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This study discussed the existence of solutions for a nonlinear fractional integro-differential equation 
of order ]2,1(q  with four-point nonlocal integral boundary conditions. The given problem is 

transformed to an equivalent fixed point problem in terms of an operator equation. Then, by means of 
Banach contraction principle and a fixed point theorem due to Krasnoselskii, the existence results are 
obtained. The last existence result is based on nonlinear alternative of Leray-Schauder type. An 
illustrative example is also presented.  
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INTRODUCTION 
 
The subject of fractional calculus has recently emerged 
as an important and popular field of research. Fractional 
derivatives are found to be quite effective in describing 
memory and hereditary properties of various materials 
and processes. The mathematical modeling of various 
physical and engineering problems achieved through 
fractional calculus has turned out to be more realistic and 
practical than the classical calculus. In fact, fractional 
differential equations arise in many engineering and 
scientific disciplines such as physics, chemistry, biology, 
economics, control theory, biophysics, blood flow 
phenomena, aerodynamics, fitting of experimental data, 
etc. (Samko et al., 1993; Podlubny, 1999; Kilbas et al., 
2006; Sabatier et al., 2007). For recent development of 
the subject, see Agarwal et al. (2010), Ahmad and 
Sivasundaram (2012), Bai (2010), Baleanu et al. (2010), 
Bhalekar et al. (2011), Liang et al. (2009), Zhang (2010) 
and Zhao et al. (2011). 

Boundary value problems with integral boundary 
conditions  constitute  a  very  interesting   and   important 
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class of problems. Various problems in heat conduction, 
chemical engineering, underground water flow, thermo-
elasticity and plasma physics give rise to the nonlocal 
problems with integral boundary conditions. Integral 
boundary conditions for unsteady biomedical CFD 
applications are also taking much importance these days. 
For a detailed description of the integral boundary 
conditions, we refer the reader to the papers (Ahmad et 
al., 2008) and references therein. It has been observed 
that the limits of integration in the integral part of the 
boundary conditions are normally taken to be fixed on the 
given interval (for instance, [0, 1]).  

In the present work, we consider a nonlocal type of 
integral boundary conditions with limits of integration 

involving the parameters .1,0    These boundary 

conditions correspond to the situation when the 
controllers at the end-points of the interval 
dissipate/absorb energy due to the sensors of arbitrary 
finite lengths (continuous distribution of intermediate 
points of arbitrary length: segments of the interval). 
Precisely, we study a boundary value problem of 
nonlinear fractional differential equations of order 

]2,1(q
 
with  four-point  integral  boundary   conditions 



 
 
 
 
given by: 
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Where 
qcD  denotes the Caputo fractional derivative of 

order q , RRRRf ]1,0[:  is continuous and 

,,,, 21 R and for ),,0[]1,0[]1,0[:,   
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Integro-differential equations naturally occur in numerous 
applied fields such as transport theory, acoustic 
scattering theory, nonlinear viscoelastic bodies, 
probability theory, and biological population models and 
systems with substantially distributed parameters. 
Integro-differential equations are also regarded as a 
“continuous analogue” to countable systems of ordinary 
differential equations. 

The objective of this paper is to present some existence 
results for the Problem 1. The first result is obtained by 
applying Banach contraction principle, the second result 
is based on a fixed point theorem due to Krasnoselskii, 
while the third result relies on nonlinear alternative of 
Leray-Schauder type. 
 
 
PRELIMINARIES 
 

Let us recall some basic definitions of fractional calculus 
(Samko et al., 1993; Kilbas et al., 2006). 
 
 
Definition 1 
 

For  )1(n times absolutely continuous 

function ,),0[: Rg 
 

the Caputo derivative of 

fractional order q  is defined as: 
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Where ][q denotes the integer part of the real number .q  

 
 

Definition 2 
 

The Riemann-Liouville fractional integral of order q  is 

defined as 
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provided the integral exists. 

For the sequel, we need the following known lemma. 
The proof of this lemma is given in Ahmad and 
Sivasundaram (2012). However, for the reader’s 
convenience, we outline it here. 
 
 
Lemma 1  
 

Let Rg ),0[: be a given continuous function. Then 

a unique solution of the boundary value problem 
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is given by 
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Proof: For some constants ,, 10 Rcc   it is well known 

that the solution of fractional differential equation in 
Equation 2 can be written as: 
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Using the boundary conditions for Equation 2, we find 
that 
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Solving Equations 7 and 8 for 10 , cc and substituting 

these values in Equation 6, we obtain Equation 3. 

Let )],1,0([ RCE   denotes the Banach space of all 

continuous functions from ]1,0[ to R  endowed with the 

norm defined by ]}.1,0[|,)(sup{|  ttxx
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Observe that Problem 1 has solutions if the operator 

equation xx   has fixed points. 

For the sequel, we need the following assumptions:  
 

)(A1
 There exist positive functions )(),(),( 321 tLtLtL such 

that 
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MAIN RESULTS 
 
Theorem 1 
 

Suppose that the assumptions )(A1  
and )(A2  

hold, 

then the boundary value Problem 1 have a unique 
solution.  
 
 
Proof 
 

Selecting 1   (  is given by )(A2
), we fix  
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Here, we have used the assumption )(A2  
in the last 

inequality. Therefore,   is a contraction. Thus, the 
conclusion of the theorem follows by the contraction 
mapping principle (Banach fixed point theorem).  

Our next existence result is based on Krasnoselskii’s 
fixed point theorem (Krasnoselskii, 1955).  
 
 
Theorem 2 (Krasnoselskii’s fixed point theorem)  
 

Let 1X  be a closed convex and nonempty subset of a 

Banach space X . Let BA, be the operators such that 
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Then the boundary value Problem 1 has at least one 
solution.  
 
 
Proof 
 

Define a fixed point problem 
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which, on solving for ||,|| x yields 
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Where  is given by Equation 11. Letting 
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Equation 13 holds. This completes the proof.  
 
Example: Consider the following boundary value problem 
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Clearly  /11  therefore, by Theorem 4, the boundary 

value Problem 14 has a solution on ].1,0[
 

 
 

Conclusions 
 

We have investigated the existence of solutions for a 
four-point  nonlocal  integral  boundary  value  problem  of  
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nonlinear fractional integro-differential equations of order 

(1, 2].q  
The existence of solutions to the given problem 

is shown by applying Krasnoselskii’s fixed point theorem 
and nonlinear alternative of Leray-Schauder type. The 
uniqueness of solutions to the problem is established by 
using Banach’s contraction mapping principle. Our results 
are new and several special cases can be obtained by 
fixing the parameters involved in the problem. For 
instance, our results correspond to the ones for nonlinear 
fractional integro-differential equations with two-point 

separated boundary conditions for 0 .  
 

We 

obtain the existence results for a classical second-order 
nonlocal nonlinear four-point integral boundary value 

problem by taking 2q 
 
in the results of this paper.  
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