
International Journal of the Physical Sciences Vol. 6(3), pp. 566-576, 4 February, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS11.004 
ISSN 1992 - 1950 ©2011 Academic Journals 
 
 
 
 

Full Length Research Paper 

 

Comparison between Mahalanobis classification and 
neural network for oil spill detection using 

RADARSAT-1 SAR data 
 

Maged Marghany* and Mazlan Hashim 
 

Institute of Geospatial Science and Technology (INSTEG), UniversitiTeknologi Malaysia 81310 UTM, Skudai, 
JohoreBahru, Malaysia 

 
Accepted 19 January, 2011 

 

Oil spill or leakage into waterways and ocean spreads very rapidly due to the action of wind and 
currents. The study of the behavior and movement of these oil spills in sea had become 
imperative in describing a suitable management plan for mitigating the adverse impacts arising 
from such accidents. But the inherent difficulty of discriminating between oil spills and look-
alikes is a main challenge with Synthetic Aperture Radar (SAR) satellite data and this is a 
drawback, which makes it difficult to develop a fully automated algorithm for detection of oil spill. 
As such, an automatic algorithm with a reliable confidence estimator of oil spill would be highly 
desirable. The main objective of this work is to develop comparative automatic detection 
procedures for oil spill pixels in multimode (Standard beam S2, Wide beam W1 and fine beam F1) 
RADARSAT-1 SAR satellite data that were acquired in the Malacca Straits using two algorithms 
namely,  post supervised classification, and neural network (NN) for oil spill detection. The 
results show that NN is the best indicator for oil spill detection as it can discriminate oil spill from 
its surrounding such as look-alikes, sea surface and land. The receiver operator characteristic 
(ROC) is used to determine the accuracy of oil spill detection from RADARSAT-1 SAR data. The 
results show that oil spills, lookalikes,and sea surface roughness are perfectly discriminated with 
an area difference of 20% for oil spill, 35% look–alikes, 15% land and 30% for the sea roughness. 
The NN shows higher performance in automatic detection of oil spill in RADARSAT-1 SAR data as 
compared to Mahalanobis classification with standard deviation of 0.12. It can therefore be 
concluded that NN algorithm is an appropriate algorithm for oil spill automatic detection and W1 
beam mode is appropriate for oil spill and look-alikes discrimination and detection. 
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INTRODUCTION 
 
Standard procedures are required for oil spill detection 
from multi SAR data to ensure the coastal zone clean up. 
These procedures can be of benefit to international oil 
companies like Brega Marketing Company in Libya 
(Middle East) and Petronas (Malaysia). Rapid information 
on pollutant substances that exist on the sea is 
necessary for coastal management  to  avoid  damage  to 
 
 
 
*Corresponding author: E-mail: maged@utm.my, 
magedupm@hotmail.com. 

marine ecosystem. In addition, the improvement of 
coastal tourism requires the involvement of many parties 
such as local inhabitants, policy makers, and the 
scientific community (Siry, 2007). Policy makers play an 
important role by issuing regulations and policies that 
guide the design of sites for tourist and support facilities 
like hotels and recreational areas.  In designing such 
sites, designers need accurate information which could 
be supplied by microwave radar data (Marghany and 
Mazlan, 2010). According to Marghany (2004), policy 
makers are required to make the decision more 
comprehensible by involving scientists. 



 
 
 
 
Oil spill pollution has a substantial role in damaging 
marine ecosystem. Oil spill that floats on top of water, as 
well as decreasing the fauna populations, affects the food 
chain in the marine ecosystem (Dunnet et al., 1982). In 
fact, oil spill is reducing the amouint of sunlight  that 
penetrates the water, limiting the photosynthesis of 
marine plants and phytoplankton. Moreover, marine 
mammals for instance, disclosed to oil spills a reduction 
of their insulating capacities, and so making them more 
vulnerable to temperature variations and much less 
buoyant in the seawater. Dunnet et al. (1982) stated that 
oil coats the fur of sea otters and seals, reducing its 
insulation abilities and leading to body temperature 
fluctuations where the body temperature is much lower 
than normal (hypothermia). Ingestion of the oil causes 
dehydration and impaired digestions (Fingas, 2001; 
Zeynalova et al., 2009). 

Oil spill pollution causes political and scientific 
concerns because they have serious effects on feeble 
maritime and coastal ecologies. Significant parameters in 
evaluating seawater quality are the amounts of pollutant 
discharged and associated effects on the marine 
environment (Topouzelis, 2008). There are many sources 
of oil pollution and spillage, which may be as a result of 
exploitation, extraction, transportation, and/or disposal 
activities. In the case oil pollution occurrence in marine 
environment, the first undertaken task is determination of 
priorities for protection against pollution. According to 
Fingas (2001), more than 75% of sea pollution is 
manmade (Marghany and  Genderen, 2001; Brekke and 
Solberg, 2005). Each year, around 48% of oil pollution in 
the oceans is from fuels, 29% is from crude oil, while 
tanker accidents contribute only 5% (Zeynalova et al., 
2009). 

Remote sensing technology is a valuable source of 
environmental marine pollution detection and surveying 
that improves oil spill detection by various approaches. 
The different tools to detect and observe oil spills are 
vessels, airplanes, and satellites (Brekke and Solberg, 
2005). Vessels can detect oil spills at sea, covering 
restricted areas, say for example, (2500 × 2500 m), when 
they are equipped with navigation radars. On the other 
hand, airplanes and satellites are the main tools that are 
used to record sea-based oil pollution (Topouzelis, 2008). 
Recently, scientists and researchers have reported the 
fluorescent Lidar as a promising technique for oil spill 
detection, because of its high capability to perform 
actively and can positively distinguish oil from biological 
substances and surrounding sea environment. According 
to Holt (2004), most organic multi-party compounds have 
individuality of the fluorescence production spectrum. 
Hence, fluorescence emission is a strong indication of the 
presence of oil. On the other hand, most huge systems 
installed on large airplanes are seldom use as tool for oil 

pollution cleanup (Hengsterman and Reuter, 1990; Balick et 
al., 1997). 

Further Brekke and Solberg (2005) reported that the 
most    applicable   space-borne   sensor     for    oil    spill 
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detection is synthetic-aperture radar (SAR). SAR sensors 
perform in all-weather conditions and provide all-day 
detection coverage. Again, SAR satellite data can 
penetrate the cloud covers because of its independence 
on sun radiation (Trivero et al., 2001), and also can 
operate at wind speeds of up to 12 to14 m/s depending 
on oil type and age. Sensors operating in wide strip 
modes with a resolution of 50 to 150 m are found to be 
satisfactory and efficient in covering large ocean areas 
(Topouzelis et al., 2008).  

Most scientists have shown great interest in the huge 
maritime environmental damage due to oil slicks, which 
have increase pollution effects greatly. Space-borne 
RADARSAT-1 SAR images are used to monitor and 
control oil slicks, however, the main challenges lies in the 
difficulties inherent in discriminating between oil spills and 
look–alikes. According to Marghany and Hashim (2005) 
both appears as a dark spot in SAR data.  Also according 
to Alpers and Hühnerfuss (1988); Trivero et al. (1998), 
the existence of an oil layer on the sea surface damps 
the small waves which increase the thickness of the top 
film and this significantly decreases the measured 
backscattering energy resulting in darker areas in SAR 
imagery. The European remote sensing satellite (ERS) 
task is an example of SAR.    

However, Frate et al. (2000), argued that careful 
analysis is required since the dark areas might also be 
generated by local low winds or by normal sea slicks. 
Researchers such as Solberg et al. (1999); Brekke and 
Solberg (2005); Topouzelis (2008), agreed that well tuned 
classification algorithms can be employed to avoid false 
alarms. Oil spills show a larger discontinuity effect on the 
environment, mainly because of its thickness. A possible 
procedure could be formulated based on the selection of 
an area in an image containing dark pixels; computation 
of physical and geometrical features characterizing an 
object; classification of the object into oil spill or look-
alike, based on the dark spot texture (Brekke and 
Solberg, 2005; Topouzelis et al., 2008).  

The main objective of this work is to develop 
comparative detection procedure of oil spills using 
multimode RADARSAT-1 SAR satellite data. This 
objective is divided into the following sub-objectives:   
 
(i). To examine various algorithms such as Mahalanobis 
classifier; and artificial intelligence techniques for oil spill 
automatic detection in multimode RADRASAT-1 SAR 
data. 
(ii) To determine an appropriate algorithm for oil spill 
automatic detection in multimode RADRASAT-1 SAR data 
that is based on algorithm's accuracy (Solberg et al., 1999).  
 
 
RESEARCH  METHODS 

 
Study area 

 
The study is carried out along the Malacca Straits coastal waters. 
The Strait of Malacca is located between the east coast of  Sumatra
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Figure 1. (a) Map of Malacca Straits (b) Coastal Bathymetry. 

 
 
 
Island in Indonesia and the west coast of Peninsular 
Malaysia, and is linked with the Strait of Singapore at its 
south-east end (Figure 1a). The Strait of Malacca is 
bordered on the north-west by a line from Ujung Baka 
(5°40 ′N, 95°26′ E),the north-west extremity of Sumatra, to 
Laem Phra Chao(7°45 ′N,98°18 ′E),the south extremity of 
Ko Phukit Island, Thailand and on the south-east by a line 
from Tahan (Mount) Datok (1°200′ E,104°20′ N) and 
Tanjung Pergam (1°100′ E, 104°20′ N) (Hamzah, 1988; 
Marghany 2001).  

The Malacca Straits is dominated by tropical climate. 
The   different   monsoon   periods   are  influenced  by  the 

weather of the Malacca Straits.  The heavy rain season is 
main feature on northeast monsoon period which brings 
rain from December to February, whereas, the dry season 
which is represented by the southwest monsoon period 
and starts from May to August (Marghany, 2001; Marghany 
and Hashim, 2010; Marghany, 2010; Marghany et al., 
2010). According to Marghany (2010), the weather is 
unpredictable during the inter-monsoon period. Figure 1b 
shows a shallow water bathymetry which is dominant 
feature in the Malacca Straits. The water bathymetry 
ranges from 5 to 60 m and moves parallel to coastline of 
Malaysia. 

Data acquisition 
 
The SAR data acquired in this study are from the 
RADARSAT-1 SAR that involves Standard beam mode 
(S2); W1beam mode (F1) image (Table 1). SAR data are 
C-band and have a lower signal-to noise ratio due to their 
HH polarization with wavelength of 5.6 cm and a frequency 
of 5.3 GHz. Further, RADARSAT-SAR data have 3.1 looks 
and cover an incidence angle of 23.7 and 31.0° (Marghany 
et al., 2009a, b). In addition, RADARSAT-SAR data cover 
a swath width of 100 km. According to Marghany (2001), 
and Marghany et  al.  (2009a,  b)  oil  spill  occurred  on  20 
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Table 1. RADARSAT-1 SAR satellite data acquisitions. 
 

Mode type 
Resolution (m) 

Incident Angle(
°
) Looks Swath width (km) Date 

Range Azimuth 

W1 182.437 150.000 20° - 5° 1 x 4 100 km 1997/10/26 

S2 111.662 110.037 20° - 41° 1 x 4 100 km 1999/12/17 

F1 113.675 137.675 37° - 49° 1 x 1 50 km 2003/12/11 

 
 
 
December 1999, along the coastal water of Malacca Straits. 
 
 
Classification procedures 
 
Mahalanobis classification procedures were adopted. This 
algorithm is based on a correlation between variables by which 
different patterns can be identified and analyzed. It is a useful way 
of determining similarity of an unknown sample set to a known one. 
It differs from Euclidean distance in that it takes into account the 
correlation of the data set and is scale – invariant, that is, not 
dependent on the scale of measurement (Brekke and Solberg, 
2005).  Formally, the Mahalanobis distant of a multivariate vector is 
given as: 
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In order to apply Mahalanobis classification procedures to different 
remote sensing data, let v be the feature vector for the unknown 
input, and let M1, M2 be the two classes: oil spill, and look-alike. 
Then the error in matching v against M j is given by [v- Mj], the 
Euclidean distance. A minimum-error classifier computes  [v- mj] for 
j= 1 to 2 and chooses the class for which this error is minimum 
(Figure 2). 

If the covariance matrix is the identity matrix, the Mahalanobis 
distance reduces to the Euclidean distance. If the covariance matrix 
is diagonal, then the resulting distance measure is called the 
normalized Euclidean distance: 
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The input parameters from SAR data can impact the Mahalanobis 
classifier running when the variability inner classes is smaller than 
whole classifier group variabilities. In this context, if the classes M 
are badly scaled and the decision boundaries between classes are 
curved, the classifier accurcy is reduced. Some of the limitations of 
simple minimum-Euclidean distance classifiers can be overcome by 

using the Mahalanobis distance  
2

t
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AI techniques for oil spill automatic detection 
 

The general framework of the AI techniques used in this work is 
elaborated in Figure 3. 

In Figure 3, 
1v ,

2v ,
3v  and 

nv  are assumed as input  pixel values 

from SAR data of different dark patch pixels. Figure 4 shows that 
the input vectors for the artificial neural network (ANN) are 
backscatter variation values from dark spot patches and their 
surrounding environment pixels in SAR data, while the output layer 
is oil spill or look-alikes. The output is the automatic level detection 
in the range between 0 and 1. In this context, oil spill pixels are 
represented by 1 while look-alikes or wind low zone pixels are 
represented by 0.  The neural network (NN)-based pattern-
recognition approach for Static Security Assessment (SSA) 
depends on the assumption that there are some characteristics of 
pre-contingency system states that give rise to oil spill occurrences 
in RADARSAT-1 SAR data which is represent post-contingency 
system. The task of the NN is to capture these common underlying 
characteristics for a set of known operating states and to interpolate 
this knowledge to classify a previously unencumbered state. The 
first step in such an application is to obtain a set of training data 
which represents the different backscatter value variations in 
RADARSAT-1 SAR data (Topouzelis et al., 2008). 

Following, Hect-Nielsen (1989) and Topouzelis et al. (2009), the 
ANN’s and the pattern recognition (PR) technique, feed forward 
network with back-propagation algorithm are used in this study for  
both static and dynamic security assessment. For this application, a 
multi-layer feed forward network with error back-propagation has 
been employed (Aggoune et al., 1989). The major steps in the 
training algorithm are: Feed forward calculations, propagating error 
from output layer to input layer and weight updating in hidden and 
output layers (Frate et al., 2000). Forward pass phase calculations 
are shown by the following equations between input (i) and hidden 
(j) (Michael, 2005 and Topouzelis et al., 2009). 
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where 

jθ  is the output of node j, 
iθ   is the output of node i, 

kθ  is 

the output of node 
jk

w  is the weight connected between node iand 

j, and 
jθ  is the bias of node j, kθ   is the bias of node k.  
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Figure 2. Logical operation of detection oil spill using Mahalanobis classifier.  
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Figure 3.  General framework of the AI techniques. 

 
 
 
In backward pass phase, error propagated backward through the 
network from output layer to input layer as represented in Equation 
6 (Michael, 2005). Following Topouzelis et al. (2009), The weights 
are modified to minimize mean square error (MSE). 
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where ijd  is the 
thj

 
desired output for the 

thi
 
training pattern, 

and i jy is the corresponding actual output.  

More details of the mathematical procedure are available in 
Michael (2005). Finally, the receiver-operator-characteristics (ROC) 
curve and error standard deviation are used to determine the 
accuracy   level   of   each  algorithm  been  used  in  this  study.  In
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Figure 4.  Structure of multilayered feed forwards neural network. 

 
 
 
addition, ROC and error standard deviation was used to determine 
the accuracy of feature detections in RADARSAT-1 SAR data. 
These methods have been described (Marghany et al., 2009b). 
 
 

RESULTS AND DISCUSSION 
 
Figure 5 shows the output results of Mahalanobis 
classification with different RADARSAT-1 SAR mode 
data.  Initial results indicate obvious discriminations 
between oil spill, look-alikes and low wind zone. Figures 
(5a) and (5c) show that the oil spill  has a large contrast 
to the gray-values of surrounding pixels. In fact, the 
surrounding areas are homogenous, with a constant 
gray-level. 

Mahalanobis classification can identify oil spill pixels 
from the surrounding environment (Migliaccio et al., 
2007). This classification uses the training data by 
estimating means and variances of the classes, which 
are used to estimate probabilities and also consider the 
variability of brightness values in each class. It is the 
most powerful classification methods when accurate 
training data is provided and one of the major widely 
used algorithms (Fiscella et al., 2000). Figures (5a) and 
(5c) shows that the slick has a large contrast to the gray-
values surroundings. The surrounding areas are 
homogenous, with a constant gray-level. Further, 
Mahalanobis classifier provides excellent identification of 
oil spill pixels as with the high accuracy level of 87.8 and 
92.7%, using Mahalanobis regularized 
Mahalanobis classifier respectively (Figure 6). 

In addition, Figures 5a and 5c shows the ability of  
Mahalanobis classification in determing the level of oil 
spill spreadings. In this context, this classification uses 
the training data by estimating means and variances of 
the classes, which are used to estimate the probabilities 
and also consider the variability  of  brightness  values  in 

each class (Fiscella et al., 2000). These results are 
confirm the previous study of Brekke and Solberg (2005). 

It is clear that neural network algorithm is able to isolate 
oil spill dark pixels from the surrounding environment.  In 
other words, look-alikes, low wind zone, sea surface 
roughness, and land are marked by white colour while oil 
spill pixels are marked all black. Figure (7b) does not 
show any class presence or existence of oil spill event.   
Further, Figure 7a and 7c shows the results of the 
Artificial Neural Net work, where 99% of the oil spills in 
the test set were correctly classified.  Three scenes by 
the leave-one-out method presented an exact 
classification of 99% for oil spills (an approach based on 
multilayer perceptron (MLP) neural network with two 
hidden layers). The net is trained using the back-
propagation algorithm to minimize the error function.  
99%  of oil spills are automatically detected using the 
leave-one-out method. This study agrees with study of 
Topouzelis et al. (2009). 

The receiver –operator characteristics (ROC) curve in 
Figure 8 indicates significant difference in the 
discriminated between oil spill, look-alikes and sea 
surface roughness pixels. In terms of ROC area, oil spill 
has an area difference of 20 and  35%  for look –alike 
and 30% for sea roughness and a ρ value below 0.005 
which confirms the study of Marghany and Mazlan 
(2005). This suggests that Mahalanobis classifier and 
neural net works are good methods to discriminate 
regions of oil slicks from surrounding water features. 

Figure 9, however, shows the standard deviation of the 
estimated error for neural net work of value 0.12 is lower 
than the Mahalanobis. This suggests that ANN performed 
accurately as automatic detection tool for oil spill in 
RADARSAT data. The good performance of the neural 
algorithm encouraged a second phase where an 
optimization of the net from the point of view of the
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Figure 5. Mahalanobis classifier (a) wide mode (W1), (b) standard mode (S2) and (c) fine mode (F1) data. 

 
 
 

 

C
la

s
s
if
ic

a
ti
o

n
 a

c
cu

ra
cy

 (
%

) 

(%) (%) 

 
 
Figure 6. Accuracy of Mahalanobis classification results. 
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Figure 7. Neural network for automatic detection of oil spill from (a) W1, (b) S2, and (c) F1 mode data. 
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Figure 8. ROC for oil spill discrimination from look-alikes and sea surface roughness. 
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Figure 9. Standared error for different methods. 
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Figure 10. % Standared error for different modes. 

 
 
 
number of its adaptive parameters (units and 
connections) has been carried out by using a pruning 
procedure. Accordingly, a network is examined to assess 
the relative importance of its weights, and the least 
important ones are deleted. Typically, this is followed by 
some further training of the pruned network, and the 
procedure of pruning and training may be repeated for 
several cycles. Clearly, there are various choices to be 
made concerning how much training is applied at each 
stage, what fraction of the weights is pruned, and so on. 
In the present work, every time a weight is removed, the 
new net is trained, as in  the  case  of  the  initial  training. 

The overall error value approaches a value of 
convergence, and, since the study started with a net 
committing no errors, the pruning procedure was 
continued until it was realized that new removals involve 
errors in the classification task. The most important 
consideration, however, is how to decide which weights 
should be removed. To do this, some measure of the 
relative importance was needed, or saliency of different 
weights. This result agrees with Topouzelis et al. (2009). 

Figure 10 shows that W1 mode data has lower 
persentage value of standard error of 15% in comparison 
to F1  and  S2  mode  data.  This  means  that  W1  mode 



 
 
 
 
perform better detection of oil spills than F1and S2 
modes. In fact, the W1 mode showed steeper incident 
angle of 30° than the S1 and S2 modes. The offshore 
wind speed during the W1 mode overpass was 4.11 m/s, 
whereas the offshore wind speed was 7 m/s during the 
S2 mode overpass. Wind speeds below 6 m/s are 
appropriate for detection of oil spill in SAR data (Solberg 
and Volden, 1997). Therefore, applications requiring 
imaging of ocean surface, steep incidence angles are 
preferable as there is a greater contrast of backscatter 
manifested at the ocean surface (Marghany et al., 2009b; 
Marghany and Mazlan, 2010). 

In contrast to previous studies of  Fiscella et al. (2000) 
and Maged and Mazlan (2010), the Mahalanobis 
classifier provides classification pattern of oil spill  where  
the slight oil spill can distinguish from meduim and heavy 
oil spill pixels. Neverthless, this study is consitented with 
Topouzelis et al. (2009). In consequence, the ANN  
extracted oil spill pixels automatically from surrounding 
pixels without using thresholding  technique or different 
segemntation algorithm as  stated at  Solberg et al. 
(1999), Samad and Mansor (2002) and Marghany and 
Mazlan (2010). 
 
 
CONCLUSION  
 
This study has demostrated a compartive method for oil 
spill detection in RADARSAT-1 SAR different mode data. 
Two methods are involved:  
 
(i) Post supervised classification (Mahalanobis 
Classification). 
(ii) Neural network (NN).  

 
The study shows that Mahalanobis classifier algorithm 
provides information about the level of oil spill 
occurrences in RADARSAT SAR data with accuracy of 
87.8, and 92.7%. In terms of ROC area, it could be 
inferred that oil spill, look-alikes and sea surface 
roughness were perfectly discriminated, as provided by 
area difference of 20% for oil spill, 35% look–alikes and 
30% for sea roughness. Finally, the results show that 
ANN distinguishes oil spill from surrounding sea surface 
features with standard deviation of 0.12. In conclusion, 
integration of different algorithms for oil spill detection 
provides better ways of getting the effective oil detection. 
The ANN algorithms is an appropriate algorithm for oil 
spill detection and while the W1 mode is appropriate for 
oil spill and look-alikes discrimination and detection using 
RADARSAT-1 SAR data. 
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