

ij i j ij ii j i j i
GM N w x x x x w x x

    
                (7) 

 

According to the experimental purpose, the three-band 
multiwavelets with different balanced order were tested in 
the experiment. For a general comparison, other two 
multiwavelets, Alpert three-band multiwavelet and Asim 
three-band multiwavelet (Alpert, 1993; Bhatti and 
Özkaramanli, 2002) were considered here, besides the 
cases constructed above. Both are orthogonal and 
symmetric, but unbalanced (or 0-order balanced). We 
applied the particular orthogonal transform of Lebrun 
(1998) to their basis separately so as to attach balanced 
property (1-order balancing) to each system.  
  Unfortunately, just like the discussion above, the 
symmetry of each system loses at the cost, although the 
orthogonality still remains. Figures 14 and 15 display the 
changes of Asim multiwavelet system resulted from the 
transform. 

For each multiwavelet system, (m
2
-1)r

2
 detail-coefficient 

parts (m and r are the same as that above) are generated 
via one-level decomposition to the original DEM. Then the 
Global Moran indicator of every part is calculated 
respectively. To obtain a clear comparison, the mean of 
these indicators was used as a comprehensive Global 
Moran indicator. Therefore, there is one value for every 
multiwavelet system to approximately assess how random 
the information in the detail coefficients is or how precisely 
the trend feature is preserved in the approximate 
coefficient. We can see from the Table 12 that for each 
multiwavelet family, the Global Moran indicator obtained 

dict://key.0895DFE8DB67F9409DB285590D870EDD/characteristic
dict://key.0895DFE8DB67F9409DB285590D870EDD/unfortunately


 

 

from their detail coefficient decreases to zero as the ρ 
rises. This justifies that the ability of the lowpass/highpass 

filter branch in our constructed multiwavelet systems to 
precisely preserve/cancel the trend features in a signal is 
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Figure 15. Scale functions of the Asim 1-order balanced 3-band 
multiwavelet. 

 
 
 

Table 12. Global Moran indicators for each multiwavelet 
 

Balanced order ρ  1 2 3 

Alpert 3-band 1 0.9224 0.1389 - - 

Asim 3-band 1 0.7916 0.3354 - - 

Symmetric 3-band 1 - 0.1824 0.0780 0.058
7 Flipping 3-band 1 - 0.2274 0.0776 0.062
4 Symmetric 4-band 1 - 0.1034 0.0162 0.008
6  

 
 
improved as the balanced order rises.  
 
 

CONCLUSION 
 
For integrating more key properties into a single wavelet 
system, multiwavelet is proposed after scalar wavelet; for 
obtaining greater flexibility in choosing the time-frequency 
tiling, M-band multiwavelet is developed following 
two-band multiwavelet. However, a particular property is 
very necessary to M-band multiwavelet systems, just like 
the case of two-band multiwavelet systems. After the 
analysis on the related theories, we presented the 
procedures of using the Gröbner base technique to 
construct the M-band multiwavelet system that integrates 
several key properties together, including orthogonality, 
symmetry, flipping and balancing. Then, we achieved three 
families of orthogonal multiwavelets in this way, including 
three-band symmetric multiwavelet, three-band flipped 
multiwavelet and four-band symmetric multiwavelet. Every 
family is of the multiplicity of two, indexed by the increasing 
balanced order ρ (ρ∈{1,2,3}), and supported by the 
minimal length according to each balanced order. And for 

each family, the multiwavelet becomes smoother as the ρ 
rises. We also tested their practical     performances     in     
LOD      DEM    database generalization application. The 
results show the advantages of the M-band multiwavelets 
constructed here over other widely-used wavelet systems, 
including multiwavelet of two-band, scalar wavelets of 
M-band and two-band respectively, and also justified the 
effectiveness of   the   high-orders   balanced   property  of   
the  proposed multiwavelets in preserving trend features of 
signals. 

However, the minimal support length of the constructed 
multiwavelet increases so rapidly as balanced order rises 
gradually. Hence, other approaches must be put forward 
subsequently (to raise the multiplicity that is to set the r 
higher). In addition, we should further test the practical 
performance of the constructed multiwavelets in other 
signal processing areas in future. 
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