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Chaos is an active research subject in the fields of science in recent years. It is a complex and an 
erratic behavior that is possible in very simple systems. In the present day, the chaotic behavior can be 
observed in experiments. Many studies have been made in chaotic dynamics during the past three 
decades and many simple chaotic systems have been discovered. In this work, the behavior of some 
simple dynamical systems is studied by constructing mathematical models. Investigations are made on 
the periodic orbits for continuous maps and idea of sensitive dependence on initial conditions, which is 
the hallmark of chaos, is obtained. A small attempt has been made to find out the reasons / unknown 
conditions for the production of chaos in a system. This is explained through simple dynamical 
systems. (Why chaos is produced in a forced damped simple pendulum?) Besides, another attempt has 
been made to identify, algebraically simplest chaotic flow. These are the significance of this study - 
“Bifurcations and chaos in simple dynamical systems”. Accordingly, an analysis is done on different 
dynamical systems.  The exact solution is obtained by solving the differential equation by using Runge-
Kutta method; as a result, it is clear from the analysis that, period multiplication occurring in a forced 
damped simple pendulum can leads to chaos. This result is proving that it is possible to find out the 
reasons / unknown conditions under which chaotic behavior exhibits in various systems. The 
importance of result is, “why chaos is produced in various systems? - may be identified in future.  
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INTRODUCTION 
 
Chaos has been a subject of active research in the fields 
of physics, mathematics and in many other fields of 
science in recent years. It is an erratic behavior that is 
possible in very simple systems. In the present day, 
scientists realize that the chaotic behavior can be 
observed in experiments and computer models of 
behavior from all fields of science. It is now common for 
experiments, whose previous anomalous behavior was 
attributed to experimental error or noise, to be 
reevaluated for an explanation in these new terms. 

During the past three decades, extensive studies have 
been made in chaotic dynamics (Gleik, 1987; Ott, 2002; 
Strogatz, 1994; Sprott, 1994; Kathleen et al., 1997). A 
Dynamical system consists of a set of possible states 
together with a rule that determines the present state in 
terms of past states. The rule deterministic is, if we can 
determine the present state uniquely from the past states. 
But, if there is a randomness in our rule that is called a 
random or stochastic process, for example, a mathema-
tical model for the price of gold as a function of time 
would be to predict today’s price to be yesterday’s price 
plus or minus one dollar with the two possibilities equally 
likely. If the rule is applied at discrete times, it is  called  a  

discrete - time dynamical system which is also called a 
map. A discrete-time dynamical system takes the current 
state as input and updates the situation by producing a 
new state as output. The other type of dynamical system 
is the limit of discrete system with smaller and smaller 
updating times. The governing rule in that case becomes 
a set of differential equations and the term continuous-
time dynamical system is used. 

Since the seminal work of Lorenz in 1963 and Rossler 
in 1976 (Kathleen et al., 1997), it has been known that 
complex behavior that is, Chaos can occur in systems of 
autonomous Ordinary Differential Equations (ODES) with 
a few as three variables and one or two quadratic non-
linearities. Many other simple chaotic systems have been 
discovered and studied over the years. With the growing 
availability of powerful computers, many other examples 
of chaos have been subsequently discovered. Yet the 
sufficient conditions for chaos in a system remain 
unknown. 

Using extensive computer search, Sprott (1994), (J. C. 
Sprott, Department of Physics, University of Wisconsin- 
Madison) found 19 distinct chaotic models with three 
dimensional vector fields that consist of five terms  includ- 



 
 
 
 
ing two non-linearities and six terms with one quadratic 
non-linearity. 

Vinod and Sud (2005) investigated the global dynamics 
of a special family of jerk systems which has a non-linear 
function and they are known to exhibit chaotic behavior at 
some parametric values. Vinod and Sud (2006) have also 
made a thorough investigation of synchronization of 
identical chaotic jerk dynamical systems. Since, from 
practical point of view, one would like to convert chaotic 
solutions into periodic limit cycle or fixed point solutions. 

In this present work, the behavior of some simple dy-
namical systems is studied by constructing mathematical 
models. Investigations are made on the periodic orbits for 
continuous maps and idea of sensitive dependence on 
initial conditions, which is the hall mark of chaos, is 
obtained. The second section gives an introduction on 
different types of dynamical systems. The third section 
explains fixed points, cobweb plot and stability of fixed 
points. The logistic model is studied in the fourth section 
where the concept of non-linearity is introduced. The 
family of logistic map is investigated for different para-
metric values. Bifurcation diagram is drawn to show the 
birth, evolution and death of attracting sets. The impact of 
sensitive dependence on the initial measurements on the 
orbit in a two dimensional map is worked out in the fifth 
section. In addition to this, two physical processes are 
modeled with maps and the use of maps in scientific 
applications is discussed.  
 
 
LOGISTIC MODEL 
 
We study models because they suggest how real - world 
processes behave. Every model of a physical process is 
at best an idealization. The goal of a model is to capture 
some feature of the physical process. The feature we 
want to capture now is the patterns of the points on an 
orbit. In particular, we will find that the patterns are some-
times simple and sometimes quite complicated or chaotic 
even for simple maps. 

The function f(x) = 2x is a simple mathematical model, 
where x denotes the population of bacteria in a laboratory 
culture and f(x) denotes the population one hour later. If 
the culture has an initial population of 10,000 bacteria, 
then, after one hour, there will be f (10,000) = 20,000 
bacteria and after two hours, f [f (10,000)] = 40,000 
bacteria and so on. But, this growth cannot continue for 
ever. At some point, the resources of the environment will 
become compromised by the increased population and 
the growth will slow to something less than exponential. 
An improved model to be used for a resource limited 
population might be given by g(x) = 2x (1-x). This is a non 
linear effect and the model is an example of logistic 
growth model (Figures 1 and 2). 

From Table 1, it is evident that for the function g(x) = 2x 
(1-x), the population approaches an eventual limiting size 
which we termed a steady state population. The popula-
tion saturates at x = 0.5 and  then  never  changes  again. 
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Figure 1. Exponential model. 
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Figure 2. Logistic model. 
 
 
 

Table 1. Comparison of exponential model and 
logistic model. 
 

n f(x) = 2x g(x) = 2x (1-x) 
0 0.01 0.01 
1 0.02 0.0198 
2 0.04 0.038816 
3 0.08 0.074618 
4 0.16 0.138101 
5 0.32 0.238058 
6 0.64 0.362773 
7 1.28 0.462338 
8 2.56 0.497163 
9 5.12 0.499984 

10 10.24 0.5 
11 20.48 0.5 
12 40.96 0.5 
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Table 2. Showing starting populations between 0.0 and 1.0. 
 

g(x) for starting population 
x= 0.1  x = 0.2 x = 0.3 x = 0.4 x = 0.5 x = 0.6 x = 0.7 x = 0.8 x = 0.9 
0.18 0.32 0.42 0.48 0.5 0.48 0.42 0.32 0.18 

0.2952 0.4352 0.4872 0.4992 0.5 0.4992 0.4872 0.4352 0.2952 
0.416114 0.491602 0.499672 0.499999 0.5 0.499999 0.499672 0.491602 0.416114 
0.485926 0.499859 0.5 0.5 0.5 0.5 0.5 0.499859 0.485926 
0.499604 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.499604 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

 
 
 

 
 
Figure 3. Cobweb Plot f(x) = 2x (1 - x).  
 
 
 
The exponential model explodes while a logistic model 
approaches a steady state. If a starting population other 
than x = 0.01, the same limiting population x = 0.5 will be 
achieved (Table 2). 

For this logistic model, X = 0.5 is the fixed point. Any 
function whose input and output are the same will be 
called a map. A point p is a fixed point of the map f, if f (p) 
= p. For e.g. for g(x) = 2x (1-x), the fixed point are x = 0 
and x = 1/2. Sink; if all points sufficiently close to p are 
attributed to p, then p is called a sink or an attracting 
fixed point. Source; if all points sufficiently close to p are 
repelled from p, then the p is called a source or a 
repelling fixed point. Smooth Function; A type of function 
for which the derivatives of all orders exist and are 
continuous is called a smooth function. If |f1 (p)| <1, then 
p is a sink. If |f1 (p)| >1 then p is a source. 

Cobweb plot  
 
A cobweb plot illustrates convergence to an attracting 
fixed point of g(x) = 2x (1-x). Let xo = 0.1 be the initial 
condition, then, the first iterate is x1 = g (xo) = 0.18. Note 
that the point (x0, x1) lies on the function graph and (x1, 
x1) lies on the diagonal line. Connect these points with a 
horizontal dotted line to make a path. Then x2 = g (x1) = 
0.2952 and continue path with a vertical dotted line to (x1, 
x2) and with a horizontal dotted line to (x2, x2). An entire 
orbit can be mapped out this way. The orbit will converge 
to the intersection of the curve and the diagonal x = 1/2. If 
the graph is above the diagonal line y = x, the orbit will 
move to the right; if the graph is below the line, the orbit 
will move to the left (Figures 3 and 4). 
 
 
Stability of fixed points 
 
A stable fixed point has the property that points near it 
are moved even closer to the fixed point under the dyna-
mical system. For an unstable fixed point, nearby points 
move away as time progresses. The question of stability 
is significant because a real world system is constantly 
subject to small perturbations. Therefore, a steady state 
observed in a realistic system must correspond to a sta-
ble fixed point. If the fixed point is unstable, small errors 
or perturbations in the state would cause the orbit to 
move away from the fixed point. 

For the map f(x) = 2x (1-x), the fixed points are found 
by solving the equation x = 2x (1-x). There are two 
solutions, x = 0 and x = 0.5 which are two fixed points of 
f(x). The x = y line cuts the function graph at the fixed 
points. The orbit of the function with initial value 0.1 was 
drawn. The orbit converges to the sink at x = 0.5. The 
fixed points are found in the same manner for the map 
f(x) = (3x-x3) / 2. The map has 3 fixed points namely, -1, 0 
and 1. The x = y line cuts the function graph at the fixed 
points.  

The orbits with initial values x = 1.6 and 1.8 are  drawn. 
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Figure 4. Cobweb plot f(x)=(3x-x3 ) / 2. 
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Figure 5. Period-1 cycle. 

 
 
 
The orbit with initial value 1.6 converges to the sink  at  1.  

The orbit with initial value 1.8 converges to the sink at -1. 
The results are in accordance with the reference 
(Kathleen et al., 1997). 
 
 
THE FAMILY OF LOGISTIC MAPS (ONE 
DIMENSIONAL) 
 
Logistic map 
 
The family of logistic map g(x) =ax (1-x) was investigated 
for different ‘a’ values ranging from 0 to 4. The map was 
iterated 50 times for each ‘a’ value and tabulated. The 
calculations were performed by Microsoft Excel software. 
Each table is also given in graphical form (Table 3 and 
Figures 5 - 8).  
 
 
Bifurcation 
 
The limiting behavior of orbits for values of a in the  range  
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Table 3. Logistic map. 
 

n a= 2.8 (x) a= 3.3 (x) a= 3.5 (x) a= 3.9 (x) 
0 0.95 0.95 0.95 0.95 
1 0.133 0.15675 0.16625 0.18525 
2 0.322871 0.436192 0.485138 0.588637 
3 0.612151 0.811564 0.874227 0.94436 
4 0.664782 0.504661 0.38484 0.204923 
5 0.623971 0.824928 0.828583 0.635424 
6 0.656967 0.476591 0.497115 0.903475 
7 0.631012 0.823192 0.874971 0.340111 
8 0.651941 0.480305 0.382889 0.875299 
9 0.635359 0.82372 0.826997 0.425688 

10 0.648698 0.479178 0.500754 0.953463 
11 0.638089 0.823569 0.874998 0.173047 
12 0.646608 0.4795 0.382818 0.558097 
13 0.639817 0.823613 0.826939 0.961836 
14 0.645263 0.479406 0.500888 0.143158 
15 0.640916 0.8236 0.874997 0.478388 
16 0.6444 0.479433 0.38282 0.973178 
17 0.641617 0.823604 0.826941 0.101799 
18 0.643845 0.479425 0.500884 0.356599 
19 0.642064 0.823603 0.874997 0.894801 
20 0.64349 0.479428 0.38282 0.367115 
21 0.64235 0.823603 0.826941 0.906132 
22 0.643262 0.479427 0.500884 0.331721 
23 0.642533 0.823603 0.874997 0.864561 
24 0.643117 0.479427 0.38282 0.456672 
25 0.642649 0.823603 0.826941 0.967678 
26 0.643023 0.479427 0.500884 0.12198 
27 0.642724 0.823603 0.874997 0.417693 
28 0.642963 0.479427 0.38282 0.94858 
29 0.642772 0.823603 0.826941 0.190228 
30 0.642925 0.479427 0.500884 0.600761 
31 0.642803 0.823603 0.874997 0.935404 
32 0.642901 0.479427 0.38282 0.23565 
33 0.642822 0.823603 0.826941 0.702464 
34 0.642885 0.479427 0.500884 0.815132 
35 0.642835 0.823603 0.874997 0.587698 
36 0.642875 0.479427 0.38282 0.945005 
37 0.642843 0.823603 0.826941 0.202685 
38 0.642869 0.479427 0.500884 0.630254 
39 0.642848 0.823603 0.874997 0.908832 
40 0.642864 0.479427 0.38282 0.323138 
41 0.642851 0.823603 0.826941 0.853008 
42 0.642862 0.479427 0.500884 0.489003 
43 0.642853 0.823603 0.874997 0.974528 
44 0.64286 0.479427 0.38282 0.096809 
45 0.642855 0.823603 0.826941 0.341005 
46 0.642859 0.479427 0.500884 0.87641 
47 0.642856 0.823603 0.874997 0.422431 
48 0.642858 0.479427 0.38282 0.951534 
49 0.642856 0.823603 0.826941 0.179858 
50 0.642858 0.479427 0.500884 0.575285 
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Figure 6. Period-2 cycle. 
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Figure 7. Period-4 cycle. 
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Figure 8. Chaos.  
 
 
 
1 < a < 4 is given by a diagram which is known as 
bifurcation diagram. 
 
 
Steps to produce bifurcation diagram 
 
(1)Choose a value of a, starting with a = 1; 
(2) Choose x at random in [0, 1]  
(3) Calculate the orbit of x under ga (x) (Table 4).   
(4) Ignore the first 100 iterates and plot the orbit 
 
Beginning with iterate (0), Then a is incremented and the 
same procedure is followed. The points that are plotted 
will approximate  either  fixed  or  periodic  sinks  or  other  
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Table 4. To produce bifurcation diagram. 
 

a = 2 a = 3 a = 3.5 a = 4 
0.2 0.2 0.2 0.2 

0.32 0.48 0.56 0.64 
0.4352 0.7488 0.8624 0.9216 

0.491602 0.564296 0.415332 0.289014 
0.499859 0.737598 0.84991 0.821939 

0.5 0.580641 0.446472 0.585421 
0.5 0.730491 0.864971 0.970813 
0.5 0.590622 0.408785 0.113339 
0.5 0.725363 0.84588 0.401974 
0.5 0.597634 0.456285 0.961563 
0.5 0.721403 0.868312 0.147837 
0.5 0.602943 0.400213 0.503924 
0.5 0.718208 0.840149 0.999938 
0.5 0.607155 0.470046 0.000246 
0.5 0.715553 0.87186 0.000985 
0.5 0.61061 0.391022 0.003936 
0.5 0.713296 0.833433 0.015682 
0.5 0.613514 0.485879 0.061745 
0.5 0.711343 0.874302 0.23173 
0.5 0.616002 0.384643 0.712124 
0.5 0.709631 0.828425 0.820014 
0.5 0.618165 0.49748 0.590364 
0.5 0.708111 0.874978 0.967337 
0.5 0.620069 0.382871 0.126384 
0.5 0.70675 0.826983 0.441645 
0.5 0.621763 0.500788 0.986379 
0.5 0.705521 0.874998 0.053742 
0.5 0.623283 0.382818 0.203415 
0.5 0.704404 0.826939 0.64815 
0.5 0.624657 0.500887 0.912207 
0.5 0.703382 0.874997 0.320342 
0.5 0.625908 0.38282 0.870893 
0.5 0.702442 0.826941 0.449755 
0.5 0.627052 0.500884 0.989902 
0.5 0.701573 0.874997 0.039986 
0.5 0.628104 0.38282 0.153547 
0.5 0.700768 0.826941 0.519882 
0.5 0.629077 0.500884 0.998419 
0.5 0.700017 0.874997 0.006315 
0.5 0.629979 0.38282 0.025099 
0.5 0.699316 0.826941 0.097874 
0.5 0.630819 0.500884 0.35318 
0.5 0.698659 0.874997 0.913776 
0.5 0.631604 0.38282 0.315159 
0.5 0.698041 0.826941 0.863335 
0.5 0.632339 0.500884 0.47195 
0.5 0.697459 0.874997 0.996853 
0.5 0.633029 0.38282 0.01255 
0.5 0.69691 0.826941 0.049568 
0.5 0.63368 0.500884 0.188445 
0.5 0.696389 0.874997 0.611733 
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Table 4. Contd. 
 

0.5 0.634294 0.38282 0.950063 
0.5 0.695895 0.826941 0.189772 
0.5 0.634875 0.500884 0.615035 
0.5 0.695426 0.874997 0.947067 
0.5 0.635426 0.38282 0.200523 
0.5 0.69498 0.826941 0.641254 
0.5 0.635949 0.500884 0.920189 
0.5 0.694554 0.874997 0.293764 
0.5 0.636447 0.38282 0.829868 
0.5 0.694147 0.826941 0.56475 
0.5 0.636921 0.500884 0.98323 
0.5 0.693758 0.874997 0.065955 
0.5 0.637373 0.38282 0.246421 
0.5 0.693386 0.826941 0.742791 
0.5 0.637806 0.500884 0.76421 
0.5 0.693028 0.874997 0.720773 
0.5 0.63822 0.38282 0.805037 
0.5 0.692686 0.826941 0.62781 
0.5 0.638617 0.500884 0.934659 
0.5 0.692356 0.874997 0.244287 
0.5 0.638997 0.38282 0.738444 
0.5 0.692039 0.826941 0.772578 
0.5 0.639363 0.500884 0.702804 
0.5 0.691734 0.874997 0.835482 
0.5 0.639714 0.38282 0.549808 
0.5 0.69144 0.826941 0.990077 
0.5 0.640052 0.500884 0.0393 
0.5 0.691156 0.874997 0.151022 
0.5 0.640378 0.38282 0.512857 
0.5 0.690882 0.826941 0.999339 
0.5 0.640692 0.500884 0.002643 
0.5 0.690617 0.874997 0.010545 
0.5 0.640995 0.38282 0.041733 
0.5 0.690361 0.826941 0.159967 
0.5 0.641288 0.500884 0.53751 
0.5 0.690113 0.874997 0.994372 
0.5 0.641571 0.38282 0.022386 
0.5 0.689873 0.826941 0.087538 
0.5 0.641845 0.500884 0.319501 
0.5 0.68964 0.874997 0.869681 
0.5 0.64211 0.38282 0.453344 
0.5 0.689414 0.826941 0.991293 
0.5 0.642367 0.500884 0.034525 
0.5 0.689195 0.874997 0.13333 
0.5 0.642616 0.38282 0.462213 
0.5 0.688982 0.826941 0.994289 
0.5 0.642857 0.500884 0.022715 
0.5 0.688776 0.874997 0.088795 
0.5 0.643091 0.38282 0.323642 
0.5 0.688575 0.826941 0.875591 
0.5 0.643319 0.500884 0.435725 
0.5 0.688379 0.874997 0.983475 
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Table 4. Contd. 
 

0.5 0.64354 0.38282 0.065008 
0.5 0.688189 0.826941 0.243127 
0.5 0.643755 0.500884 0.736064 

 
 
 

Table 5. 101st Iterate value. 
 

a 2 3 3 3.5 3.5 3.5 3.5 4 4 4 4 4 4 4 4 
                
x 0.5 0.69 0.64 0.83 0.5 0.87 0.38 0.88 0.44 0.98 0.07 0.24 0.74 0.77 0.69 

 
 
 

 Bifurcation 

 
 
Figure 9. Bifurcation. 

 
 
 
attracting sets. 

 The Bifurcation diagram shows the birth, evolution and 
death of attracting sets. The 101st iterate value for each 
‘a’ value is given in Table 5 to draw the bifurcation 
diagram.  The calculations were performed by using 
Microsoft Excel software. 

When 0 < a < 1, the map has a sink at x = 0 and every 
initial condition between 0 and 1 is attracted to this sink. 
In other words, with small reproduction rates, small 
populations tend to die out. If 1 < a < 3, the map has a 
sink at x = (a-1)/a. Small proportions grow to a steady 
state of x = (a-1)/a for a > 3, the fixed point is unstable 
and a period two sink takes its place for a = 3.3.  When a 
grows above 1+�6 � 3.45, the period two sink also 
becomes unstable. Many new periodic orbits come into 
existence as a is increased from 3.45 to 4 (Table 5 and 
Figure 9). 
 
 
TWO DIMENSIONAL MAPS 
 
Much of the Chaotic Phenomena present in differential 
equations can be approached through reduction by time; 
T maps and Poincare maps. Poincare maps of differential 
equations can be found as well in a two dimensional 
quadratic map  which  is  much  easier  to  simulate  on  a  

computer. One such map is the Henon map which is 
given as   f(x, y) = (a - x2 + by, x). 

The map has two inputs x, y and two outputs, the new 
x, y. The new y is just the old x but the new x is a non 
linear function of the old x and y. The letters a and b 
represent parameters that are held fixed as the map is 
iterated. Henon’s remarkable discovery is “barely non-
linear” map. It displays an impressive breadth of complex 
phenomena. In its way, the Henon map is to two 
dimensional dynamics while the logistic map G(x) = 4x (1-
x) is to one dimensional dynamics and it continues to be 
a catalyst for deeper understanding of nonlinear systems. 
Along with the sink and source, a new type of fixed point 
is there, which cannot occur in a one dimensional state 
space. This type of fixed point which is called as a saddle 
has at least one attracting direction and at least one 
repelling direction. For instance, Let A be a linear map. A 
is hyperbolic if A has no eigenvalues of absolute value 
one. If a hyperbolic map A has at least one eigenvalue of 
absolute value greater than one and at least one eigen-
value of absolute value smaller than one, then the origin 
is called a saddle. 

There are three types of hyperbolic maps: 1.) One for 
which the origin is a sink; 2.) One for which the origin is a 
source; 3.) One for which the origin is a saddle. Hyper-
bolic linear maps are important objects of study because 
they have well defined expanding and contracting 
directions. 
 
 
Henon map 
 
Henon map is given by fa,b = (a - x2 + by, x). Assuming a 
= 0; b = 0.4; to find the fixed points: -x2 + by = x; -x2 + 
0.4x = x; x2 + 0.6x = 0;   x(x + 0.6) = 0; x = 0; x = -0.6. 
Therefore, the fixed points are (0, 0) and (-0.6, -0.6). To 
check for the fixed point (0, 0):  
The Jacobian matrix is 
  

D f (x, y) = 

 

 

 -2x   b 
 
  1    0  
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D f (0, 0) = 

 

 

 

 

 

0    0.4 
 
1     0 

-�    0.4 
 
1      0-�    
   

 
�

2 – 0.4 = 0;    �2 = 0.4;   � = ± �0.4 = ± 0.632 
 
The eigenvalues are +0.632 and -0.632. Both are less 
than 1. So the fixed point (0, 0) is a sink. 

To check for the fixed point (-0.6, -0.6).  The Jacobian 
matrix is 
 
 

D f (x, y) = 

 

 

 

D f (-0.6, -0.6) = 

 

 

 

 

 

                         

                           = -1.2 � + �2 = 0.4  

                          

  �2 - 1.2 � - 0.4 = 0 

 

� = 1.2 ± � 1.44 + 1.6 

        2 

-2x    b 
 
1      0 

1.2    0.4 
 
 1        0    

1.2-�    0.4 
                   
  1         -�    

 
 
Eigenvalues equals; 1.472, -0.271. One is greater than 
one and the other is less than one. So, the fixed point (-
0.6, -0.6) is a saddle point. For b = 0.4 and a >0.85, the 
attractors of the Henon map become more complex 
(Table 6).  When the period two orbits becomes unsta-
ble, it is replaced with an attracting period 4 orbit, then a 
period eight orbit etc. 

After 500 iterations, the Henon map displays a single 
attracting orbit for a particular value of the parameter ‘a’. 
From the Table 6, we see that for b =  0.4  and  a  > 0.85, 

 
 
 
 
the attractors of the Henon map become more complex. 
When a = 0.9, there is a period 4 sink. When a = 0.988, 
there is an attracting period 16 sink and when a = 1.0293, 
there is a period 10 sink. Thus, the periodic points are the 
key to many of the properties of a map (Kathleen et al., 
1997).   
 
 
Simple dynamical models 
 
In this chapter, we modeled two physical processes with 
maps. One of the most important uses of maps in scien-
tific applications is to assist in the study of a differential 
equation model. A map describes the time evolution of a 
system by expressing its state as a function of its 
previous state. Instead of expressing the current state as 
a function of the previous state, a differential equation 
expresses the rate of change of the current state as a 
function of the current state. 

A simple illustration of this type of dependence is 
Newton’s law of cooling. Consider the state x consisting 
of the difference between the temperature of a warm 
object and the temperature of its surroundings. The rate 
of change of this temperature difference is negatively 
proportional to the temperature difference itself:  x = ax, 
where a < 0. 

The solution of this equation is x (t) = x (0)eat, meaning 
that the temperature difference x decays exponentially in 
time. This is a linear differential equation, since the terms 
involving the state x and its derivatives are linear terms. 
Since it is a linear differential equation, whatever be the 
initial condition x (0), there are no attracting fixed points. 
Another familiar example, which yields a nonlinear 
differential equation, is that of a pendulum. The pendulum 
bob hangs from a pivot, which constrains it to move along 
a circle. The acceleration of the pendulum bob in the 
tangential direction is proportional to the component of 
the gravitational downward force in the tangential 
direction, which in turn depends on the current position of 
the pendulum. This relation of the second derivative of 
the angular position with the angular position itself is one 
of the most fundamental equations in science. The 
pendulum is an example of a nonlinear oscillator. Other 
nonlinear oscillators that satisfy the same general type of 
differential equation include electric circuits and feedback 
systems. Newton’s law of motion F = ma is used to find 
the pendulum equation. If L is the length of the pendulum 
and � is the angle of the pendulum and m is the mass of 
the pendulum, then the component of acceleration 
tangent to the circle is L�, because the component of 
position tangent to the circle is L�. The component of 
force along the direction of motion is mgsin�. It is a 
restoring force, meaning that it is directed in the opposite 
direction from the displacement of the variable �. If the 
first and second time derivatives of � are � and �, the 
differential equation governing the frictionless pendulum 
is mL� = -mgsin�, according to Newton’s law of motion. 
To simplify, a pendulum of length L = g is use. The  equa- 
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Table 6. Henon map. 
 

Period 1  Period 2  Period 4  
a = 1.2 b = -0.3 a =1.28 b = -0.3 a = 0.9 b = 0.4 

x y x y x y 
0.623774 0.623774 0.532437 0.766773 -0.23842 0.932101 
0.623774 0.623774 0.766478 0.532437 1.215997 -0.23842 
0.623774 0.623774 0.53278 0.766478 -0.67402 1.215997 
0.623774 0.623774 0.766202 0.53278 0.932101 -0.67402 
0.623774 0.623774 0.5331 0.766202 -0.23842 0.932101 
0.623774 0.623774 0.765944 0.5331 1.215997 -0.23842 
0.623774 0.623774 0.5334 0.765944 -0.67402 1.215997 
0.623774 0.623774 0.765701 0.5334 0.932101 -0.67402 

    -0.23842 0.932101 
    1.215997 -0.23842 
    -0.67402 1.215997 
    0.932101 -0.67402 
      

Period 10 Period 16   
a =1.0293 b = 0.4 a = 0.988 b = 0.4   

x y x y   
-0.75447 1.252643 -0.02265 0.82423 
0.961137 -0.75447 1.317179 -0.02265 
-0.19627 0.961137 -0.75602 1.317179 
1.375232 -0.19627 0.943303 -0.75602 
-0.94047 1.375232 -0.20423 0.943303 
0.694904 -0.94047 1.323612 -0.20423 
0.170219 0.694904 -0.84564 1.323612 
1.278287 0.170219 0.802338 -0.84564 
-0.53663 1.278287 0.005997 0.802338 
1.252643 -0.53663 1.308899 0.005997 
-0.75447 1.252643 -0.72282 1.308899 
0.961138 -0.75447 0.989093 -0.72282 
-0.19627 0.961138 -0.27943 0.989093 
1.375232 -0.19627 1.035555 -0.27943 
-0.94047 1.375232 -0.82825 1.035555 
0.694904 -0.94047 0.82423 -0.82825 
0.170219 0.694904 -0.02265 0.82423 
1.278287 0.170219 1.317179 -0.02265 
-0.53663 1.278287 -0.75602 1.317179 
1.252643 -0.53663 0.943302 -0.75602 
-0.75447 1.252643   
0.961138 -0.75447   
-0.19627 0.961138   
1.375232 -0.19627   

 

 
 
 
tion becomes � = - sin � and the resulting solution is 
given in Table 7. 

Again, there are no fixed points for this nonlinear, two 
dimensional map. If the damping term -c � is added; 
corresponding to friction at the pivot, and a periodic term 
r sin t which is an external force constantly providing 
energy to the pendulum, the resulting  equation  becomes  

the forced damped pendulum model given as; � = -c� - 
sin � + r sin t. 

An approximate solution for this equation is found for c 
= 0.2 and r = 1.66. With the initial condition � = 0.3 and � 
= 0.7, From Table 8, it can be infer that periodic orbits 
exist (Figure 10). 

It is clear from the above discussion that,  period  multi- 
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Table 7. Undamped simple pendulum. 
 

� � 
0.3 0.7 

0.29552 0.755336 
0.291238 0.756651 
0.287138 0.757889 
0.283208 0.759058 
0.279438 0.760164 
0.275815 0.761211 
0.272331 0.762204 
0.268978 0.763146 
0.265746 0.764043 

 
 
 

Table 8. Damped simple pendulum. 
   

� � 
1.136717 -0.28691 
0.124961 0.220575 
-1.631522 0.792203 
1.097059 -0.260688 
0.034552 0.256215 
-1.657816 0.799403 
1.136717 -0.28691 
0.124961 0.220575 
-1.631522 0.792203 
1.097059 -0.260688 
0.034552 0.256215 
-1.657816 0.799403 
1.136717 -0.28691 
0.124961 0.220575 
1.631522 0.792203 
1.097059 -0.260688 
0.034552 0.256215 
-1.657816 0.799403 
1.136717 -0.28691 
0.124961 0.220575 
-1.631522 0.792203 
1.097059 -0.260688 
0.034552 0.256215 
-1.657816 0.799403 
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Figure 10. Attractors for forced damped pendulum. 

 
 
 
 
plication occurs for forced damped simple pendulum 
which leads to chaotic solution. The exact solution can be  
obtained by solving the differential equation by using 
Runge-kutta method. Thus, an analysis is done on 
different dynamical systems and the condition under 
which bifurcation and chaos occur in such systems. 
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