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In this paper, we have considered the nonlinear governing equation of tapered beams, attempt has been 
made to analyze the nonlinear behavior of tapered beams analytically. The nonlinear governing 
equation is solved by employing the variational approach method (VAM) and Improved Amplitude-
Formulation (IAFF). Despite the increasing expenses of building structures to maintain their linear 
behavior, nonlinearity has been inevitable and therefore, nonlinear analysis has been of great 
importance to the scientists in the field. The major concern is to assess excellent approximations to the 
exact solutions for the whole range of the oscillation amplitude, reducing the respective error of 
angular frequency in comparison with the VAM and IAFF. The effect of vibration amplitude on the non-
linear frequency is discussed. It is predicted that there can be wide application of VAM and IAFF in 
engineering problems, as indicated in this paper. 
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INTRODUCTION 
 
Tapered members are widely used in high-rise buildings, 
long-span bridges, aerospace vehicles, steel braced 
frames equipped with ADAS devices and other energy 
dissipating devices under the far field and near field 
records (Bayat and Abdollahzadeh, 2011), etc. The study 
on the nonlinear vibration of tapered beams has been 
widely mentioned in the past few decades (Goorman, 
1975; Evensen, 1968; Pillai and Rao, 1992). As the 
amplitude of oscillation increases, these structures are 
subjected to non-linear vibrations which often lead to 
material fatigue and structural damage. 

Obtaining the natural frequencies of the systems 
become more significant because of the result of these 
effects. Therefore, it is very important to provide an 
accurate analysis towards the understanding of the non-
linear vibration characteristics of these structures. 
Generally, it is extremely difficult to find an exact or 
closed-form solution for nonlinear equations. Many 
researchers have been concentrated on approximate 
analytical methods (Bayat et al., 2010, 2011a, b, c, d; 
Pakar et al., 2011; Kimiaeifar et al., 2009; Kimiaeifar, 
2010; Ibsen et al., 2010; Momeni et al., 2011). 
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The main objective of this study is to obtain analytical 
expressions for geometrically non-linear tapered beams. 

In dimensionless form, Goorman is given the governing 
differential equation corresponding to fundamental 
vibration mode of a tapered beam (Goorman, 1975): 
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Where u is displacement and 1ε and 2ε are arbitrary 
constants. Subject to the following initial conditions: 
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Basic idea of He’s variational approach method  
 
He suggested a variational approach which is different from the 
known variational methods in open literature (He, 2007). Hereby we 
give a brief introduction of the method: 
 

( ) 0u f u′′ + =                                                                    (3) 
 
Its variational principle can be easily established utilizing the semi-
inverse method (He, 2007): 
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Where T is period of the nonlinear oscillator, fu
F =∂

∂ .Assume 

that its solution can be expressed as: 
 

)cos()( tAtu ω=                                                                      (5) 
 
Where A  and  ω  are the amplitude and frequency of the 
oscillator, respectively. Substituting Equation (5) into Equation (4) 
results in:  
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 Applying the Ritz method, we require: 
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But with a careful inspection, for most cases we find that: 
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Thus, we modify conditions Equations (7) and (8) into a simpler 
form: 
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From which the relationship between the amplitude and frequency 
of the oscillator can be obtained. 
 
 
Basic idea of improved amplitude-frequency formulation 
 
We consider a generalized nonlinear oscillator in the form (He, 
2008): 
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We use the following trial functions 
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2 2  ( ) cos  ( ),u t A tω=
                                                          (13) 

 
The residuals are 
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The original frequency-amplitude formulation reads (He, 2004, 
2006): 
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He used the following formulation (He, 2004, 2006) and Geng and 
Cai (2007) improved the formulation by choosing another location 
point. 
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This is the improved form by Geng and Cai (2007). 
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The point is:  1  2 cos  ( ) cos  ( )t t kω ω= =  

Substituting the obtained ω  into ( ) cos(  )u t A tω= , we can 

obtain the constant k in
2ω  equation in order to have the frequency 

without irrelevant parameter. 
To improve its accuracy, we can use the following trial function 

when they are required. 
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But in most cases because of the sufficient accuracy, trial functions 
are as follow and just the first term: 
 

1( ) cos  ,u t A t=   and 
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2( ) cos  (  ) ( )cos  (  ),u t a t A a tω ω= + −                  (21) 
 
And 
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Where a and c are unknown constants. In addition we can set: 

cos t k=  in   1u ,  and   cos (  )t kω =   in   2u
 

 
 
APPLICATIONS  
 
Solution using VAM 
 
Its variational formulation can be readily obtained as follows: 
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Choosing the trial function ( ) cos( )u t A tω=  into Equation (23) 
we obtain 
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The stationary condition with respect to A reads: 
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Which leads to the result 
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Solving Equation (27), according toω , we have: 
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Hence, the approximate solution can be readily obtained: 
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Solution using IAFF 
 
We use trial functions, as follows: 
 

1 ( ) cos ,u t A t=
                                                                       (30) 

 
And 
 

2 ( ) cos (2 ),u t A t=                                                                (31) 
 
Respectively, the residual equations are: 
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We can rewrite ( ) cos( )u t A tω= in the form: 
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In view of the approximate solution, we can rewrite the main 
equation in the form:  
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If by any chance Equation (35) is the exact solution, then the right 
side of Equation (36) vanishes completely. Considering our 
approach which is just an approximation one, we set: 
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Where 2T π ω= . Substituting the Equation (35) in (37) and 
solving the integral term, we have: 
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So, substituting Equation (39) into (34), and simplifying, we have: 
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Table 1. Comparison of frequency corresponding to various parameters of system. 
 

Constant parameters Approximate solution Exact solution Relative error (%) 

A  1ε  2ε
 VAM IAFFω =  Exactω

 
V A M IA FF Ex

Ex

ω ω
ω

= −

0.5 0.1 0.1 1.003082 1.003094 0.00119 
0.5 1 0.2 0.960324 0.961203 0.09142 
1 0.5 1 1.183216 1.18593 0.22885 
1 1 0.5 0.957427 0.96655 0.94387 
2 1 1 1.154701 1.205874 4.24368 
2 2 5 1.788854 1.915915 6.63184 
3 5 1 0.574271 0.644779 10.9353 
5 10 5 0.86717 0.994212 12.7781 

10 20 50 1.935782 2.232558 13.2931 
 
 
 

 
 
Figure 1. Comparison of analytical solution of ( )u t based on time with the 

exact solution for 1 21, 0.2, 0.5Aε ε= = = . 

 
 
 
RESULTS AND DISCUSSION 
 
To illustrate and verify the accuracy of the Variational 
approach method and Improved Amplitude-Formulation 
(IAFF), comparison with published data and exact 
solutions is presented. The exact frequency eω  for a 
dynamic system governed by Equation (1) can be 
derived, as shown in Equation (40), as follows: 
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The results obtained by VAM and IAFF are tabulated in 
Table 1 for different value of A , 1ε and 2ε . Figures 1 and 
2   shows  the  displacement  of  the  system  for  different
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Figure 2. Comparison of analytical solution of ( )u t based on time with 

the exact solution for 1 21, 1, 2Aε ε= = = . 

 
 
 

 
 
Figure 3. Comparison of frequency corresponding to various parameters of 

amplitude (A) 1 1ε = . 

 
 
 

parameter of A , 1ε and 2ε . 
It can be seen from Figures 1 and 2 VAM and IAFF 

results have a good agreement with the exact solution. 
The   effect   of  small  parameters  1ε   on  the  frequency 

corresponding to various parameters of amplitude (A) has 
been studied in Figure 3 and for 2ε  in Figure 4. 

Figure 5 represents the phase plane for this problem 
obtained from VAM and IAFF for 2 0.1ε =  to 2 0.5ε = .  It 
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Figure 4. Comparison of frequency corresponding to various parameters of 

amplitude (A) 2 1ε = . 

 
 
 

 
 

Figure 5. Phase plane, for 12, 0.5A ε= =
.
 

 
 
 
is evident that VAM and IAFF show excellent agreement 
with the numerical solution using the exact solution and 
quickly convergent and valid for a wide range of  vibration 

amplitudes and initial conditions. The accuracy of the 
results shows that the VAM and IAFF can be potentiality 
used   for  the  analysis  of  strongly  nonlinear  oscillation 
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problems accurately. 
 
 
Conclusions 
 
In this paper, the Variational approach method and 
Improved Amplitude-Formulation (IAFF) have been used 
to obtain analytical solutions for non-linear oscillation of 
tapered beams. The results of the first iteration led to an 
excellent solution and both methods provide the same 
analytical approximations for the nonlinear differential 
equations. it is obvious from the figures the comparison of 
these methods with numerical results reveals that the 
approximations obtained by the VAM and IAFF quickly 
converge to an exact solution. The VAM and IAFF do not 
require small parameters in the equations, so the 
limitations of the traditional perturbation methods can be 
eliminated. As shown in this study excellent agreement 
between approximate frequencies and the exact one are 
demonstrated and discussed. The authors suggest that 
VAM and IAFF are strong and novel methods to 
determine approximate periodic solutions for studying of 
nonlinear oscillators. 
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