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In this paper, predictive hybrid redundancy has been extended to large-scale control systems 
comprising n modules. In m-out-of-n systems, if m-out-of-n modules are in agreement, the system can 
report consensus; otherwise the system fails. While in our new extension, if there is no agreement, a 
history record of previous successful result(s) is used to predict the output. In order to analyze the 
reliability of this system, we present a Markov model based on which the reliability has been computed 
and compared with m-out-of-n redundancy. The results of simulation demonstrated that the new 
redundancy improves overall system reliability in all examined scenarios, especially when the number 
m is large. 
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INTRODUCTION 
 
Systems used in many critical applications may show 
erratic behavior and possible hazardous consequences 
due to inherent faults. Economic, social and moral 
pressures are driving the need to reduce such hazards in 
systems behavior (Latif-Shabgahi et al., 2003). This is 
particularly true for process and motor control (Gaeid and 
Ping, 2011) in industries where poisonous, flammable or 
explosive materials are used, in transport (for example, 
railway systems, avionics, automobile and X-by-wire 
systems), nuclear power plants and military applications 
(Woo and Kook, 2000; Crosby, 2007; Xiao-Jun et al., 
2007; Yamasaki and Shibata, 2007; Changki and 
Medioni, 2008; Risser et al., 2008; Harangi et al., 2010; 
Narayanaswamy et al., 2010). In such applications, 
redundancy is a major approach for improving or sus-
taining the normal behavior of a system in an 
environment where it may not be possible to eliminate the 
faults entirely (Johnson, 1989; Ezhilchelvan et al., 2004; 
Kim et al., 2008; Mu and Systems QUoTSoE, 2008; 
Zarafshan et al., 2010). 
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Abbreviations: NMR, N-modular redundancy; MTTF, mean 
time to failure; TMR, triple modular redundancy. 

Redundancy includes the addition of some information,  
time and hardware or software resources to a particular 
system for providing beyond what is required for its 
normal function. As the most appropriate form of 
hardware redundancy in control systems, replication of 
hardware modules can be in forms of passive (static), 
active (dynamic) and hybrid.  

Hiding fault occurrence and preventing faults for 
leading to errors is the aim in passive techniques in order 
to achieve fault tolerance. In the most basic form, there is 
no need for fault detection and system reconfiguration for 
such techniques and the occurrence of faults is simply 
masked from the output of the system. In order to mask 
the occurrence of faults, passive hardware redundancy 
hinges on voting mechanisms (Johnson, 1989). N-
modular redundancy (NMR), recommended as a method 
of providing fault masking in hardware systems, is the 
commonest form of passive redundancy. In this method, 
n>2 redundant hardware modules are employed 
satisfying a common specification (Goseva-Popstojanova 
and Grnarov, 1991) and the occurrence of fault(s) is 
hidden from the  system output by a voting unit. The 
redundant modules perform a same function on the same 
input data in parallel and deliver their results to the voter. 
Subsequently, the voter arbitrates between the achieved 
results and yields a single output. A voting algorithm 
performs this arbitration process in which the result of the 
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Figure 1. TMR System. 

 
 
 
majority is usually believed to be correct output used by 
the system (Johnson, 1989). The general form of these 
systems is known as m-out-of-n systems in which m out 
of n modules should produce same values so that the 
voter makes an output. In Figure 1, the architecture of 
triple modular redundancy (TMR), in other words a 2-out-
of-3 system, is illustrated. 

The second form of redundancy is active approach, 
which tries to identify faulty module(s) and carry out a 
number of actions to remove faulty element(s) from the 
system. In other words, this technique needs system 
reconfiguration for tolerating faults. 

The last form of hardware redundancy is hybrid 
approach where the attractive benefits of both passive 
and active techniques are tried to be employed for 
tolerating faults. Such method is definitely more 
expensive than the other approaches and is required to 
avoid momentary errors particularly in safety-critical 
control systems where obtaining high reliability is 
necessary (Johnson, 1989). Whereas fault masking is 
executed to avoid the generation of erroneous results in 
the system, the mechanisms for fault detection, fault 
location and fault recovery are performed in hybrid 
approach to reconfigure the system in case of fault 
occurrence (Johnson, 1989). 

Predictive hybrid redundancy (Kim et al., 2008) is of the 
several hybrid redundancy techniques presented in 
literature. In this paper, this technique is extended to m-
out-of-n control systems and a performance model of the 
systems implemented by this approach is presented. The 
new extension is called as Predictive Hybrid m-out-of-n 
system and henceforth will be briefly referred to as 
PHmn.  

To investigate the reliability, one famous approach is 
Markov modeling in which the probabilistic behavior of 
one system state depends on the previous one. This type 
of behavior is nonhereditary or memoryless. Problems 
are significantly simplified through the inclusion of the 
Markovian property regarding the fact that the past 
knowledge is decoupled from the future by the knowledge 
of the present (Ramakumar, 1996; Stapelberg, 2009). 
Based on this approach, behavior of some physical 
systems and the system used in this paper are 
categorized. In this research, we investigate the reliability  

 
 
 
 
of PHmn based on Markov modeling and present the 
results of the analysis in different scenarios by the use of 
simulations. 
 
 
RELATED WORKS 

 
Hybrid voting 
 
Hybrid voting algorithms which incorporate Prediction (Acton, 1970; 
Bass, 1995; Latif-Shabgahi et al., 2004; Karimi et al., 2009; Karimi 
et al., 2010; Zarafshan et al., 2010) and Smoothing (Latif-Shabgahi 
et al., 2003; Karimi et al., 2009)  have been presented for cyclic 

control systems where there are some relationship between the 
result in one cycle and the result in the next (Latif-Shabgahi et al., 
2004). They are actually the extended forms of majority voter 
(Lorczak  et al., 1989; Karimi et al., 2009; 2010) and their function is 
based on a two-phase algorithm; if during the first phase, majority 
result cannot be attained, in the second phase, an acceptance test 
is consequently performed to find a probably correct voting result. If 
both phases are unable to yield an output, the voter will break 

down. The activity of finding proper voter output in second phase in 
both approaches is based on some calculations on voter history 
records.  

If there is no agreement among the results of redundant variants 
in the smoothing voter (Latif-Shabgahi et al., 2003), the credible 
output of current voting cycle will be chosen  from the closest value 
to the latest voter successful result. However, if the measured 
distance is less than smoothing threshold which is a pre-defined 
value, that probable result is subsequently chosen as the voter 
output; or else, the voter fails to produce answer. 

To produce the expected result of the current voting cycle in 
predictive voters (Acton, 1970; Bass, 1995; Latif-Shabgahi et al., 
2004), a history record of preceding results are utilized in case of 
detecting no agreement among the voter inputs. To do so, this 
result is compared with each voter inputs. Then, the input of each 
voter having a distance from the expected result less than a 
predictive threshold, which is actually a predefined value, will be 

chosen as the voter output; otherwise, the decision making will be 
failed by the voter. In order to implement this voter, various 
prediction methods were employed including the first order, second 
order and third order predictive voter. Figure 2 demonstrates the 
general flowchart of hybrid voting algorithms incorporating 
Prediction and Smoothing. 

Hybrid voting algorithms can be implemented in both hardware 
and software systems; for example predictive hybrid redundancy in 
Kim et al. (2008) for X-by-wire systems is a hardware imple-

mentation of predictive hybrid voters, whereas the software 
implementation and Analysis of predictive Hybrid voters can be 
found in Latif-Shabgahi et al. (2003) and Latif-Shabgahi et al. 
(2001). 

 
 
Reliability analysis 

 
Reliability implies the probability that the system functions correctly 
during a complete interval of time (Johnson, 1989; Blischke and 
Murthy, 2000; Kuo and Zuo, 2003; Stapelberg, 2009). In addition to 
availability, safety, and maintainability, reliability is conceivably the 
most significant characteristic of a system and is considered as a 
proper measure for comparing the performance of different control 
systems. Combinatorial modeling and Markov modeling as the 
commonest analytical approaches are the most popular techniques 
for reliability analysis.  

Combinatorial approaches (Johnson, 1989; Stapelberg, 2009; 
Radwan et al., 2011) are employed to calculate the probability of a 
system   remaining   in   the   operational   mode(s)  using  different  



 
 
 
 

 
 
Figure 2. Flowchart of hybrid predictive voting algorithms. 

 
 
 
methods of probabilistic techniques. The probabilities of the events 
making a system operate, are enumerated to obtain an estimate of 
system reliability. However, not many systems can be modeled 
simply by combinatorial methods, which is a major problem by itself. 
In addition, reliability expressions are very complicated and 
modeling the repair process occurring in many systems is not easy. 
Hence, we often use Markov modeling (Johnson, 1989; Mu and 
Systems QUoTSoE, 2008). 

A special type of stochastic process whose future probabilistic 
behavior is uniquely determined by its present state has been firstly 
introduced by Russian mathematician A. Markov in 1907  
Ramakumar 1996). Markov processes are stochastic because they 

develop in time in a manner controlled by probabilistic laws, so they 
can be either discrete in time space (which is known as Markov 
chain) or continuous Markov model (Ramakumar, 1996; Stapelberg, 
2009).  

For computing the reliability of m-out-of-n systems either with 
repair or without repair, a variety of approaches have been 
proposed in literature. While some studies are focused on new 
algorithms or formulas for computing the reliability (Rai et al., 1987; 
Behr and Camarinopoulos, 1997; Demir, 2009; Stapelberg, 2009; 

Habib et al., 2010; Karimi et al., 2010; Moghaddass and Zuo, 2011) 
others have focused on reducing time complexity of earlier 
algorithms (IB, 1995; Min-Sheng, 2004) or have considered more 
aspects in their reliability analysis (Jer-Shyan and Rong-Jaye, 
1994; Krishnamoorthy and Rekha, 2001). 

In this paper, predictive hybrid redundancy has been extended to 
large-scale control systems comprising n modules. Some 
preliminaries on the reliability analysis of predictive hybrid redun-

dancy have already been presented in (Karimi et al., 2010). In order 
to analyze the reliability behavior of PHmn, we utilize Markov model 
with continuous states.  
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System description 
 
Our control system comprises n units working in parallel and a 
voter, as presented in Figure 3. All units are identical and fault of a 
unit cannot have an effect on the others. Once a unit fails, it is sent 
for repair.  

A two-phase decision is performed by the voter generating 
outputs of identical hardware modules. In first phase, m-out-of-n 
voting is performed which operates successfully if and only if at 
least m units are good and functioning. This voter simply does the 

majority voting if . If the number of faulty 

modules exceeds n-m, the switch selects the suitable module 
output based on the result of process in prediction control unit in 
which an input value is selected as the voter output based on the 
voter history records and pre-defined thresholds. However, 
decision-making is not possible and system fails if the prediction 
phase does not succeed.  
 
 
System reliability analysis 

 
By definition, reliability of a system is a function of time. While R(t) 

is described as the conditional probability that the system performs 
correctly during the interval time, [t0,t], unreliability is the conditional 
probability that the system begins to perform incorrectly for the 
period of the same interval time, as long as the system was 
performing correctly at time t0 (Johnson, 1989). One popular way to 
compute the reliability is the Markov modeling a system into several 
discrete states, s0,s1,..,sn, in which the probabilistic behavior of state 
j depends on state i, (i≠j and i<j). 

 
Definition 1: Pij is the rate of departure from state i to state j. In 
state i, the only possible transitions can be from state i→i+1 for  
i=0,1,2,…, n-m, Pr, F with a departure rate of Pij=λi and from state  
i→i-1 for i=1,2,…, n-m+1, departure rate of Pij =µi, where: 
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Definition 2: πi(t) denotes the probability that the system is in state 

i at time t. Therefore, the probability of finding the system in state i 

at time (t+ t ) is; 
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Figure 3. Structure of PHmn. 

 
 
 

 
 
Figure 4.  Markov reliability model of predictive hybrid m-out of-n systems. 

 
 
 
Based on the system description, the system state transition 
diagram given in Figure 4 displays the Markov reliability model of 
PHmn. The model (Figure 4) consists of two types of states 
including operating (the states 0..n-m and Pr) and failed (the state 
F). The system function is performed in operating states (Villemeur, 
1992; Moghaddass and Zuo, 2011)  and its output is considered to 
be correct. However, there may be some faulty units among the 

states labeled with zero to m. If exactly i modules are down, the 
system is considered to be in state i. Thus, state zero refers to the 
fully operational state. It is assumed that the system is initially in 
this state. 

Considering the system in state 0 and a failure occurs, system 

switches from state 0 to state 1 with failure rate 0 (label 1 denotes 

the occurrence of one failure in the system). If this fault is repaired, 

the system returns to the previous state with repair rate 1 . This 

process similarly happens for next states so far as state n-m. If n-
m+1 failure occur, that is, the first phase fails, system goes to state 

Pr with failure rate
 n m

  

(state Pr refers to the second phase or 

the prediction phase of the algorithm). If prediction is possible, the 
system returns to its latest safe state, that is, state n-m, with repair 

rate pr
 ; otherwise the system will fail. It is assumed that units 

have exponential failure rates and repair rates. Moreover, two 
transitions are not allowed at the same time.  

Based upon the relations of state i with its neighbors we have: 
 

   (5) 

 

For 1 i n m   . In the other words, we can extract the 

following set of equations: 

 

                   (6)  

 

 

,              (7) 

 

                                         (8) 

 

              (9) 

 

0 1 Pr( ) ( ) ... ( ) ( ) ( ) 1n m Ft t t t t         
 
; for t≥0.

      
(10) 

 
Since the system is working in all states except  F,  the  reliability  is  



 
 
 
 
defined as: 
 

  πR t 1 ( )F t                                          (11) 

 

From definition 2,  Fπ t is calculated as follows: 

 

   F Pr Prπ t λ π t   .                            (12) 

 

 can be calculated by two ways, either by using Equation (13):   
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or taking Laplace transform of Equation (12): 
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By taking Laplace transform of Equations (6-11), 
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And for predictive state it is obtained that: 
 

      Pr Pr Prπ π 0n m n ms s s        ,                (17) 

 
Where πn-m is extracted by replacing i=n-m in Equation (16). 
From Figure 4, it is simply concluded that: 
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and from Equation (10) for all states: 
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Afore mentioned Laplace equations are easily solved if matrix 
notion is utilized. Equation (20) is the rewritten form of these 
equations, 
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Matrix C obtained from transition matrix of Markov state diagram 
(matrix D). For more details please see Example 1.  

To obtain the reliability of the system, Laplace transform of 

Equation (11) is presented in Equation (22). 
 

( ) 1 π ( )FR s s  .                                                                      (22) 

 

R(s) depends on the value π ( )F s obtained from Equation (18), 

however Prπ ( )s should be afore obtained. It is possible to 

calculate Prπ ( )s  by Equation (23): 
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( )F s  and Pr ( )s  respectively denote the determinant of the 

matrix C and the determinant of the matrix obtained from C by 
replacing the last column of C with the vector P0. 
It can be easily shown that: 
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Since ( )F s is a polynomial in s of order (n-m+2) and with a 

leading coefficient of 1, 
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This equation might be rewritten in for m of Equation (26), once 
partial fraction technique was applied. 
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Substituting (24) and (26) in (23) and taking inverse Laplace 
transform yield to:   
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Based on Equations (13) and (27), R(t) is considered as; 
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In order to compute the system’s mean time to failure (MTTF), as a 
solution, matrix M is needed to be achieved from Equation (29) in 
which matrix Q is the result of eliminating the rows and the columns 
corresponding to the absorbing state, that is, state F,  from matrix D 
( the transition matrix of the Markov state diagram).  
 

1[ ]M I Q                                                                           (29) 

 

However, in this paper another solution is preferred in which:  
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                                              (30) 

 
The selection of the second solution arises from the difficulty of 

solving an inverse form of differential equation solver with large 
number of variables. As a result, Laplace technique is used simply. 
Since, 
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MTTF is obtained as follows. 
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Example 1: For more clarity, an example is presented to find the 
reliability for a 1-out-of-2 system and for a Predictive Hybrid 1-out-

of-2 system. The state transition matrix for the traditional system is 
as follows.   
 

1 2 2 0
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                                             (33) 

 
The State transition Matrix, P, is delineated in (34). 
 

0

1

( )

( )

( )F

P t

P P T

P T

 
 


 
                                      (34) 

 

The equation [ ]TrB D I   determines Matrix B based on Matrix  

 
 
 
 
D. Then, Laplace technique is applied to Equation (11), and then 

Matrix C is calculated by replacing .C s I B   in Equation (20).  
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After replacing Equation (35) in (2), solving the ordinary Laplace 
equations and Laplace inverse transform, the value of reliability, R 
(t), is determined based on Equation (22).  

The mathematical solution to calculate reliability of Predictive 
Hybrid 1-out-of-2 system, that is, when prediction is used, is similar 
to 1-out-of-2 system. The related equations are presented in (36). 
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Similarly, R(t) can be calculated by taking Laplace inverse form of 

( )F s in Equation (22). 

In Figure 5 the comparative plots of the reliability for both 
systems are delineated by using MATLAB 7.11.0(R2010b) ,and  

assuming 0.2  , 0.4  , Pr 0.2  , Pr 0.4  , and 

t=[0.1…1] with step +0.1 . As it is perceived, the reliability of 
Predictive Hybrid 1-out-of-2 system is higher than the reliability of 1-

out-of-2 system (see Figure 5).   
The results of simulation for large scale systems by using 

numerical calculations are discussed in next section, when different 
repair rates and failure rates are assumed.  

 
 
EXPERIMENTAL RESULTS 
 
In this section the reliability of the systems is compared in 
different situations based on what we have obtained for 
the reliability of PHmn from mathematics and probabilistic 
calculations and the reliability of traditional m-out-of-n 
systems mentioned in Misra (1992); Eryilmaz and Zuo 
(2010); Moghaddass and Zuo (2011) and Radwan et al. 
(2011). As an assumption for state Pr, the rate of 

failure, Pr , and the rate of repair, Pr , are respectively 

nλ and nμ. 
In order to establish a comprehensive comparison, we 

examined different scenarios by changing the values of n, 
m, λ and µ. Based on our results the reliability behaviors 
of some scenarios are essentially similar. For instance, 
the reliability behavior of the systems when n=10, 
1<m<10, λ=0.5 and µ=0.5 is similar to when n=128, 
1<m<128,  λ=0.5  and  µ=0.5.  There  are  similar  results  
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Figure 5. Behavior of the system reliability for traditional and advanced 1-out-of-2.  

 
 
 

Table 1. Mean reliability of PHmn Vs. m-out-of-n system when (λ/µ)<1, n=128, and 1<m<=33. 

 

Parameter λ=0.1, µ=0.9 λ=0.2, µ=0.8 λ=0.3, µ=0.7 λ=0.4, µ=0.6 

PHmn 0.999999987933294 0.999999987933294 1 0.999999999999999 

m-out-of-n 1 1 1 0.999999999999998 

Improvement % -1.2067e-006 -3.663735981263017e-13 0 1.110223024625159e-13 

  
 
 
when we consider certain values of m and n, but 
changing the values of λ and µ. In order to summarize, 
we present the choicest results of such similar conditions. 

As an assumption, the rates of failure of each 
component are the same λ. Similarly, the rates of repair 
of each component are the same µ.  

In this section, the reliability of m-out-of-n system and 
PHmn are compared where the number of redundant 
modules is supposed to be 128 and the condition of 

agreement (m) is varied from 2 to ( / 2) 1n    (in this 

case 65). This assumption covers major types of voters 
with different ranges of agreement; from 2-out-of-n voter 
to Majority voter that is the severest voter in terms of 
achieving the consensus. 
The results are perceived in following scenarios: 
 
 
The effect of m,λ, and µ variation on the reliability 
 
As shown in Figure 4, once the system has gone from 
state i to state j by failure rate of λi, it might be repaired 
and return to the previous working state by repair rate µj 
except for the fail state. It can be obviously claimed that 
the larger the rate of failure, the more susceptible the 
current state is to fail, because the probability of failure is 
more than the probability of repair. It is also expected that 
a state with a larger rate of repair, is likely to be repaired 
rather than going to next state, which perceptibly is closer 
to fail state. In this subsection, we analyze  the  results  of 

simulations based on the values of repair rate and of 
failure rate used in the system, so the results are shown 
when: 

 (λ/µ)<1, that is, failure rate is smaller than repair 
rate, 

 (λ/µ)=1, that is, failure rate is equal to repair rate,  

 (λ/µ)>1, that is, failure rate is larger than repair 
rate. 
 

We also classify the agreement into hard and soft. If m is 
negligible in comparison with n, then the agreement is 
defined as soft (m<=n/4); otherwise, we call it as hard 
(n/4<m<=n/2+1) (these bands are arbitrary and only used 
to analyze the results). To clarify this definition, consider 
voting among a certain number of people as an example. 
So to the extent the number of required yes votes is 

smaller than the population ( ), definitely reaching 

an agreement is very easier than with larger required 
votes.  As it is perceived in following subsections, this 
truth influenced all presented results.  
 
 

Experiment 1 (λ/µ)<1 
 

Tables 1-3 show the numerical values of reliability for 
PHmn and m-out-of-n systems by using the obtained 
relations gotten earlier and the reliability improvement of 
predictive hybrid system in comparison with traditional m-
out-of-n system. In these tables, four cases are displayed  
in all of which n=128 and (λ/µ)<1,  that  is,  failure  rate  is  
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Table 2. Mean reliability of PHmn Vs. m-out-of-n system when (λ/µ)<1, n=128, and 33<m<=65. 
 

Parameter λ=0.1, µ=0.9 λ=0.2, µ=0.8 λ=0.3, µ=0.7 λ=0.4, µ=0.6 

PHmn 0.999999987933294 0.999999987933294 0.999999210839797 0.992320571268929 

m-out-of-n 1 0.999999999999964 0.999998280010314 0.986931762237581 

Improvement % -1.2067e-006 2.065014825802866e-12 9.308310840677657e-05 0.546016374944738 

 
 
 

Table 3. Mean Reliability of PHmn Vs. m-out-of-n system when (λ/µ)<1, n=128, and 1<m<=65. 
 

Parameter λ=0.1, µ=0.9 λ=0.2, µ=0.8 λ=0.3, µ=0.7 λ=0.4, µ=0.6 

PHmn 0.999999987933293 0.999999999999989 0.999999999999989 0.996160285634464 

m-out-of-n 1 0.999999999999982 0.999999140005157 0.993465881118790 

Improvement % -1.2067e-006 6.994405055138613e-13 4.654151420006174e-05 0.271212586852043 

 
 
 

 
 
Figure 6. Behavior of system reliability for n=128, 1<m<=33, λ=0.9 and µ=0.1. 

 
 
 
smaller than repair rate. For more accuracy and better 
judgment, the values are shown with 15 digits.  

Tables 1-3 are different from the point of types of 
agreement. The results for soft agreement are shown in 
Table 1, whereas in Table 2, hard agreement is 
presented. Table 3 displays the overall view of reliability 
when m covers both soft and hard agreement. When λ is 
significantly smaller than µ, it can be translated that the 
reliability of independent modules is high. Thus, in most 
cases, the reliability of a system comprises high reliable 
modules expected to be high. That is the main reason for 
the reliability of both systems being very close to 1. The 
tables also demonstrate that PHmn is more successful 
than m-out-of-n to improve the system reliability 
especially when the failure rate of the modules increases; 
however, it shows the use of PHmn is not economic 
when agreement is soft and when λ is very small 

(negative or zero improvements are signs of suitably of 
m-out-of-n system). In other cases, the PHmn has a good 
reliability performance and based on application, it may 
be a replacement for an m-out-of-n system.  
 
 
Experiment 2 (λ/µ)>1 
 
(λ/µ)>1 refers to the time when the probability of a system 
failure is more than the repair ability of the system. 
Relevant plots of this situation are shown in Figures 6-7. 

Figures 6-7 give us three major results: 
 

1. They demonstrate the improvement in the reliability of 
PHmn compared to m-out-of-n system; whether the 
agreement (that is, value of m) is soft or hard. Note that a 
well designed fault tolerant system should be able to  
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Figure 7. Behavior of system reliability for n=128, 33<m<=65, λ=0.9 and µ=0.1. 

 
 
 

 
 
Figure 8.  Behavior of the system reliability for n=128, 1<m<65 and λ= µ=0.5. 

 
 
 

increase the overall reliability especially when the 
components are unreliable; accordingly, these plots 
present how valuable PHmn is.  The calculation shows 
that the reliability of PHmn is maximum10.80% better 
than traditional m-out-of-n system. 
2. The overall reliability of both systems is less than the 
results presented in experiments 1(5.1.1) and 3(5.1.3). 
Theoretically, it was expected because a system with 
high probability of failure and low probability of repair, 
that is, (λ/µ)>1, is much susceptible to fail, consequently 
it would gain the worst reliability in comparison with 
(λ/µ)<=1. 
3. Moreover, the agreement gets harder (see the variation 
from m=2 to 65) when the reliability of the systems 
decreases. This behavior was also expected, as the 
effect of population (m) increase to make consensus 
hard. Nevertheless, PHmn works better than m-out-of-n 
systems as a result of 6.60% (Figure 6) and 54.79% 
(Figure 7) improvement in the reliability for soft 
agreement and hard agreement, respectively. It is 

another significant achievement; especially when the 
agreement gets hard. 
 
 
Experiment 3.  (λ/µ)=1 
 
This experiment covers a moderate system in view of 
failure occurrence, which is neither very close to fault free 
conditions in which the probability of failure and of repair 
are respectively very low and very high (as discussed in 
5.1.1), nor very susceptible to failure (as discussed in 
5.1.2). 

In Figure 8, the reliability of the systems when µ=λ=0.5 
has been presented demonstrating that the improvement 
in the reliability of PHmn in comparison with m-out-of-n 
systems is 2.62% in overall, and respectively 6.20e-07% 
and 6.17% for soft and hard agreements. In this 
experiment, decrease in the reliability for large m’s was 
also predictable (similar to previous experiments). 
Furthermore, agreement  is   achieved   simply   when   m  
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Figure 9. Behavior of the system reliability for n=128, m=65, 0<λ<1 and µ=0.1. 

 
 
 

 
 
Figure 10. Behavior of the system reliability for n=128, m=65, 0<λ<1 and µ=0.5. 

 
 
 
posses a small value in comparison with n. Hence, the 
reliability of both systems for small m’s is close to 1.  

Based on the plots in Figure 8, in the applications 
where rate of failure and repair are equal and the 
agreement is soft, the use of m-out-of-n systems is most 
probably preferred to avoid cost overheads. 
 
 
The effect of λ and µ variation on the reliability 
 
In this section, the effect of λ variation on a 65-out-of-128 
system is investigated, because the plots for this value of 

n are clearer than the smaller values of n, and n is large 
enough to investigate the reliability of large-scale 
systems. Furthermore, m=65 is the band of hard 
agreement which is predicted to have the severe 
condition of a system reliability (we have investigated 
other values of m where all showed the similar behavior).  

In Figures (9-11) the repair rate is fixed and the failure 
rate is varied from 0 and 1, whereas in Figures (12-14) 
the failure rate is fixed and repair rate is 0<µ<=1. As the 
most significant result, the reliability of PHmn in all these 
figures is obviously more than m-out-of-n systems. 

Theoretically,   it   is   expected  that  by  increasing  the  
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Figure 11. Behavior of the system reliability for n=128, m=65, 0<λ<1 and µ=0.9. 

 
 
 

 
 
Figure 12. Behavior of the system reliability for n=128, m=65, 0<µ<1 and λ=0.1. 

 
 
 

 
 
Figure 13. Behavior of the system reliability for n=128, m=65, 0<µ<1 and λ=0.5. 
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Figure 14. Behavior of the system reliability for n=128, m=65, 0<µ<1 and λ=0.9. 

 
 
 

Table 4. Mean Reliability of PHmn Vs. m-out-of-n system. 
 

Parameter 0<λ<1, µ=0.1 0<λ<1, µ=0.5 0<λ<1, µ=0.9 0<µ<1, λ=0.1 0<µ<1, λ=0.5 0<µ<1, λ=0.9 

PHmn 0.1700 0.4697 0.7372 0.9307 0.4436 0.0764 

m-out-of-n 0.1447 0.4363 0.7006 0.9192 0.3972 0.0517 

 
 
 
failure rate when repair rate is constant, the probability of 
failure increases and the reliability of systems decreases 
(Figures 9-11). Similarly, increase in the reliability by 
increasing the repair rate is predicted; meanwhile, the 
failure rate is a fixed value (Figures 12-14).  

Figures 9-11 show the results of simulations when the 
failure rate is varied, 0<λ<=1, and repair rate is 0.1 in 
Figure 9; 0.5 in Figure 10; and 0.9 in Figure 11.  The 
average reliability of PHmn and m-out-of-n system for 
Figures 9-11 is delineated in Table 4. The average 
reliability of where failure rate is constant and repair rate 
is varied from 0 to 1 is also perceived in this table. 

As it is perceived clearly in Figure 9, the reliability of 
both systems decrease while λ increases (since the 
probability of failure has been increased). In this figure, 
µ=0.1, that is, the probability of system repair is 
insignificant. Consequently, the average reliability of this 
case is the smallest value. 

Plots in Figure 11 refer to the highest repair rate 
(µ=0.9). So the higher reliability is expected in 
comparison with Figures 9 and 10. This expectation 
comes true based on the results of Table 2. 

Accordingly, the reliability of the systems in Figure 10 in 
which the repair rate is moderate (µ=0.5), is respectively 
less and more than the plots in Figure 11 and in Figure 9 
(see Table 4).  

The percentage of the reliability improvement in PHmn 
versus the traditional system is in average  17.49%  when 

µ=0.1; 7.63% when µ=0.5 and 5.21% when µ=0.9 (other 
values of µ have been also investigated in which positive 
improvement in the reliability of PHmn was obtained).  

If the failure rate is constant and the repair rate is 
varied (0<µ<1), the probability that faulty modules being 
repaired increases by rising the repair rate; subsequently, 
the reliability increases. This rising behavior is noticeably 
significant in Figures 12-14. Moreover, for small values of 
the failure rate, the probability of the failure and the 
reliability will become small and large, respectively. As a 
result, the average reliability for λ=0.5 is more than λ=0.9.  

The results of the simulations demonstrate the 
improvement of the average reliability of PHmn to 1.25, 
11.69 and 47.81% when λ is respectively 0.1, 0.5, and 
0.9 in comparison with m-out-of-n system (other values of 
λ have also been investigated in which increasing in the 
reliability of PHmn was obtained). 

As the other conclusion from Figures 9-14, with less 
failure and more repair rates, the reliability of both 
approaches is closed to 1. Although the small µ and large 
λ lead to the worst reliability behavior of the system, large 
λ has higher negative effect on the overall reliability in 
comparison with small µ. The reliability has reached to 
maximum 1 when µ=0.1 and 0<λ<1 (Figure 9), whereas 
none of the values of µ has attained even a value near 1 
in Figure 14. The average reliability in the first case 
(Figure 9) is 0.7372 for PHmn while it is 0.0764 for Figure 
14. These scenarios are highlighted in Table 4.  



 
 
 
 

Therefore, in a large scale highly reliable application, 
the most important assumption is utilizing the modules 
which are as much as possible up, because as they fail, 
their repair and restore in operational manner are not 
likely possible.  
 

 

Conclusion and future works 
 

In this paper, predictive hybrid redundancy has been 
extended to large scale control systems that comprise n 
redundant hardware modules. If m-out-of-n modules are 
in agreement, the system can make an output; otherwise, 
a history record of previous successful result(s) is used to 
predict the result of current cycle; while in traditional m-
out-of-n redundany, system fails if it can not find 
consensus. In order to invesitigate the reliability of the 
new extension of predictive hybrid redundancy which is 
called as predictive hybrid m-out-of-n system, a Markov 
reliability model has been presented in this paper, then 
the reliability of the new system has been computed and 
simulated in different scenaris of repair rate, µ, failure 
rate, λ, and m (minimum requirement for consensus) all 
of which are the effective parameters on the system 
reliability based on the computed reliability equation. The 
effect of these parameters has been examined and 
discussed based on which the extended system has 
totally higher reliability than traditional m-out-of-n system. 
In all cases, the use of our new extension is the best 
choice especially when the large-scale control systems 
are dealt with. The exception is for the situations where 
the number m is very small and the use of traditional 
system is favoured due to the cost preferences. 

In future works, the other parameters influencing the 
system dependability, for eample, availability, safety, etc,  
will be investigated.  
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Nomenclatures: n, Number of modules; i, number of 

failed components in the system (i=0, 1,…, n-m+1); i , 
failure rate of the system when there are i failed 

components ( 0 i n m   or i n m  ); i , repair rate of 

the system when there are i failed components 

(1 1i n m    ); ( )ti , the probability that there are i 

failed components in the system at time t ( 0 i F  ); m, 

number of agreed modules; ( )ti
 , first derivation of ( )ti  

( 0 i F  ); ( )L si
, laplace transform of ( )ti  (0 i F  );  

1
( )L si

 , an Inverse Laplace transform of ( )L si ; 
( 0 i F  ); ( )R t

, 
reliability function of system at time t. 
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