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This study discussed the existence of solutions for a nonlinear fractional integro-differential equation
of order ge(, 2] with four-point nonlocal integral boundary conditions. The given problem is
transformed to an equivalent fixed point problem in terms of an operator equation. Then, by means of
Banach contraction principle and a fixed point theorem due to Krasnoselskii, the existence results are
obtained. The last existence result is based on nonlinear alternative of Leray-Schauder type. An

illustrative example is also presented.
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INTRODUCTION

The subject of fractional calculus has recently emerged
as an important and popular field of research. Fractional
derivatives are found to be quite effective in describing
memory and hereditary properties of various materials
and processes. The mathematical modeling of various
physical and engineering problems achieved through
fractional calculus has turned out to be more realistic and
practical than the classical calculus. In fact, fractional
differential equations arise in many engineering and
scientific disciplines such as physics, chemistry, biology,
economics, control theory, biophysics, blood flow
phenomena, aerodynamics, fitting of experimental data,
etc. (Samko et al., 1993; Podlubny, 1999; Kilbas et al.,
2006; Sabatier et al., 2007). For recent development of
the subject, see Agarwal et al. (2010), Ahmad and
Sivasundaram (2012), Bai (2010), Baleanu et al. (2010),
Bhalekar et al. (2011), Liang et al. (2009), Zhang (2010)
and Zhao et al. (2011).

Boundary value problems with integral boundary
conditions constitute a very interesting and important
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class of problems. Various problems in heat conduction,
chemical engineering, underground water flow, thermo-
elasticity and plasma physics give rise to the nonlocal
problems with integral boundary conditions. Integral
boundary conditions for unsteady biomedical CFD
applications are also taking much importance these days.
For a detailed description of the integral boundary
conditions, we refer the reader to the papers (Ahmad et
al., 2008) and references therein. It has been observed
that the limits of integration in the integral part of the
boundary conditions are normally taken to be fixed on the
given interval (for instance, [0, 1]).

In the present work, we consider a nonlocal type of
integral boundary conditions with limits of integration
involving the parameters 0 < &, 7 <1. These boundary

conditions correspond to the situation when the
controllers at the end-points of the interval
dissipate/absorb energy due to the sensors of arbitrary
finite lengths (continuous distribution of intermediate
points of arbitrary length: segments of the interval).
Precisely, we study a boundary value problem of
nonlinear fractional differential equations of order

g e (@, 2] with four-point integral boundary conditions



given by:

Dx(t) = f(t, x(t), (X)), (X)),

5.X(0)+8,X(0) = af X(s)ds, Sx(1)+5,X{1)=p jo "x(s)ds, 0< &, n<1,
(1)

O0<t<l, 1<q<2

Where ‘DY denotes the Caputo fractional derivative of
orderq, f:[0,1]xRxRxR —> R is continuous and

0., 0,, a, e R,and for u, v:[0, 1]x[0,1] — [0, ),

6200 = [ utt, XS, (600 = [ vlt, X(5)ds.

Integro-differential equations naturally occur in numerous
applied fields such as transport theory, acoustic
scattering theory, nonlinear viscoelastic bodies,
probability theory, and biological population models and
systems with substantially distributed parameters.
Integro-differential equations are also regarded as a
“continuous analogue” to countable systems of ordinary
differential equations.

The objective of this paper is to present some existence
results for the Problem 1. The first result is obtained by
applying Banach contraction principle, the second result
is based on a fixed point theorem due to Krasnoselskii,
while the third result relies on nonlinear alternative of
Leray-Schauder type.

PRELIMINARIES

Let us recall some basic definitions of fractional calculus
(Samko et al., 1993; Kilbas et al., 2006).

Definition 1

For (n—1) —times continuous
function g : [0,00) > R, the

fractional order ( is defined as:

absolutely

Caputo derivative of

1
(n-q)

Where [(] denotes the integer part of the real number (.

‘Dg(t) = J; (t-s)" g™ (s)ds, n-l<qg<n, n=[q]+1

Definition 2

The Riemann-Liouville fractional integral of order ( is
defined as

ﬁﬂ (t—s)""g(s)ds, q>0,
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provided the integral exists.

For the sequel, we need the following known lemma.
The proof of this lemma is given in Ahmad and
Sivasundaram (2012). However, for the reader’s
convenience, we outline it here.

Lemmal

Let g :[0,00) — Rbe a given continuous function. Then
a unique solution of the boundary value problem

DX(t)=g(t), 0<t<l 1<q<2,

ox(0)+6,x(0)= af X(s)ds,  ox(D)+0,X(1) = ﬁﬂ X(s)ds, 0< ¢, <],
(2)

is given by

I'(a) F(q)
(3)
Where
80)- 1(6 w2, ﬂ)] az(t)=i[5z it (@—a&)tj
(4)
Az{hi—ﬂn{é “f:)(s a§{§-+5 ﬁg j:¢a
5)

Proof: For some constants C,, C, € R, it is well known

that the solution of fractional differential equation in
Equation 2 can be written as:

)it

) g(s)ds—c,—ct.

X(t)=1%(t)-c, —ct—_[ (=9
(6)

Using the boundary conditions for Equation 2, we find
that

af ) a ¢ s-m)T
(51_0‘5)00"'[52_7}:1‘ F(q)-LUO Ne)
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- Bt (s-
o [5 " ] r(q)j [I @ g(m)dm]ds

,  [pa-9)T?
r(q) g(s)d“r(qfl)fo rg-p dO*

(8)

T (UI)

Solving Equations 7 and 8 for C,, C,and substituting

these values in Equation 6, we obtain Equation 3.
Let E=C([0, 1],R) denotes the Banach space of all

continuous functions from [0, 1]Jto R endowed with the
norm defined by ||X|| =sup{|x()|, t €[0, 1]}.

In view of Lemma 1, we define an operator T :E —> E
by

90 = [ 2 15, x(9), (43065), (0N

I'(a)

“ea0f U SO
+a(){ﬂj [J o (m))

-} B2 109 (000 (5N
ol T s) 5 15,9, (0909, (¢2x)(s))ds}, te0. 1.
9)

Observe that Problem 1 has solutions if the operator
equation X = TX has fixed points.
For the sequel, we need the following assumptions:

f(m, x(m), (¢ x)(m), (¢2X)(m))dedS

f(m, x(m), (gx)(m), (¢2X)(m))dmjd

(A,) There exist positive functions L, (t), L, (t), L,(t) Such
that

[t X0, (@00, (@X0) - & ), (dy)0), (@Gy)o)]

SLO DY+ dx-dy[+L 0 | 4x-dy|, te01, xyeR;

() A=(t+0)p,+Ead | p, +7] A3, | b+ (6 +8) 18, | py )<L,
Where

—ISUP la,| &= SUP 3,1,

o= SUp. [, x(5)s
te0,1]

s = SU
" o

[ ott 9K, &
pﬁtg[gpl]{“q'-l(t)l, L O LA B p, =max { 1L E)] [1°LE)L 1L B,
py=max { 1L ()| 1L | 1L py=max {1LO [1PLOLPLO K

(Ag) [t x(1). (4x)(0), (X)) [ £, ¥ (& x(t), (X)), (x)(0) €[0, TxRxRxR,
¢ eC([0,1,R").

MAIN RESULTS

Theorem 1
Suppose that the assumptions (A;) and (A,) hold,

then the boundary value Problem 1 have a unique
solution.

Proof

Selecting A < x <1 (A isgiven by (A,)), we fix

.M {+|aa1|§q*1+|azlﬁf7q*l
C-or@) [ @) @)

+16,8, [+q| 6,3, |},

where SURKI f(t,0,0,0)[:t€[0,1]} =M <.
define Br ={xe E:| x||< r} and show that
TBr cB

Let us

r For XeBr, we have

(t—
r( )

Haa,Ol[ U (Sr( ;

+|az(t)|{|ﬁ|j”(jo (S;(’z))q’

s [ e

1w < |

|| (s, x(3), (4X)(s), (£,%)(s)) Il ds

I £(m, x(m), (£)(m), (&) (M) | dedS

I £(m, x(m), (£)(M), (£) (M)l dmjd

) || (s, X(8), (#X)(). (£,%)(8)) || ds

1-9)*?
+16, 1] -0

Il £(s, x(s), (£9(5). ()N |l ds}

g (tr(q) (I (s, X(5), (X)), (#,X)(5))— T (5,0,0,0) |+  (5,0,0,0)[})ds

lea,®lf [ (Sr() (I £ (m, x(m), (4,)(m), (¢,x)(M)) - f(m,0,0,0) |
+| f(m,0,0,0) ||)dmds

|a, (t)|{|ﬂ|f [l r( ) L0 £ X, (), @) m) — £ (m,0,0,0)]
+|| (m,0,0,0)|| Jdmds

16,1, “r( (115 X(5), (A0)(5). (9)(S) = (50,0001 +1 1(5,0.0.0) )

1.1 S’

|| f(s, X(s), (4)(s), (£,X)(s)) - £(5,0,0,0)]| + f(5,0.0,0) II)dS}

<, “;(Sq’;’l (LX) 1 +Ly(5) | X)) 1+ (5) | (4,0(5) | +M s

+\aa1(t>|Jj[L - (”") (L) ) L () () Ly (m) | (4 )(m) | +M \)dm]ds

+\a2(>|{|ﬂ| f[f ¢ (q)) (L) () -+, () (X)) | +Ly ) (830 m) M |)deds
+181[ = ‘1 o (u(s )X 1L (5) 06 1Ly (¢2)(5) | +M s
+6,1] (i(qsfl) (LX) 1 +L ()1 X6 1 +L(5) | (¢0(5) [ +M |)ds}




<[ LML XL ()40 s

+|aa(t)|j[j s—m)*

+\az(t>\{m| J[j == ”‘) (L (m) 1 X)Ly (), [ X(m) [+ () | X(m) -+ |)dm]

(l—l(m) [l x(m) || +L (M) gz [} X(M) || +Ls (Mg [ X(m) | +M \)dm]ds

o[ (F() (L) IX(S) 1L, () I X(5)  +L () 1 X(5) 1 +M s

5, ljo(ll"(S)

(Li) I X() [l +L5 () g Il X(8) Il +La(S)og Il X(5) | +M [)ds }

Mt
T(q+1)

tlaa,0)]f (j ¢ r(m) (L ) ) Ly ()t | XCm) L (s | X() [ +M |)dm}ds

<j 1L, (1) + 21 191, (2) +0g 1 9L, (£) + ————

+la,(t) |{| Bl jj[ [e ;(”;’; (L () I (m) | +Ly (M) [ X() [+ L (Mo | X(M) | +M |)dm]

161 2 (L KO 1+ o K 4L (5)o 1 X(5)1+M s

r()

\Z|ID(§(S)

(L) 11X I +Lo () o | X(8) 11 +Ls (), [l X(5) [ +M s }

Mt
T'(q+1)

+laa,®] [(l I (E) + 1y 19L,(8) + 01 'Ly () )ET

< (19L,(1) + 210 191, (€) + 01 Ly (D)) +

. Méqu j
T(g+2)

+182,01| (

M’]qq
1L, (1) + 4t 1L, () + 0,1 Ly () )7 T + F(qu)j

+18,2,01 (140 -0 1L @+t L)+ L M

+16, 2,01/ L1<1>+u0IQLz(l)wal‘*La(l))H%]

< p1(1+ﬂu+vo)r+L+‘aa1| pz(lJr:”o"'Uo)fr+ Mg
I'(q+) r(q+2)

J+|§1 3,(t) \[p4(1+u0+vo)f+

q+1

M7y
I(q+2)

+\ﬂaz|[pa(1+uo+vo)nr+ %]

+16, az(t)‘(pA(1+ﬂo+Uo)r+%]

S(:l-‘*':uo"‘Uo){pl"’é‘:|05§1| P+ B3| ps+ (0 +0,) 4, | pA}r

M {+|aa1|§“+|az|ﬂn“
r@) @) - @+

+163,|+q6,3, I}

<(A+1-r)r<r.

For each X, y € Eand each t €[0,1], we obtain

I (D)) — (TV)(t) I

<.[ ¢ r( ) H f(s, X(s), (4)(s), (£,2)(s)) — T (s, Y(s), (AY)(S), (4,Y)(s)) [l ds
(s—m)?

+laa,®l [0 [ @

II f(m, x(m), (£x)(M), (£,X)(m))
= f(m, y(m), (4,y)(m), (#,y)(m)) | dmds
II f(m, x(m), (£x)(M), (£,X)(m))
= f(m, y(m), (£y)(m), (£,y)(m)) || dmds
I £ x(3), (4X)(8), (£:X)(8)) = T (s, Y(S). (4Y)(S). (4,Y)(8)) || ds

(s—m)
I'(a)

+|a2(t)|1|ﬂ|j I

1
'b'j(rm

(1 S)

+16, II II (s, X(8), (8)(8), (£,X)(8)) — T (s, Y(5), (AY)(S), (Y)(N ds}

)
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< (1L (1) + 4 1L, () + 0,1 'L () X~ ¥ |

laa,® (1L + 2 1'L,(8) + 0, L) x -y |
#1182, 1(1°L ) + 1 1L, (7) +0,1 L) x— ¥ |
+16,3,01(1°L O + 2 1°L, @ + 0,1 'L, @ )| - y |

16, 3,0 [ (1°L Q) + 2 1L, @) +0,1 "L D) x -y |

<L+ +Uo){p1+§|a§1| P, 7|53, | py+(6,+5,) 1, | pA}"X_y”
S"X—y",

Here, we have used the assumption (A,) in the last

inequality. Therefore, T is a contraction. Thus, the
conclusion of the theorem follows by the contraction
mapping principle (Banach fixed point theorem).

Our next existence result is based on Krasnoselskii's
fixed point theorem (Krasnoselskii, 1955).

Theorem 2 (Krasnoselskii’s fixed point theorem)

Let X, be a closed convex and nonempty subset of a
Banach space X . Let A, B be the operators such that

(i) Ax+ By € X, whenever x,y e X, ;
(ii) Aiscompactand continuous;
(iii) Bisacontraction mapping.

Then there exists z € X, suchthat z = Az + Bz.

Theorem 3

Let f :[0,1]xRxRxR—> R be a jointly continuous
function and the assumptions (A;)and (A;) hold with

Wt o)laa|pnlpalp+Gro)mIn<l g

Then the boundary value Problem 1 has at least one
solution on [0, 1].

Proof

Fixing

> ||C;|| {+|a§1|§q+l+|§2|ﬂ77q+1+|51§2|+q|52§2|}’
Q- (q+1) (q+D) (a+D)

Where sup{£(t):t <[0, 11} ¢ ||(S (L) is defined in (A;)),
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we consider BF ={xeE:|| x|£T}. We define the
operators T, and T, on BF

(t-
F()

(TX)(t) =-aa, (t)j U

(X)) = f f(S, X(8), (4X)(s), (#,X)(s))ds ,

(s—m)**

T'(a)
a( s (s—m)™t
+az(t){ﬁ.[) [jo @

- j(lr() 15, X(5), (4)(9). (4X)(9))ds

f(m, x(m), (4x)(m), (¢2X)(m))dm]d3

f(m, x(m), (4x)(m), (¢2X)(m))dm]d5

_ J a- 5) y 15X, (82065, (¢zx)<3))ds}

For X,y € BF' we find that

I Tx+Ty <

<l {1+|aa1|ch“+lazlﬂf7q“

+16.8, [+9]6,8, |}sr
(L-m)(q+1) @+D @+D)

Thus, Tx+T,ye BF' It follows from the assumption

(A,)together with Equation 10 that T, is a contraction
mapping. Continuity of f implies that the operator T, is

continuous. Also, T, is uniformly bounded on BF as:

el

I Tox < Fq+])

Now, we prove the compactness of the operator T, . In
view of (A,), we define

s 5.6, (05, (D ., 4 ) [0 0B, B xB =W, <

Consequently, we have

I(TX)() = (Tt ) ==~ t—S)ql (t,-5)" ) (s, X(5), (4(5), (X))

" % [} =9 169, 62005), (0(5)cs

M (2t

< -t) -t |,
1—‘(q+1) 2 1) 1 2|

which is independent of X and tends to zero as

t,—t, > 0. Thus, T, is relatively compact on BI"

Hence, by the Arzel'a-Ascoli theorem, T, is compact on

BF' Thus, all the assumptions of Theorem 2 are

satisfied. So, by the conclusion of Theorem 2, the

boundary value Problem 1 has at least one solution on
[0, 1]. This completes the proof.

Theorem 4

Let f:[0,1]xRxRxR — R. Assume that there exist
constants 0<k, <1llp such that

| (s, % 4% ¢,X) <K, | x]+M, M >0, Vt €[0, 1], x eC[0,1],

Where

1 o g+l
LRI BB 15 NG s, N0

ST AT a

Then the boundary value Problem 1 has at least one
solution.

Proof
Define a fixed point problem

X =TX, (12)

Where T is given by Equation 9. In view of Problem 12,
we just need to prove the existence of at least one

solution X €CJO0, 1] satisfying Equation 12. Define a
suitable ball B, < C[0, 1] with radius R > Oas

B, ={x <C[0, 1], max | x(t) | < R},

Where R will be fixed later. Then, it is sufficient to show
that T:B; — C[0, 1] satisfies

x# ATX, VXxe 0B;, and VAg€[0,1].

13)
Let us set
H(A, X)=ATX, xe C(R), A€[0, 1].
Then, by the Arzel a-Ascoli theorem

h,(x) =x—H(4, X)=x-ATx is completely continuous. If

Equation 13 is true, then the following Leray-Schauder
degrees are well defined and by the homotopy invariance
of topological degree, it follows that

deg(h,, Bg,0) =deg(| — AT, B, 0)=deg(h,, B;,0)
=deg(h,, B;,0) =deg(l,B,,0)=1=0, 0B,

Where | denotes the identity operator. By the non-zero



property of Leray-Schauder
h,(X) = X—ATx = Ofor at least one X €Bj
prove Equation 13, we assume that X = ATX for some
A€[0, 1]and for all t€[0, 1]so that

degree,
. In order to

I xll= sup (MM |

(t—
<[S[t01 u{j r(q) If(S X(s), (4X)(s), (£,X)(s)) | ds

+Haa,Olf [j (Sr(r;) I £(m, x(m), (AX)(m), (@x)(m»\dm)ds

+|a2(t)\{\ﬁ| [ U (sr(m) | f(m, x(m), (4x)(m), (¢zx)(m)|dm]ds

161 (1” 115 X(9), (A0(5), (B | s
+18,1[ (i( 9| £ (s, x(5), (AX(S), (¢2x)<s»|ds}

(t-s)" (s—m)*
S(K1||X||+M)|§[LOJE]{J; @ ds +|ara, ()] j(j @ dmjds

+|a2(t)|[|ﬁ|j”(f ‘Sr() stu(lr() |2|L(1 5" H

<@g I x| +M)p,
which, on solving for || X ||, yields

M
Il —2—,
1w, p
Where pis given by Equation 11. Letting , _ Mp .
1-wp

Equation 13 holds. This completes the proof.

Example: Consider the following boundary value problem

thx|

CD3/Z t -
*O=2@p 4 5o

ShE I @) ]I S (o), tef0.1)

x(0)+x'(0) :%J‘n”"x (s)ds, x(1)+x’(1) :%J':’ax (s)ds.

Here, q=3/2, u(t,s)=¢"/5 v(t,5) =e V"5, £=114, p=1I3 a =114, f=1I6,6,=6,=1
With ,, —(e—1/5, v, =2(Je —1)/5 We find that

a, =2.142302 , &, = 1.067726
1y +0y = (e+2/e —3)/5, N =1/5, x5 = N(, +0,) ~ 0.120629,

= g+l = g+l
pe—t lpNedle &I sag1s,a, |\~ 2.768726.
r'(g+1) (9+1) (a+1)

Clearly x; <1/ p therefore, by Theorem 4, the boundary
value Problem 14 has a solution on [0,1].

Conclusions

We have investigated the existence of solutions for a
four-point nonlocal integral boundary value problem of
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nonlinear fractional integro-differential equations of order
q (1 2]. The existence of solutions to the given problem

is shown by applying Krasnoselskii’'s fixed point theorem
and nonlinear alternative of Leray-Schauder type. The
unigueness of solutions to the problem is established by
using Banach’s contraction mapping principle. Our results
are new and several special cases can be obtained by
fixing the parameters involved in the problem. For
instance, our results correspond to the ones for nonlinear
fractional integro-differential equations with two-point

separated boundary conditons for a¢=0=/. Wwe

obtain the existence results for a classical second-order
nonlocal nonlinear four-point integral boundary value

problem by taking ( = 2 in the results of this paper.
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