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Free vibrational study of symmetric angle-ply laminated cylindrical shells of variable thickness 
including first order shear deformation theory using spline function approximation is studied. The 
equations of motion for the cylindrical shells are derived using first order shear deformation theory. The 
solutions of displacement functions are assumed in a separable form to obtain a system of coupled 
differential equations in terms of displacement and rotational functions, and these functions are 
approximated by Bickley-type splines of order three. The vibrations of three and five layered shells, 
made up of two different types of order of the layers of materials and two types of boundary conditions 
are considered. A generalized eigenvalue problem is obtained and solved numerically for an 
eigenfrequency parameter and an associated eigenvector of spline coefficients. Parametric studies are 
made for the frequency parameters with respect to the coefficients of thickness variations, length-to-
radius ratio, length-to-thickness ratio and ply angles under different boundary conditions. In the 
present work, the results are expected to be more accurate and more suitable for immediate application 
in the areas of missiles, aviation, shipping, surface transport and a large number of industries related to 
the cement and chemicals. 
 
Key words: Free vibration, angle-ply, shear deformation, cylindrical shells, variable thickness. 

 
 
INTRODUCTION 
 
Composite shell structures are widely used in many 
areas like aviation, ship building, chemical, industries, 
etc. The laminated shells structures are important in 
these fields since, they have high specific stiffness, better 
damping and shock absorbing characteristics. The study 
of free vibration analysis of laminated cylindrical shell is 
very important since the frequencies depend on ply 
orientation, material properties, number of layers and 
boundary conditions (Greenberg and Stavsky, 1980; Alam 
and Asnani, 1984; Sharma and Darvizeh, 1987; Naritha, 
1992). Since the shell are laminated, the natural 
frequencies  can  be  modified  by  including  the  variable  
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thickness along the axial direction of the cylindrical shell 
(Suzuki et al., 1982; Viswanathan and 
Navaneethakrishnan, 2005; Viswanathan and Sheen, 
2009). Sivadas and Ganesan (1993) studied the vibration 
of axisymetric thick cylindrical shell of variable thickness. 
In their study, the thickness parameter was considered as 
the ratio of the radius to average thickness. Rezaee and 
Hassannejad (2010) analyzed the problem on damped 
free vibration of beam with a fatigue crack using energy 
balance method. Lam and Qian (2000) presented 
analytical solution on free vibration of symmetric angle-
ply laminated cylindrical shell using first order shear 
deformation theory and complex method. Bayat et al. 
(2010) analyzed the nonlinear behavior of structure under 
harmonic loading. Ganapathi et al. (2004) dealt with 
vibration of laminated angle-ply non-circular cylindrical 
shells  using  finite  element  approach.  The  higher-order  
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Figure 1. Layered circular cylindrical shell of constant thickness: geometry. 

 
 
 
theories of isotropic circular cylindrical shells with effect of 
shear deformation and rotatory inertia were studied by 
Matsunaga (1998, 1999, 2007) for both vibration and 
buckling problems with constant thickness. 

In the present study, free vibration of symmetric angle-
ply laminated cylindrical shells including shear deforma-
tion with variable thickness is discussed by applying the 
collocation with splines. The thickness variations are 
assumed to be linear, exponential and sinusoidal along 
the longitudinal direction of the shell. The problem is 
formulated by including the first order shear deformation 
theory and then, the system of coupled differential 
equations are obtained in terms of displacement and 
rotational functions depending on the space coordinates. 
These functions are approximated by Bickley-type cubic 
splines. Collocation procedure has been adopted to 
obtain a set of field equations. These equations along 
with the set of boundary conditions reduce to a set of 
homogeneous equations on the assumed spline 
coefficients which tends to the generalized eigenvalue 
problem. This problem is solved for the frequency 
parameter using eigensolution technique to obtain many 
frequencies as required, starting from the least. From the 
eigenvectors, the spline coefficients are computed from 
which the mode shapes can be constructed. Parametric 
studies have been made for the frequency parameters 
with respect to the thickness of variation parameter, 
length ratio, circumferential node number, ply angles and 
boundary conditions. However, numerical results are 
presented and discussed in terms of graph and tables. 
 
 
FORMULATION OF THE PROBLEM 
 
Consider a composite laminated circular cylindrical shell 

having length l , thickness h  and radius r . The x  
coordinate of the shell is taken along the meridional 

direction, θ  coordinate along the circumferential direction 

and z  along the thickness direction (Figure 1). The 
reference surface of the shell is taken at its middle 
surface. 

According to the first order shear deformation theory, 
the displacements components , ,u v w  can be written as: 

 

0( , , , ) ( , , ) ( , , )
x

u x z t u x t z x tθ θ ψ θ= +  

0( , , , ) ( , , ) ( , , )v x z t v x t z x tθθ θ ψ θ= +  

0( , , , ) ( , , )w x z t w x tθ θ=  
                       (1)                                     

 

where 0 0 0, ,u v w  are the mid plane displacements, 

,x θψ ψ  are the shear rotations of any point on the mid 

surface normal to the xz and zθ  plane, respectively  and  

t  is the time .  

The strain-displacement relations of the cylindrical 
shells having the radius r  are given as: 
 

0 0 0 0 01 1 1
, ,

x x

x x

u v w u vz
z z

x x r r r r x r x

θ θ

θ θ

ψ ψ ψ ψ
ε ε γ

θ θ θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = + + = + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

0 0 01
xz x z y

w w v
and

x r r
θγ ψ γ ψ

θ

∂ ∂
= + = + −

∂ ∂
 

                                                                                   (2) 
 

The stress-strain relations of the k -th layer by neglecting 

the transverse normal strain and stress, are of the form: 
 

{ }( ) ( ) ( ) ( ) ( ) ( ){ } k k k k k k

x x xz zQ θ θ θσ ε ε γ γ γ =             (3) 

 
When the materials are oriented at an angle α  with the 

x -axis, the transformed stress-strain relations are: 
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{ }
( ) ( ) ( ) ( ) ( ) ( ){ }
k

k k k k k

x x xz z
Q θ θ θσ ε ε γ γ γ =   

                      (4)       

 

where [ ] [ ]
( ) 1 ( )
k

k
Q T Q T

−   =    
, and is given as shown 

in the Appendix. 
The stress resultants and stress couples are given by: 

 

( ) ( ), , , , , ,, ,x x x x x xz z

z

N N N Q Q dzθ θ θ θ θ θσ σ τ τ τ= ∫  

( ) ( ), , ,, ,x x x x

z

M M M zdzθ θ θ θσ σ τ= ∫  

  (5) 
 
Applying Equation 2 into Equation 4 and then substituting 
into Equation 5, to obtain the equations of stress-
resultants and moment resultants as: 
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                                                                                (6) 
 
and 
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          (7) 

 

in which 
ij

A , 
ij

B  and ijD  are respectively, extensional 

rigidities, the bending-stretching coupling rigidities and 

the bending rigidities and K  is the shear correction 
factor that depends on lamina properties and lamination 
scheme, and may be calculated by various static and 
dynamic methods (Whitney and Sun, 1973). 

In this study, the thickness of the k -th layer is assumed 

in the form: 
 

0
( ) ( )

k k
h x h g x=                                                       (8)                                                                   

 
 
 
 

where  0k
h is a constant thickness  

In general, the thickness variation of each layer is 
assumed in the form:     
 

0( ) ( )h x h g x=  

 
and  
 

 ( ) 1 exp sine s

x x x
g x C C C

π   
= + + +   

   
l

l l l

              (9) 

 

The thickness becomes uniform if ( )g x = 1.  

Therefore, the elastic coefficients 
ij

A , 
ij

B  and ijD  

corresponding to layers of uniform thickness with 

superscript ' 'c  can easily be obtained as:  
 

( ), ( ), ( )
c c c

ij ij ij ij ij ij
A A g x B B g x D D g x= = =              (10) 

 

where 
 

( )

1( ),
kc

ij k kij

k

A Q z z −= −∑   

 

( ) 2 2

1

1
( ),

2

kc

ij k kij

k

B Q z z −= −∑
 

 

( ) 3 3

1

1
( )

3

k
c

ij k kij

k

D Q z z −= −∑                                    (11)             

 

and 
k

z , 1k
z −  are boundaries of the k -th layer.   

On substitution of the Equation 10 into Equations 6 and 
7, and then substituting into the equations of equilibrium 
of a cylindrical shell and applying the condition of 
symmetric in angle-ply laminates (that is, 

16 26 45 16 26, , , ,A A A D D  and 
ij

B  are identically zero), one 

can obtain the following differential equations as: 
 

( )
2 2 2

11 11 66 0 12 12 66 02 2 2

1 1 g
A g A g A g u A g A A v

x x r r r xθ θ θ

   ∂ ∂ ∂ ∂ ∂
′ ′+ + + + +   
∂ ∂ ∂ ∂ ∂ ∂   

2

0
12 12 1 2

1 1 u
A g A g w I

r r x t

∂∂ 
′+ + = 

∂ ∂ 
 

                                                                                     (12)   
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where 1I  and 3I  are the normal and rotatory inertia 

coefficients defined by: 
 

( ) 2

1 3( , ) (1, )kI I z dzρ= ∫                                           (17)  

   
and  
 

 
( )

( ), '
dg x

g g x g
dx

= =
 

 

The displacement components 0u , 0v , 0w  and shear 

rotations 
x

ψ , θψ  are assumed in the form of: 

 

0 ( , , ) ( ) i t
u x t U x co s n e

ωθ θ=  

0 ( , , ) ( ) i t
v x t V x sin n e

ωθ θ=       

0 ( , , ) ( ) i t
w x t W x co s n e

ωθ θ=   

( , , ) ( ) i t

x xx t x c o s n e
ωψ θ θ= Ψ  

( , , ) ( ) s in i t
x t x n e

ω
θ θψ θ θ= Ψ  

                    (18) 
 

where ω is the angular frequency of vibration, t  is the 

time and n  is the circumferential node number.  

Using Equation 18 into the Equations 12 to 17, the 
resulting equation becomes in the matrix form as:  
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where  
 

2 2
2

11 11 11 66 12 2
'

d d n
L A g A g A g I

dx dx r
ω= + − + ,   

12 12 66 12
( ) '

n d n
L A A g A g

r dx r
= + + ,  

13 12 12

1 1
'

d
L A g A g

r dx r
= + ,  

14 15 0L L= = ,  
21 12 66 66

( ) '
n d n

L A A g A g
r dx r

=− + − ,  

2
2 2

22 66 66 22 44 12 2

1
' ( )

d d
L A g A g A n KA g I

dx dx r
ω= + − + + ,   

23 22 44 2
( )

n
L A KA g

r
=− + , 

24
0L = ,   

25 44

1
L KA g

r
= ,  

31 12

1 d
L A g

r dx
=− ,   

32 22 44 2
( )

n
L A KA g

r
=− + ,   

2
2 2

33 55 55 44 22 12 2

1
' ( )

d d
L KA g KA g KA n A g I

dx dx r
ω= + − + + ,   

34 55 55 '
d

L KA g KA g
dx

= + , 

35 44

n
L KA g

r
= ,  

41
0L = ,  

42
0L = ,  

43 55

d
L KA g

dx
=− ,  

2 2
2

44 11 11 66 55 32 2
' ( )

d d n
L D g D g D KA g I

dx dx r
ω= + − + + ,  

45 12 66 12( ) '
n d n

L D D g D g
r dx r

= + + , 

51 0L = , 
52 44

1
L KA g

r
= ,  

53 44

n
L KA g

r
= ,   

54 12 66 66( ) '
n d n

L D D g D g
r dx r

=− + − , 

2 2
2

55 66 66 22 44 32 2
' ( )

d d n
L D g D g D KA g I

dx dx r
ω= + − + +  

 
                                                                                (20) 
 

 
METHOD OF SOLUTION 

 
Transformation 

 
The non-dimensional parameters are introduced as follows:  

 

x
X =

l
,  a distance coordinate , and  [0,1]X ∈ ;   

 

1

11

I

A
λ ω= l ,  a frequency parameter;    

 

0h
H

r
= , a thickness ratio; 
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L
r

=
l

, a length parameter;   

 

k

k

h

h
δ = , relative layer thickness of the k -th layer               (21) 

 
 
Thickness variation 

 

The thickness ( )kh X  of the k -th layer at any point X  can be 

expressed as: 

 

0( ) ( )k kh X h g X=   

    
where   
 

 ( ) ( )( ) 1 exp sine sg X C X C X C Xπ= + + +
l

                 (22) 

 
 
Case 1 

 

If  0e sC C= = , then the thickness variation becomes  linear.  In 

this case it can easily shown that : 

  

1
1C

η
= −

l  , where η  is the taper ratio (0) / (1)k kh h .      (23) 

 
 
Case 2 

 

If 0
s

C C= =
l

, then the excess thickness over uniform 

thickness varies exponentially.  

 
 
Case 3 

 

If  0
e

C C= =
l

, then the excess thickness varies exponentially.                 

It may be noted that the thickness of any layer at the end 0X =  

is 0kh  for the cases 1 and 3, but is 0 (1 )k eh C+  for the case 2.  

The following range of values of the thickness coefficients are 
considered as: 

 

0.5 2.1η≤ ≤ ,  0.2 0.2eC− ≤ ≤ , 0.5 0.5sC− ≤ ≤ .    (24) 

 
 
Spline collocation procedure 

 

The displacement functions U , V , W and rotational functions 

XΨ , ΘΨ  are approximated by cubic spline functions in the range 

of [0,1]X ∈  as: 

 
 
 
 

2 1
* 3

0 0

( ) ( ) ( )
N

i

i j j j

i j

U X a X b X X H X X
−

= =

= + − −∑ ∑  

2 1
* 3

0 0

( ) ( ) ( )
N

i

i j j j

i j

V X c X d X X H X X
−

= =

= + − −∑ ∑  

2 1
3

0 0

( ) ( ) ( )
N

i

i j j j

i j

W X e X f X X H X X
−

= =

= + − −∑ ∑  

2 1
* 3

0 0

( ) ( ) ( )
N

i

X i j j j

i j

X g X p X X H X X
−

= =

Ψ = + − −∑ ∑  

2 1
* 3

0 0

( ) ( ) ( )
N

i

i j j j

i j

X l X q X X H X X
−

Θ
= =

Ψ = + − −∑ ∑  

  (25) 
 

Here, ( )
j

H X X−  is the Heaviside step functions. The range of 

X  is divided in to N  subintervals, at the points sX X= and 

1,2,3,...., 1s N= − . The width of each subinterval is 1/ N  

and /sX s N=  ( 0,1,2,....,s N= ), since the knots sX  are 

chosen equally spaced.  
The assumed spline functions given in Equation 25 are 

approximated at the nodes (coincide with the knots), and these 
splines satisfy the differential equations given in Equation 19, at all 

sX
 
and resulting into the homogeneous system of (5 5)N +  

equations in the (5 15)N +  unknown spline coefficients.  

The following boundary conditions are considered to analyze the 
problem: 
 
1. Clamped-Clamped (C-C) (both the ends are clamped).   
2. Clamped-Free (C-F) (one end is clamped and the other end is 
free). 
 
By applying each of these boundary condition separately, one can 
obtain 10 more equations on spline coefficients. Combining these 

10 equations with the earlier (5 5)N +
 

equations, we get 

(5 15)N +  homogeneous equations in the same number of 

unknowns. Thus, we have a generalized eigenvalue problem in the 
form: 
 

2[ ]{ } [ ]{ }M q P qλ=                                                               (25) 

 

where [ ]M  and [ ]P  are the square matrices, { }q  is the column 

matrix of the spline coefficients and λ  is the eigenfrequency 

parameter. Since the matrices are large order, the eigenvalue 
problem is solved by applying numerical technique (power method) 
using FORTRAN programming language to obtain the eigenvalues 
and eigenvectors as we required.  

 
 
RESULTS AND DISCUSSION 
 
In this work, the frequency  parameters  and  fundamental 
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Table 1. Comparison of the fundamental frequency parameter for three layered symmetric angle-ply cylindrical 

shells of constant thickness with circumferential node number n (H = 0.2, L=20). 
  

n 
30°/0°/30° 60°/0°/°60 

(Lian and Qian, 2000) Present value (Lian and Qian, 2000) Present value 

1 0.0539611 0.052035 0.0609682 0.059852 

2 0.2348880 0.228728 0.2932790 0.238570 

3 0.5297780 0.493655 0.6602740 0.615274 

4 0.9063210 0.891402 1.1264500 1.021411 

5 1.3414200 1.285620 1.6624800 1.523521 

 
 
 

 
 
Figure 2. Variation of frequency parameter of linear variation in thickness with taper ratio for three layered 
symmetric angle-ply shells under C-C boundary conditions. 

 
 
 

frequencies are analyzed for three and five layered 
symmetric angle-ply cylindrical shells analyzed under C-
C and C-F boundary conditions using Kevler-49 Epoxy 
and Graphite Epoxy (AS4/3501-6) materials arranging 
them in different orders. Convergence study have been 
made for the frequency parameters of three and four 
layered shells under various boundary conditions with 
fixing the length ratio, thickness coefficients, thickness 
ratio and circumferential node number. The program is 

performed for N (number of knots) = 2 onwards and 

finally, it is seen that N = 16 would be enough to achieve 

the change in percentage of the next value of N  as 

0.27%. Comparisons are made with the available 
literature. The present results compared with the results 
obtained by Lam and Qian (2000) for three layered 
symmetric angle-ply cylindrical shells (Table 1). The value 

of shear correction coefficient 6/5=K  (Bert and  Chen, 

1978; Reddy, 1978; Whitney, 1973) is used for com-
parison and for obtaining new results. The agreement is 
quite good, which shows that the present method and 
analysis are accurate. 

New results are shown for three and five layered 
composite cylindrical shells with symmetric ply-angles. 
Combinations of Kevler-49 epoxy (KE) and AS4 /1350-6 
Graphite epoxy (GE) are considered (Bhimaraddi, 1993). 
Figure 2 corresponds to linear variation in thickness with 
taper ratio η  ranging from 0.5 to 2.1  on  frequency 

parameters )3,2,1(, =mmλ
 
for three layered symmetric 

shells of the materials KE and GE arranged in the order 

of KE-GE-KE, of ply angles 
0 0 0

30 / 0 / 30 , 
0 0 0

45 / 0 / 45  

and 
0 0 0

60 / 0 / 60  by fixing 0.02H =  and  1L =  and  

circumferential node number 2n =  under the C-C 

boundary conditions.  For  η  
<  1,  the  thickness  of  one  
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Figure 3. Variation of frequency parameter of three layered symmetric angle-ply shells of exponential variation 
in thickness under C-C boundary conditions.  

 
 
 

 
 
Figure 4. Variation of frequency parameter of three layered symmetric angle-ply shells of sinusoidal variation in 

thickness under C-C boundary conditions. 
 
 
 

end of the cylinder ( 0x = ) is smaller than the other end 

( x = l ). For η  
> 1, it is the other way, and for η  

= 1, the 

considered, mλ  increases and then decreases rapidly 

with increasing  η  for small range and then, the decrease 

of mλ
 
is almost constant. This trend is same for all the 

modes and all the angles, but the values of mλ  is higher 

for higher angles and higher modes.   
In Figures 3 and 4, the influence of the coefficient of 

exponential variation of thickness eC  and the coefficient 

of sinusoidal variation sC  on mλ  are depicted, along with 

the C-C boundary conditions. In Figure 3, mλ  decrease 

slowly for small values of eC  and then increase as 

eC increase, that is, the stiffness decrease or increase 

according as mλ  decreases or increases. It is seen from 

the figure that the variation of mλ  is almost same for all 

the values of m . In Figure 4, the sinusoidal thickness 

variation is studied with mλ . The stiffness is almost 

constant for all values of sC and the nature of variation of 

mλ  is same for all m . The values  are  higher  for  higher  
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Figure 5. Variation of frequency parameter of five layered symmetric angle-ply shells of linear, exponential and 
sinusoidal variation in thickness under C-C boundary conditions. 

 
 
 

 
 
Figure 6. Variation of frequency parameter of linear variation in thickness with taper ratio for three layered symmetric 
angle-ply shells under C-F boundary conditions. 

 
 
 

angles. Figure 5 shows the variation of frequency 
sinusoidal variation in thickness for five layered angle-ply 
shells under C-C boundary conditions. The other 
parameters are fixed and shown in the figure. The nature 
of variation for five layered shells is also same as three 
layered shells in all the three variations and modes. 

Figures 6 and 7 describe the manner of variation of mλ  

with respect to the linear and exponential variations, 

respectively by fixing 0.02H =  and 1L =  and 4n =  

for three layered shells with C-F boundary conditions. 
The order of the materials is arranged in the form  of  KG-

GE-KG layers. Figure 6a, b and c depicts the variation of 

mλ
 

for ply-angles 0 0 030 / 0 / 30 , 0 0 045 / 0 / 45  and 

0 0 060 / 0 / 60 , respectively on  taper ratio η . In this case, 

the values of frequency parameters are lesser than the 
values obtained for C-C conditions. Similarly, Figure 7a, b 

and c shows the variation of mλ
 

for ply-angles 

0 0 030 / 0 / 30 , 0 0 045 / 0 / 45  and 0 0 060 / 0 / 60 , respectively 

with exponential thickness variation.  
Tables 2 and 3 depict how the values of the length 

parameter   L    affects  ω (in 10
3 
Hz)  for  three  and  five  



6106          Int. J. Phys. Sci. 
 
 
 

 
 
Figure 7. Variation of frequency parameter of three layered symmetric angle-ply shells of exponential variation in thickness under C-F 
boundary conditions. 
 
 
 

Table 2. Effect of the length parameter L  on the fundamental frequency )10( 3 Hz×ω of clamped-clamped boundary 

conditions for three- and five layered symmetric angle-ply using KE and GE materials.  
 

L 
30°/0°/30°

 
 45°/30°/0°/30°/45° 

η = 0.7 Ce = 0.2 Cs = 0.25  η = 0.7 Ce = 0.2 Cs = 0.25 

0.5 1.37302 1.50407 1.37302  1.42475 1.56128 1.42342 

0.75 1.16578 1.21177 0.97467  1.37273 1.42676 1.14617 

1 1.01593 1.056 0.84931  1.26155 1.32226 1.05283 

1.25 0.93776 0.97475 0.78398  1.19217 1.23902 0.99443 

1.5 0.87979 0.9145 0.73554  1.13074 1.17514 0.94285 

1.75 0.8283 0.86098 0.69254  1.0677 1.10962 0.89023 

2 0.77919 0.80994 0.65154  1.00036 1.03966 0.83425 
 

0.02H = , 2n = . Order of the layered materials: KE-GE-KE  (three-layers); KE-GE-KE-GE-KE (five-layers). 

 
 
 

Table 3. Effect of the length parameter L  on the fundamental frequency )10( 3
Hz×ω  of a clamped-free boundary conditions 

for three and five layered symmetric angle-ply using KE and GE materials.   
 

L 
30°/0°/30°  45°/30°/0°/30°/45°

 

η = 0.7 Ce = 0.2 Cs = 0.25  η = 0.7 Ce = 0.2 Cs = 0.25 

0.5 1.37302 1.50407 1.37302  1.42475 1.56128 1.42342 

0.75 1.16578 1.21177 0.97467  1.37273 1.42676 1.14617 

1 1.01593 1.056 0.84931  1.26155 1.32226 1.05283 

1.25 0.93776 0.97475 0.78398  1.19217 1.23902 0.99443 

1.5 0.87979 0.9145 0.73554  1.13074 1.17514 0.94285 

1.75 0.8283 0.86098 0.69254  1.0677 1.10962 0.89023 

2 0.77919 0.80994 0.65154  1.00036 1.03966 0.83425 
 

0.02H = , 2n = . Order of the layered materials: KE-GE-KE (three-layers); KE-GE-KE-GE-KE (five-layers). 
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Figure 8. Effect of circumferential node number on fundamental frequency parameter for linear, 

exponential and sinusoidal variation in thickness with C-C and C-F boundary conditions. 

 
 
 

layered shells with ply-angles 
0 0 0

30 / 0 / 30  and 
0 0 0 0 0

45 / 30 / 0 / 30 / 45  under clamped-clamped and 

clamped-free boundary conditions, respectively. Linear, 
exponential and sinusoidal thickness variations are 

analyzed. It is seen from the table that ( 1, 2,3)
m

mω =
 

decreases as L  increases. The increase is fast for very 
short shells and the rate of decrease is higher for higher 
modes. Figure 8 presents the variation of frequency 
parameter with reference to the circumferential node 
number n . The range of n  is considered between 1 and 

10. A shell of KE-GE-KE-GE-KE lamination under C-C 
and C-F boundary conditions is considered with 

0.02, 1H L= = . All the three types of variation in 

thickness of layers are considered, as indicated in the 
diagrams.  Figure 8a shows the effect of n  on 

fundamental frequency parameter λ for C-C conditions. 

In the case of linear and exponential thickness variations, 
it is seen that the fundamental frequency parameter 

values increase up to  2n =  and then decrease up to 

7n = . Again, there is an increase of λ  for n  = 7 

onwards, but in the case of sinusoidal variation, λ  

decrease up to 7n = and then, increase. Figure 8b 

shows the effect of n  on fundamental frequency 

parameter λ  for C-F conditions. The absolute and 

relative differences between the maximum and minimum 

values of λ , caused in the range of values of n  

considered,   is   more   in   the   case   of   C-F  boundary 

conditions than with that of C-C boundary conditions. It 
seems that the thickness variation in layers does greatly 

affect the nature of the variation of λ  with n . 

 
 
Conclusion 
 
The variation of frequencies of the three and five layered 
symmetric angle-ply cylindrical shells of variable 
thickness with inclusion of shear deformation theory is 
analyzed. Two types of layered materials, length ratio, 
coefficients of variable thickness and ply-angles affect the 
frequency with C-C and C-F boundary conditions. We can 
choose the desired frequency of vibration from the results 
by a proper choice of the coefficient of thickness 
variations and arrangement of ply-angles. The clamped-
clamped boundary conditions gave rise to higher 
frequencies in comparison with the clamped-free 
boundary conditions. The nature of variation in thickness 
of layers considerably affects the natural frequencies. 
The effect of increasing the length of the cylinder is to 
decrease in frequencies, for all kinds of variation in 
thickness of layers. 
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APPENDIX 
 

The quantities 
( )

( , 1,2,4,5,6)
k

ij
Q i j= appearing in Equation 4  are defined by: 

 
( )

( ) 4 ( ) 4 ( ) ( ) 2 2

11 22 12 6611
cos sin 2( 2 )sin cos

k
k k k k

Q Q Q Q Qα α α α= + + +                                                                             (1) 

 
( )

( ) 4 ( ) 4 ( ) ( ) 2 2

11 22 12 6622
sin cos 2( 2 )sin cos

k
k k k kQ Q Q Q Qα α α α= + + +                                                                              (2) 

 
( )

( ) ( ) ( ) 2 2 ( ) 4 4

11 22 66 1212
( 4 )sin cos (cos sin )

k
k k k k

Q Q Q Q Qα α α α= + − + +                                                                                   (3) 

 
( ) ( ) ( ) ( ) 3 ( ) ( ) ( ) 3

11 12 66 22 12 6616
( 2 )cos sin ( 2 )sin cos

k k k k k k k
Q Q Q Q Q Q Qα α α α= − − − − −                                                                    (4) 

 
( ) ( ) ( ) ( ) 3 ( ) ( ) ( ) 3

11 12 66 22 12 6626
( 2 )cos sin ( 2 )sin cos

k k k k k k k
Q Q Q Q Q Q Qα α α α= − − − − −                                          (5) 

 
( )

( ) ( ) ( ) ( ) 2 2 ( ) 4 4

11 22 12 66 6666
( 2 2 )cos sin (sin cos )

k
k k k k kQ Q Q Q Q Qα α α α= + − − + +                                             (6) 

 
( )

( ) 2 ( ) 2

55 4444
sin cos

k
k kQ Q Qα α= +                                                                             (7) 

 

( )
( ) 2 ( ) 2

55 4455 cos sin
k

k k
Q Q Qα α= +                                                                                                  (8) 

 
 

( )
( ) ( )

55 4445
( )cos sin

k
k k

Q Q Q α α= −                                                                                                (9) 

Where 
 

( ) ( ) ( ) ( ) ( )
( ) ( )

11 12( ) ( ) ( ) ( ) ( ) ( )
,

1 1 1

k k k k k
k kx x x x

k k k k k k

x x x x x x

E E E
Q Q θ θ θ

θ θ θ θ θ θ

υ υ

υ υ υ υ υ υ
= = =

− − −
 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

22 66 44 55( ) ( )
, , ,

1

k
k k k k k k k

x z xzk k

x x

E
Q Q G Q G Q Gθ

θ θ

θ θυ υ
= = = =

−
                                                                (10) 

 
 
 

 


