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Microtubules (MTs) are major cytoskeletal proteins. They are hollow cylinders formed by protofilaments 
(PFs) representing series of proteins known as tubulin dimers. Each dimer is an electric dipole. These 
diamers are in a straight position within PFs or in radially displaced positions pointing out of cylindrical 
surface. In this paper, the authors demonstrate how the generalized projective Riccati equations 
method can be used in the study of the nonlinear dynamics of MTs. To this end, the authors apply this 
method to construct the exact solutions with parameters for two nonlinear PDEs describing MTs. The 
first equation describes the model of microtubules as nanobioelectronics transmission lines. The 
second equation describes the dynamics of radial dislocations in microtubules. As a result, hyperbolic, 
trigonometric and rational function solutions are obtained. When these parameters are taken as special 
values, solitary wave solutions are derived from the exact solutions. Comparison between our recent 
results and the well-known results is given. 
 
Key words: Generalized projective Riccati equations method, models of microtubules (MTs), exact solutions, 
solitary solutions, trigonometric solutions rational solutions. 

 
 
INTRODUCTION 
 
In the recent years, investigations of exact solutions to 
nonlinear partial differential equations (NPDEs) play an 
important role in the study of nonlinear physical 
phenomena. Nonlinear wave phenomena appear in 
various scientific and engineering field, such as fluid 
mechanics, plasma physics, optical fibers, biology, solid 
state physics, chemical kinematics, chemical physics and 
geochemistry. To obtain traveling wave solutions, many 

powerful methods have been presented, such as the 

exp( ( )  ) expansion method (Hafez et al., 2014), the 

tanh-sech method (Malfiieiet, 1992; Malfiieiet and 
Hereman, 1996; Wazwaz, 2004a), extended tanh-method 
(EL-Wakil and Abdou, 2007; Fan, 2000; Wazwaz, 2007), 
sine-cosine method (Wazwaz, 2004b, 2005;  Yan, 1996), 
homogeneous balance method (Fan and Zhang, 1998;
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Wang, 1996), Jacobi elliptic function method (Dai and 
Zhang, 2006; Fan and Zhang, 2002; Liu et al., 2001; 
Zhao et al., 2006), F-expansion method (Abdou, 2007; 
Ren and Zhang, 2006; Zhang et al., 2006), exp-function 
method (He and Wu, 2006; Aminikhad et al., 2009), 
trigonometric function series method (Zhang, 2008), 

'( )G
G

-expansion method (Zhang et al., 2008; Zayed  and 

Gepreel, 2009; Younis and Zafar, 2014; Younis, 2014a, 
b; Zayed, 2009; Hayek, 2010), the (G’/G,1/G)-expansion 
method (Zayed and Hoda Ibrahim, 2013a; Zayed and 
Alurrfi, 2014a, b, c), the modified simple equation method 
(Jawad et al., 2010; Zayed, 2011; Zayed and Hoda 
Ibrahim, 2012, 2013b, 2014 ; Zayed and Arnous, 2012), 
the first integral method (Moosaei et al., 2011; Bekir and 
Unsal, 2012; Lu et al., 2010; Feng, 2002), the multiple 
exp-function algorithm method (Ma et al., 2010; Ma and 
Zhu, 2012), the transformed rational function method (Ma 
and Lee, 2009), the Frobenius decomposition technique 
(Ma et al., 2007), the local fractional variation iteration 
method (Yang et al., 2013), the local fractional series 
expansion method (Yang et al., 2013), the generalized 
projective Riccati equations method (Conte and Musette, 
1992; Zayed and Alurrfi, 2014d; Zhang et al., 2001; Yan, 

2003; Yomba, 2005), the generalized '( )G
G

-expansion 

method (Alam and Akbar, 2013; 2014a, b, 2015; Alam et 
al., 2014a, b, c, d) and so on. Conte and Musette (1992) 
presented an indirect method to seek more solitary wave 
solutions of some NPDEs that can be expressed as 
polynomials in two elementary functions which satisfy a 
projective Riccati equation (Bountis et al. 1986). Using 
this method, many solitary wave solutions of many 
NPDEs are found (Zhang et al., 2001; Bountis et al. 
1986). Recently, Yan (2003) developed further Conte and 
Musette's method by introducing more generalized 
projective Riccati equations.  

The objective of this paper is to apply the generalized 
projective Riccati equations method to construct the 
exact solutions for the following two nonlinear PDEs of 
microtubules (MTs): 
 
(i) The nonlinear PDE describing the nonlinear dynamics 
of MTs as nanobioelectronics transmission lines: 
 

2 2
2 3

2 2

( , ) ( , ) ( , )
( , ) ( , ) 0,       

z x t z x t z x t
m kl qE Az x t Bz x t

t x t


  
     

  
    (1) 

 

where ( , )z x t  is the traveling wave, m is the mass of 

the dimer, k  is a harmonic constant describing the 
nearest-neighbor interaction between the dimers 

belonging to the same protofilaments (PFs), l  is the MT 
length, E is the magnitude of intrinsic electric field, q>0 is 
the excess charge within the dipole,   is the viscosity 

coefficient and ,A B are positive parameters. The 

physical details of the derivation of Equation (1) has been 
discussed in Zekovic et al. (2014) which are omitted here  

 
 
 
 
for simplicity. The authors (Zekovic et al., 2014) have 
used the Jacobi elliptic function method to find the exact 
solutions of Equation (1). 
  
(ii) The nonlinear PDE describing the nonlinear dynamics 
of radial dislocations in MTs: 
 

2 2
2 3

2 2

( , ) ( , ) ( , )
( , ) ( , ) 0,

6

x t x t pH x t
I ch pH x t x t

t x t

  
 

  
    

  

 (2) 

 

where ( , )x t  is the corresponding angular 

displacement when the whole dimer rotates with the 

angular displacement ( , )x t , I  is the moment of inertia 

of the single dimer, c stands for inter-dimer bonding 

interaction within the same protofilaments (PFs), h  is the 

MT length, p is the electric dipole moment, H is the 

magnitude of intrinsic electric field and   is the viscosity 
coefficient. The physical details of the derivation of 
Equation (2) has been discussed in Zdravkovic et al. 
(2014) which are omitted here for simplicity. The authors 
(Zdravkovic et al., 2014) have used the simplest equation 
method to find the exact solutions of Equation (2). 
 
 
Description of the generalized projective Riccati 
equations method  
 
Considering the following NPDE: 
 

( , , , , , ,...) 0,       t x tt xt xxF u u u u u u                                  (3) 

 

where F  is a polynomial in ( , )u x t  and its partial 

derivatives, in which the highest order derivatives and 
nonlinear terms are involved. In the following, the authors 
give the main steps (Conte and Musette, 1992; Zayed 
and Alurrfi, 2014d; Zhang et al., 2001; Yan, 2003; 
Yomba, 2005) of this method. 
 
Step 1. The authors use the wave transformation 
 

1( , ) ( ), ,u x t u k x t                                     (4) 

 

where 1,k  and   are constants, to reduce Equation (3) 

to the following ODE: 
 

( , ', '',...) 0,       Q u u u                                                      (5) 

 

where Q  is a polynomial in ( )u   and its total 

derivatives, such that '
d
d

  . 

 
Step 2. The authors assume that Equation (5) has the 
formal solution: 



 

 
 
 
 

 1

0

1

( ) ( ) ( ) ( ) ,
N

i

i i

i

u A A B      



                  (6) 

 

where 0 , iA A  and 
iB  are constants to be determined 

later. The functions ( )  and ( )   satisfy the ODEs: 

 

'( ) ( ) ( )                                                         (7) 

 
2'( ) ( ) ( ), 1,R                                 (8) 

 
Where 
 

 
2

2 2( ) 2 ( ) ( ) ,
r

R
R


      

 
    

 

                 (9) 

 

where 1r    and ,R   are nonzero constants. 

 

If , 0,R    Equation (5) has the formal solution: 

 

 
0

( ) ( ),
N

i

i

i

u A  


                                                 (10) 

 

where ( )   satisfies the ODE: 

 
2'( ) ( ).                                                              (11) 

 

Step 3. The authors determine the positive integer N in 

(6) by using the homogeneous balance between the 
highest-order derivatives and the nonlinear terms in 
Equation (5). 
 
Step 4. Substitute (6) along with Equations (7) - (9) into 
Equation (5) or ((10) along with Equation (11) into 
Equation (5)). Collecting all terms of the same order of 

( ) ( )j i     ( 0,1,... ; 0,1)j i   (or ( )i  , 

0,1,...j  ). Setting each coefficient to zero, yields a set 

of algebraic equations which can be solved to find the 

values of 0 1, , , , ,i iA A B k    and R . 

 
Step 4. It is well known (Yomba, 2005) that Equations (7) 
and (8) admit the following solutions: 
 

Case 1. When 1, 1, 0,r R       

  

 
 

 
 

1 1

sech tanh
( ) , ( ) ,

sech 1 sech 1

R R R R

R R

 
   

   
 

 

        (12) 

 
Case 2. When 1, 1, 0,r R       
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 
 

 
 

2 2

csch coth
( ) , ( ) ,

csch 1 csch 1

R R R R

R R

 
   

   
 

 

     (13) 

 
Case 3. When 1, 1, 0,r R      

 

  
 

 
 

3 3

sec tan
( ) , ( ) ,

sec 1 sec 1

R R R R

R R

 
   
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 

 

     (14) 

 

  
 

 
 

4 4

csc cot
( ) , ( ) ,

csc 1 csc 1

R R R R

R R

 
   

   
  

 

   (15) 

 
Case 4. , 0,R    

 

5 5

1
( ) , ( ) ,

C
   

 
                                       (16) 

 

where C  is nonzero constant. 

 

Step 6. Substituting the values of 0 1, , , , ,i iA A B k    

and .R  as well as the solutions (12) - (16) into (6) the 

authors obtain the exact solutions of Equation (3). 
 
 
APPLICATIONS  
 
In this part, the authors will apply the proposed method 
described in description of the generalized projective 
Riccati equations method, to find the exact solutions of 
the two nonlinear PDEs (1) and (2). 
 
Example 1. Exact solutions of the nonlinear PDE (1) 
describing the nonlinear dynamics of MTS as 
nanobioelectronics transmission lines  
 
The authors find the exact wave solutions of Equation (1). 
To this end, the authors use the transformation (4) to 
reduce Equation (1) into the following ODE: 
 

3( ) ( ) ( ) ( ) 0,                           (17) 

 
where 
 

2 2 2

1 , , ,
/

m kl k qE

A A A A B

 
  


                   (18) 

 
and 
 

( ) ( ).
A

z
B

                                                        (19) 

 

Balancing  ( )    with  
3( )    in  Equation   (17),   the  
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authors get 1.N   Consequently, the authors have the 

formal solution of Equation (17) as follows: 
 

0 1 1( ) ( ) ( ).A A B                                       (20) 

  

where 0 1,A A and 1B  are constants to be determined 

later. 
Substituting (20) into (17) and using (7) - (9), the left-
hand side of Equation (17) becomes a polynomial in 

( )   and ( )  . Setting the coefficients of this 

polynomial to be zero, yields the following system of 
algebraic equations: 
 

3 3 2 2 2

1 1 1 1( ) : ( )(2 3 ) 0,RA r A A B          

 
2 2 2 2 2 2

0 1 1 1 1 1 1 0 1( ) : ( )(3 ) 2 (2 3 ) 3 0,r A B B R A A B RA RA A                

 
2 2 2 2 3

1 1 1 1( ) ( ) : 3 ( )(2 ) 0,RA B r B B           

 
2 2 2 2

0 1 1 1 1 1 1 1 0 1 1( ) : 2 (3 ) (2 3 ) 3 0,A B B R A A B A A R A A B                  

 
2 3

1 0 1 1 1 1 1( ) ( ) : 6 3 2(2 ) 0,A A A B B B B               

 
2 2 3

1 1 0 1 1 1( ) : 2 3 (2 ) 0,B R B A B B B R           

 
0 2 3

0 1 1 0 0 1( ) : (3 ) 0.R A B B A A RB                    (21) 

 

Case 1. If authors substitute 1    into the algebraic 

equations (21) and solve them by Maple 14, the following 
results were realized: 
 
Result 1. The authors have  
 

2

0 1 1 2

2

2

2 6
, 0, 2 , , 0,

6 12

(2 9 ) 2
,

27

A A B R

r r

  
 

 

   




 
        

 
  

           (22) 

where 0  , 
2 6 0   . 

 
From (12), (13), (19), (20) and (22), the authors deduce 

that if 1r   , then the exact wave solution was realized: 
 

 
2 2

2

2 6 6
( ) tanh ,

6 12 12

A
z

B

    
 

 

    
      

    

       (23) 

 

while if 1r  , then the authors have the exact wave 
solution 
 

 
2 2

2

2 6 6
( ) coth .

6 12 12

A
z

B

    
 

 

    
      
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   (24) 

 
 
 
 
Result 2. The authors have  
 

2

0 1 1 2

2

2

2 2 6
, 0, , , ,

3 3

(2 9 ) 2
,

27

A A B R r
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
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   




  
         

 
 

        (25) 

where 0  , 0r  , 2 6 0   . 

 

In this case, the authors deduce that if 1r   , then the 
exact wave solution was realized: 
 

 2 2

2

2

2

6 6
tanh

3 3
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2 3 6
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3

A
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Result 3. The authors have 
 

3 2 2
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where 0, 

2 6 0   , 2 0r   . 

In this case, the authors deduce that if 1r   , then the 
exact wave solution was realized: 
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while if 1r  , then the authors have the exact wave 
solution 
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Case 2. If the authors substitute 1   and 1r    into 

the algebraic Equations (21) and solve them by Maple 
14, the authors have the following results: 
 
Result 1. The authors have 
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where 0  , 2 6 0   .  

From (14), (15), (19), (20) and (30), the authors deduce 
the following exact wave solutions 
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Result 2. The authors have  
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where 0,   
2 6 0   . 

In this case, the authors deduce the exact wave solutions 
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z

B

   





  




   
  

        
  

    
  

    (34) 

 

or 
 

 

2 2

2

2

2

6 6
cot

3 3
( ) .

2 3 6
1 csc

3

A
z

B

   





  




   
  

      
  

    
  

     (35) 

 
Result 3. The authors have 
 

3 2 2

0 1 12 2

2

2

2 3 (1 ) 2 6
, , , , ,

3 2( 6 ) 3

(2 9 ) 2
,

27

A A B R
    

 
    

   




   
       



 


  (36) 

 

where 0   , 2 6 0    and 3 2(1 ) 0   . 

In this case, the authors deduce the exact wave 
solutions 
 

 

 

2

2 2
2

2 2

2

2

6
( )

2 3 3

6 6
1 sec tan

3 3
,

6
sec 1

3

A
z

B

  




   
  

 

 
 



 
   



     
     

          
   

    
  

  (37) 
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or  
 

 

 

2

2 2
2

2 2

2

2

6
( )

2 3 3

6 6
1 csc cot

3 3
.

6
csc 1

3

A
z

B

  




   
  

 

 
 



 
 



     
     

          
   

    
  

    (38) 

 

Case 3. ( 0, 0R   ) 

 

Substituting 0 1( ) ( )A A      into (17) and using 

(11), the left-hand side of Equation (17) becomes a 

polynomial in ( )  . Setting the coefficients of this 

polynomial to be zero, yields the following system of 
algebraic equations: 
 

3 3

1 1( ) : 2 0,A A     

 
2 2

1 0 1( ) : 3 0,A A A      

 
2

1 0 1( ) : 3 0,A A A      

 
0 3

0 0( ) : 0.A A      

  
On solving the above, the algebraic equations using the 
Maple 14, the authors have the following result: 
 
 

 2

0 1

1 1 1 2 1
, , , .

3 3 6 3 3
A A                       (39) 

 
From (10), (16), (19) and (39), the authors deduce the 
following rational solution 
 

 ( ) 1 .
3

A
z

B






 
   

 

                                            (40) 

 
Example 2. Exact solutions of the nonlinear PDE (2) 
describing the nonlinear dynamics of radial dislocations in 
MTs  
 
In this subsection, the authors find the exact solutions of 
Equation (2). To this end, the authors use the 
transformation (4) to reduce Equation (2) into the 
following ODE: 
 

3( ) ( ) ( ) ( ) 0,                               (41) 

 
where 
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2 2 2

1 , ,
I ch k

pH pH

 
 

 
                                      (42) 

 
and 
 

( ) 6 ( ).                                                             (43) 

 

Balancing ( )   with 
3( )   in Equation (41), the 

authors get 1.N   Consequently, the authors have the 

formal solution of Equation (41) as follows: 
 

0 1 1( ) ( ) ( ).A A B                                        (44)  

 

where 0 1,A A and 1B  are constants to be determined 

later. 
Substituting (44) into (41) and using (7) - (9), the left-

hand side of Equation (41) becomes a polynomial in 

( )   and ( )  . Setting the coefficients of this 

polynomial to be zero, yields the following system of 
algebraic equations: 
 

3 3 2 2 2

1 1 1 1( ) : ( )(2 3 ) 0,RA r A A B            

 
2 2 2 2 2 2

0 1 1 1 1 1 1 0 1( ) : ( ) ( 3 ) 2 (2 3 ) 3 0,r A B B R A A B RA RA A                    

 
2 2 2 2 3

1 1 1 1( ) ( ) : 3 ( )(2 ) 0,RA B r B B             

 
2 2 2 2

0 1 1 1 1 1 1 1 0 1 1( ) : 2 (3 ) (2 3 ) 3 0,A B B R A A B A A R A A B                   

 
2 3

1 0 1 1 1 1 1( ) ( ) : 6 3 2 (2 ) 0,A A A B B B B               

 
2 2 3

1 1 0 1 1 1( ) : 2 3 (2 ) 0,B R B A B R B B            

 
0 2 3

0 1 1 0 0 1( ) : (3 ) 0.R A B B A A RB                              (45) 

 

If the authors substitute 1    into the algebraic 

Equations (45) and solve them by Maple 14, the authors 
have the following results: 
 
Result 1. The authors have  
 

 2

0 1 1 2

1 2 9 2
, 0, , , 0, , .

2 3 16 9
A A B R r r  


                   (46) 

 
From (12), (13), (43), (44) and (46), the authors deduce 

that if 1r   , then the authors have the exact wave 
solution 
 

 
6 3

( ) 1 tanh ,
2 4

  


  
    

  

                           (47) 

 
 
 
 

while if 1r  , then the authors have the exact wave 
solution 
 

 
6 3

( ) 1 coth .
2 4

  


  
    

  

                         (48) 

 

Note that our solution (47) is in agreement with the 
solution (43) obtained in Z d r a v k ov i c  e t  a l .  
( 2 0 1 4 ) .  
 
Result 2. The authors have 
 

2

0 1 1 2

1 1 9 2
, 0, , , , ,

2 3 4 9
A A B R r   


         

       (49) 

 

where 0r  . 

In this case, the authors deduce that if 1r   , then 
the authors have the exact wave solution 
 

 

3
tanh

26
( ) 1 ,

2 3
1 sech

2




 




   
   

     
   

   
   

                (50) 

 
Result 3. The authors have 
 

2
2

0 1 1 2

1 2 1 9 2
, , , , 0, ,

2 9 3 4 9

r
A A B R


   


        

        (51) 

 

where 0r  . 

In this case, the authors deduce that if 1r  , then the 
authors have the exact wave solution 
 

 6 3 3
( ) 1 csch coth .

2 2 2
   

 

    
       

    

          (52) 

 

Result 4. The authors have 
 

2 2
2

0 1 1 2

21 1 9 2
, , , , , ,

2 9 3 4 9

r
A A B R

 
    




              (53) 

 

where 
2 0r   . 

In this case, the authors deduce that if 1r   , then the 
authors have the exact wave solution 
 

 
 2 3 3

1 sech tanh
2 26

( ) 1 ,
2 3

sech 1
2

  
 

 

 


    
     

      
  

  
  

    (54) 

 

while if 1r  , then the authors have the exact wave 
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Figure 1. The plot of (23) when 
1 1, 1, 1, 2, 1, 2.k A B           

 
 
 

  2 3 3
1 csch coth

2 26
( ) 1

2 3
csch 1

2

  
 

 

 


    
     

      
  

  
  

.       (55) 

 
solution. Finally, note that the case 

1, 1, 0,r R     is rejected for example 2, because 

the authors have complex solutions for Equation (2). 
 
 

PHYSICAL EXPLANATIONS OF SOME OBTAINED 
SOLUTIONS 
 

Solitary waves can be obtained from each traveling wave 
solution by setting particular values to its unknown 
parameters. In this section, the authors have presented 
some graphs of solitary waves constructed by taking 
suitable values of involved unknown parameters to 
visualize the underlying mechanism of the original 
equation. Using mathematical software Maple 14, three 
dimensional plots of some obtained exact traveling wave 
solutions have been shown in Figures 1 to 6. 
 
 

The nonlinear PDE (1) describing the nonlinear 
dynamics of MTs as nanobioelectronics transmission 
lines 
 

The   obtained   solutions   for   the   nonlinear   PDE   (1)  

incorporate three types of explicit solutions namely, 
hyperbolic, trigonometric and rational. From these explicit 
results, it is easy to say that the solution (23) is a kink 
shaped soliton solution; the solution (24) is a singular 
kink shaped soliton solution; the solutions (26), (28) are 
bell-kink shaped soliton solution; the solution (29) is a 
singular bell-kink shaped soliton solution, the solutions 
(31), (32), (34), (35), (37), (38) are periodic solutions and 
the solution (40) is rational solution. The graphical 
representation of the solutions (23), (26), (34) and (38) 
can be plotted as shown in Figures 1 to 4. 
 
 
The nonlinear PDE (2) describing the nonlinear 
dynamics of radial dislocations in MTs 
 
The obtained solutions for the nonlinear PDE (2) are 
hyperbolic. From the obtained solutions for this equation, 
the authors observe that the solution (47) is a kink 
shaped soliton solution, the solution (48) is a singular 
kink shaped soliton solution, the solution (50), (54) are 
bell-kink shaped soliton solutions and the solutions (52), 
(55) are singular bell-kink shaped soliton solutions. The 
graphical representation of the solutions (52) and (54) 
can be plotted as shown in Figure 5 and 6.  
 
Remark: The authors have checked all our solutions with 
Maple 14 by putting them back into the original Equations 
(1) and (2). 
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Figure 2. The plot of (26) when 
1 1, 2, 2, 2, 1, 1.k A B           

 
 
 

 
 

Figure 3. The plot of (34) when 
1 1, 1, 2, 4, 1, 1.k A B           
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Figure 4. The plot of (38) when 1
1 2

1, 2, 1, 4, 1, 1, .k A B            

 
 
 

 
 

Figure 5. The plot of (52) when 3
1 2

2, 2, .k      
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Figure 6. The plot of (54) when 3
1 2

2, 1, , 2.k        

 
 
 
Conclusions 
 
The generalized projective Riccati equations method was 
used in this paper to obtain some new exact solutions of 
the two nonlinear evolution Equations (1) and (2) which 
describe the model of MTs as nano-bioelectronics 
transmission lines and the dynamics of radial dislocations 
in MTs, respectively. On comparing our results in this 
paper with the well-known results obtained in Zekovic et 
al. (2014) and Zdravkovic et al. (2014), the authors 
deduce that their results are new and not published 
elsewhere except the result (47) which is in agreement 
with the result of (43) obtained in Zdravkovic et al. (2014). 
It is to be noted here that the obtained solutions are of 
type kink, soliton with singularities and periodic. Solitons 

are the solutions in the form sech  and 
2sech , the 

graph of soliton is a wave that goes up only. It is not like 
periodic solutions sine, cosine, etc, as in trigonometric 
function, that goes above and below the horizontal. Kink 

is also called a soliton; it is in the form tanh  not 
2tanh . 

In kink the limit as x  , the answer is a constant, not 

like solitons where the limit goes to 0 (Alquran and Al-
Khaled, 2011a, b, 2012; Alquran, 2012; Shukri and Al-
khaled, 2010; Alquran et al., 2012; Alquran and 
Qawasmeh, 2014). 
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