
International Journal of the Physical Sciences Vol. 6(19), pp. 4533-4547, 16 September, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS11.757 
ISSN 1992 - 1950 ©2011 Academic Journals 
 
 
 
Full Length Research Paper 
 

Capability measures for Weibull processes with mean 
shift based on Erto’s-Weibull control chart 

 
Ya-Chen Hsu1*, W. L. Pearn2 and Chun-Seng Lu2 

 
1Department of Business Administration, Yuanpei University, Taiwan, ROC. 

2Department of Industrial Engineering and Management, National Chiao Tung University, Taiwan, ROC. 
 

Accepted 5 August, 2011 
 

Process capability indices (PCIs), which are effective tools for quality assurance and are guidance for 
process improvement, have been proposed in the manufacturing industry to provide numerical 
measures on process reproduction capability. PCIs are calculated under the assumption that the 
process is stable while the process mean and variation are not changeable. However, in practice, the 
process is dynamic. Under the Bothe’s adjustments, we showed the detection powers of the 
percentile-Weibull control chart, bootstrap-Weibull control chart, and the Bayes-Weibull control chart. It 
is realized that the Bothe’s adjustments are inadequate with data coming from Weibull processes. For 
this reason, the PCIs have to be adjusted. Bothe (2002) provided the adjustment method for normality 
processes. In this research, we consider Weibull processes, which cover a wide class of applications. 
We calculate the mean shift adjustments under various sample sizes n and Weibull parameter �, with the 
power fixed to 0.5. Then, we implement the adjustments to accurately estimate capability index Cpk for 
Weibull processes with mean shift consideration. Finally, an application example is presented for 
illustration purpose. 
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INTRODUCTION 
 
During the last decade, numerous process capability 
indices (PCIs) have been proposed in manufacturing 
industries to provide numerical measures on process 
performance. Production yield is one of the commonly 
used criteria for measuring process capability. Those 
indices are effective tools for process capability analysis 
and quality assurance. The relationship between the 
actual process performance and the specification limits or 
tolerance may be quantified by using appropriate process 
capability indices. Four basic well-known capability 
indices have been defined explicitly as follows (Kane, 
1986; Chan et al., 1988; Pearn et al., 1992): 
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where � ��  is the upper limit and ���  is the lower 
specification limits, �  is the target value, and µ  and 
σ  are, respectively, the process mean and the standard 
deviation of the characteristic. 

In the literature, several authors have promoted the use 
of various process capability indices and examined their 
associated properties with different degrees of 
completeness. 

Ever since Motorola, Inc. introduced its Six Sigma 
quality initiative, followers of this philosophy notion should 
add a shift to the process average before estimating 
process capability. The advocates of the six sigma 
production quality have claimed that such an adjustment 
is necessary, but  they  have  offered  only  personal 
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experiences and three dated empirical studies as 
justification for this claim (Bender, 1975; Evans, 1975; 
Gilson, 1951). Bothe (2002) first provided a statistically 
based reason to calculate the undetected shifts of various 
magnitudes, and then adjusted the formula of process 
capability. In Bothe’s study, the process data is assumed 
to be approximately normally distributed. However, 
non-normal processes occur frequently, in particular, in 
the semiconductor industry. Hsu et al. (2008) investigated 
the procedure to calculate the mean shift adjustments for 
Gamma processes with power fixed to 0.5. Pyzdek (1992) 
mentioned that the distributions of certain chemical 
processes are very often skewed, such as zinc plating in a 
hot-dip galvanizing process. Choi et al. (1996) presented 
an example of a skewed distribution in the “active area” 
shaping stage of the wafer’s production processes. Cygan 
et al. (1989) have mentioned that the lifetimes of 
polypropylene films under high ac and dc field stresses 
were shown as a two-parameter Weibull distribution. 
Weibull distribution denoted as Weibull α γ� � 
 	, with 
various values of α  and γ , covers a wide class of 
non-normal processes, including product life, product 
reliability and tensile strength of brittle materials, such as 
carbon, and boron. Since many other processes could be 
modeled by Weibull distributions, we determine the 
adjustments for capability measurements with the mean 
shift consideration for Weibull processes in this paper. 

The control charts are commonly used in many 
industries for providing early warnings of the shift in the 
process mean. The well-known Shewhart 	  control 
chart is developed based on the assumption that the 
process data is normally distributed. When the process 
data is from a Weibull distribution, the estimators of the 
sampling-distribution parameters may not be available 
theoretically. For Weibull processes, Erto and Pallotta 
(2007) used Bayes theorem to provide a Weibull control 
chart. Nichols and Padgett (2006) provided a 
bootstrap-Weibull control chart for Weibull processes. Lu 
and Peng (2003) found the approximate c.d.f. of 
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observations of i.i.d Weibull (1,  )γ ) distribution to 
provide a percentile control chart for the calculations of 
the control limits, LCL  and UCL . This paper first 
shows the detection power of the three control charts 
(Erto’s-Weibull control chart provided by Erto and Pallotta 
(2007), bootstrap-Weibull control chart provided by 
Nichols and Padgett (2006) and percentile-Weibull control 
chart provided by Lu and Peng (2003)) under the Bothe’s 
mean shift adjustments. For the three control charts, the 
low detection power shows that Bothe’s adjustments are 
inadequate when the process is Weibull distributed. Then, 
we use the most powerful control chart of the three ones 
to estimate the adjustments under various sample sizes 
(n) and Weibull parameters (�) with a fixed detection 
power of 0.5. Finally, the process capability  formula  is  

 
 
 
 
adjusted to accommodate the undetected shifts. As a 
result, our adjustments significantly provide more 
accurate calculations of the capability in the Weibull 
processes. A real-world example taken from the 
manufacturing process is investigated to illustrate the 
applicability of the process capability index. 
 
 
WEIBULL PROCESS 
 
Since Weibull distribution has often been used in the field 
of life data analysis due to its flexibility, and it can mimic 
the behaviors of other statistical distributions such as the 
normal and the exponential. We choose Weibull 
distributions to model the data of the processes in this 
research. Weibull distributions are also used to model the 
time until a given technical device fails.  
 
 
Weibull distribution 
 
Weibull distribution is the non-negative distribution. It can 
be denoted as Weibull ( � 
α γ ) with scale parameter α  
and shape parameter γ . The cumulative density function 
is defined as 
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The mean and variance are respectively given by 
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The coefficient of skewness Weibull distribution is given 
by: 
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The kurtosis coefficient of Weibull distribution is given by: 
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Where )(xΓ is the gamma function and 



 
 
 
 
Table 1. Values of skewness and kurtosis of various Weibull 
distributions. 
 
Weibull( � 
α γ ) Skewness Kurtosis 

Normal(0,1) 0 0 
Weibull(1,1) 2 6 
Weibull(1,2) 0.631111 0.245089 
Weibull(1,3) 0.168103 -0.27054 
Weibull(1,3.6) 0 -0.283255 
Weibull(1,4) -0.087237 -0.25217 
Weibull(1,5) -0.25411 -0.11971 
Weibull(1,6) -0.373262 0.035455 
Weibull(1,7) -0.46319 0.187183 
Weibull(1,8) -0.533726 0.327676 
Weibull(1,9) -0.590657 0.455204 
Weibull(1,10) -0.637637 0.570166 
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The Equations (9) and (10) show that the skewness 
coefficient and the kurtosis coefficient are calculated only 
by using the shape parameterγ, which means that the 
scale parameter α  can not affect the values of 
skewness and kurtosis of Weibull distributions. Therefore, 
we fix α = � in this study for the Weibull distributions. To 
see how this distribution are different from the standard 
normal distribution in terms of skewness and kurtosis, 
Table 1 shows the values of skewness and kurtosis 
(which are respectively defined as the third and the fourth 
moments of the standardized distribution) of the Weibull 
distributions under study. Also, when the value of γ  
increases from 1 to 3.6, the corresponding values of 
skewness will become smaller and will be close to 0. 
Especially, when value of γ  is 3.6, the skewness 
coefficient of the Weibull distribution is 0, indicating that 
the Weibull (1, 3.6) distribution is symmetric about median 
and appears more nearly normal distribution. When the 
value of γ  increases form 3.6 to 10, the corresponding 
values of skewness will become negative and far from 0. 
Based on the results above, we can get some insights of 
the effects of non-normality in terms of skewness and 
kurtosis. 

The formula of these modulus let us know that α  is 
the scale parameter and γ  is the shape parameter. It 
can be seen that as the value of γ  in the region of [3, 4], 
the skewness and kurtosis of Weibull distribution will be 
getting much closer to those of normal distribution. In this 
study, without the loss of generality, we let γ =  1(1)10, 

while fixing α = � . This fact could also be found 
according to Equation (10). When the value of γ  in the 
region of of [3, 4], the  form   of   Weibull  distribution  
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becomes centralizing. Through these distributions, we 
expect to get some insights of the effects of non-normality 
on the detection power in terms of skewness and kurtosis. 
Through these distributions, we expect to get some 
insights of the effects of non-normality on the detection 
power in terms of skewness and kurtosis. 
 
 
The detection power of the percentile-Weibull control 
chart 
 
Here, we use percentile-Weibull control chart to calculate 
the detection power. Let � �� � � 
	 	 	�  be a sequence 
observations of independent and identically distributed in 
Weibull ( � 
α γ ). The detection power is defined the 
probability of outline control chart under the mean being 
shifted. Its mean 1-type � error β . The detection power 
is: 
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where �µ  is the mean after process shift ( 0µ  is the 

mean of the original process). The control limits LCL  

and UCL  are calculated as (0.00135)nXF  and 

(0.99865)nXF  respectively, where (0.00135)nXF  and 

(0.99865)nXF  are 0.135th percentile and 99.865th of 	  of 

sampling distribution. We can obtain the approximate 
c.d.f. of 
	  distribution by a reference which Lu and 

Peng (2003) provided. Since the nX  distribution is not 
symmetric, we discussed µ  occurred right movement 

and left movement. When �� > , µ  occurs right 

movement; and when �� < , µ  occurs left movement. 
Tables 2 and 3 display the detection power with right 
process mean shift ( �� > ) and left process mean shift 

( �� < ) when � �� � � 
	 	 	�  come from Weibull 

( � 
α γ ) with 1α =  and 1 (1) 10γ = , and the number 
of subgroup is 100000. The magnitude of shift in the 
second column on the left is Bothe’s capability 
adjustments determined when data comes from normal 
distribution and the detection power is 0.5. In Table 2, we 
can see that the detection power is less than 0.5 when 

1γ =  and 2 while, in Table 3, 5γ ≥  under Bothe’s 
capability adjustments. The results indicate that the 
Bothe’s adjustments are inadequate when we have 
Weibull  processes due  to Bothe’s  approach which is 
based on the normality assumption of the data  and  the
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Table 2. Detection power of the percentile-Weibull control chart for �� >  under various Weibull distributions. 
 

n Shift σ  
Weibull distribution(1, γ ) for right shift 

�=1 �=2 �=3 �=4 �=5 �=6 �=7 �=8 �=9 �=10 
2 2.12 0.054 0.309 0.525 0.687 0.747 0.785 0.807 0.822 0.833 0.841 
3 1.73 0.091 0.347 0.524 0.664 0.726 0.760 0.782 0.796 0.809 0.815 
4 1.5 0.099 0.375 0.516 0.646 0.699 0.735 0.756 0.775 0.784 0.793 
5 1.34 0.119 0.378 0.514 0.626 0.681 0.712 0.738 0.752 0.764 0.775 
6 1.22 0.141 0.389 0.509 0.614 0.668 0.696 0.719 0.734 0.747 0.755 
7 1.13 0.149 0.385 0.517 0.596 0.645 0.677 0.699 0.715 0.728 0.737 
8 1.06 0.163 0.391 0.516 0.589 0.636 0.666 0.688 0.704 0.717 0.726 
9 1.00 0.175 0.398 0.513 0.582 0.626 0.656 0.678 0.693 0.705 0.714 
10 0.95 0.188 0.403 0.512 0.577 0.620 0.648 0.668 0.684 0.695 0.705 

 
 
 

Table 3. Detection power of the percentile-Weibull control chart for �� <  under various Weibull distributions. 
 

n Shift σ  
Weibull distribution(1, γ ) for left shift 

�=1 �=2 �=3 �=4 �=5 �=6 �=7 �=8 �=9 �=10 
2 2.12 0.928  0.782  0.550  0.513  0.439  0.387  0.350  0.323  0.304  0.288  
3 1.73 0.906  0.733  0.537  0.506  0.449  0.411  0.384  0.364  0.348  0.337  
4 1.5 0.886  0.702  0.532  0.505  0.458  0.426  0.404  0.385  0.375  0.365  
5 1.34 0.868  0.680  0.527  0.504  0.464  0.436  0.416  0.401  0.390  0.381  
6 1.22 0.852  0.664  0.525  0.504  0.467  0.441  0.424  0.411  0.401  0.393  
7 1.13 0.836 0.649 0.553 0.499 0.466 0.443 0.427 0.416 0.406 0.399 
8 1.06 0.825 0.642 0.552 0.502 0.471 0.450 0.436 0.424 0.416 0.409 
9 1.00 0.814 0.634 0.549 0.503 0.474 0.454 0.440 0.430 0.422 0.415 
10 0.95 0.805 0.629 0.548 0.504 0.477 0.458 0.445 0.435 0.427 0.421 

 
 
 
detection power is 0.5. In Tables 2 and 3, the detection 
power is more than 0.5 when 3γ =  and 4. This means 
that Weibull distribution is close to normal distribution 
when 3γ =  and 4. This fact could also be found from 
Table 1. As the value of γ  in the region of [3, 4], the form 
of Weibull distribution becomes centralizing. However, the 
detection power is poorer and far less than 0.5 when data 
comes more from skewed Weibull distribution. For 
example, when 1γ =  and the subgroup size 2=n , the 
detection power is 0.054. It implies that Bothe’s 
adjustments are inadequate when we have skewed 
processes. Consequently, in our study, we determine the 
capability adjustment when process data comes from 
Weibull distribution. 
 
 
The detection power of the bootstrap-Weibull control 
chart 
 
The usual Shewhart control charts assume that the 
observed process data come from a near-normal 
distribution. However, when the distribution of the process 

under observation is unknown or non-normal such as 
Gamma or Weibull, the sampling distribution of a 
parameter estimator may not be available theoretically. 
One way to estimate parameter is simulation. Nichols and 
Padgett (2006) provided a bootstrap-Weibull control chart 
for Weibull percentiles. This control chart uses bootstrap 
method to construct control chart limits for monitoring a 
specified percentile of the process distribution. 

The percentile of the Weibull distribution is  
 

�
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�
 
����� � �γα= − −  
 
where ��  is the 100 �  th percentile. 

The following steps are used to construct the 
bootstrap-Weibull control chart. 
 
1. Let ��� , �� � �� 
= �  and �� � �� �= �  be the 

observations assumed to come from �  independent 
subgroups of size 
 and distributed in Weibull (α ,γ ).  

2. Using the maximum likelihood method to find �α   and 
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Table 4. Detection power of the bootstrap-Weibull control chart for �� >  under various Weibull distributions. 
 

n hift σ  
Weibull distribution(1, γ ) for right shift 

�=1 �=2 �=3 �=4 �=5 �=6 �=7 �=8 �=9 �=10 
2 2.12 0.066 0.283 0.489 0.572 0.642 0.679 0.717 0.733 0.755 0.758 
3 1.73 0.118 0.306 0.456 0.574 0.644 0.669 0.702 0.710 0.721 0.743 
4 1.5 0.180 0.329 0.476 0.574 0.617 0.646 0.666 0.698 0.716 0.727 
5 1.34 0.169 0.355 0.461 0.543 0.603 0.638 0.669 0.673 0.688 0.722 
6 1.22 0.256 0.344 0.488 0.541 0.581 0.626 0.661 0.674 0.697 0.704 
7 1.13 0.289 0.363 0.488 0.538 0.581 0.618 0.652 0.676 0.678 0.705 
8 1.06 0.305 0.381 0.470 0.538 0.592 0.616 0.656 0.659 0.682 0.691 
9 1.00 0.343 0.384 0.480 0.547 0.581 0.612 0.643 0.656 0.676 0.688 
10 0.95 0.361 0.395 0.491 0.552 0.580 0.634 0.640 0.658 0.682 0.683 

 

 

 

Table 5. Detection power of the bootstrap-Weibull control chart for �� < under various Weibull distributions. 
 

n Shift σ  
Weibull distribution(1, γ ) for right shift 

�=1 �=2 �=3 �=4 �=5 �=6 �=7 �=8 �=9 �=10 
2 2.12 0.955 0.795 0.627 0.512 0.440 0.388 0.359 0.334 0.319 0.289 
3 1.73 0.953 0.755 0.592 0.499 0.464 0.419 0.385 0.374 0.362 0.340 
4 1.5 0.952 0.726 0.582 0.496 0.462 0.431 0.391 0.385 0.409 0.385 
5 1.34 0.949 0.707 0.554 0.509 0.465 0.441 0.437 0.434 0.415 0.407 
6 1.22 0.947 0.692 0.574 0.518 0.466 0.482 0.435 0.440 0.434 0.432 
7 1.13 0.946 0.676 0.561 0.494 0.483 0.445 0.466 0.446 0.452 0.456 
8 1.06 0.946 0.667 0.533 0.490 0.480 0.467 0.465 0.442 0.442 0.445 
9 1.00 0.942 0.663 0.559 0.484 0.494 0.455 0.456 0.452 0.427 0.469 
10 0.95 0.943 0.662 0.544 0.511 0.488 0.482 0.492 0.454 0.459 0.473 
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3. Generate a bootstrap subgroup of size 

" " "

� �� 
 � � �

 � � �� from the Weibull distribution using 

maximum likelihood estimators, �α  and �γ , as the 
estimated parameters. 
4. Find the parameter MLEs from the bootstrap subgroup 
and denote these as "�α  and "�γ . 
5. For the bootstrap subgroup, find 

�
"�"� � ���� 	� � 


�
�
 
����� � �γα= − −  the bootstrap 

estimate of the 100 � th percentile, �� . 

6. Repeat steps 3 to 5 a large number of times, � , 
obtaining �  bootstrap estimates of �� , denoted by 

" " "

� �� 
 � 
 � 
 �� � ��� � ��  

7. Ordering the �  bootstrap estimates "

��� , from 

smallest to largest to calculate the ( ������� �× ) and the 

( ������� �× ) value of the ordered "

���  to be the 

��� and � �� , respectively. 
 
In order to calculate the detection power of the 
percentile-Weibull control chart, we set the percentile 
� =0.5 to make similar the sampling distribution of 
	  

and the repeated time �  is 100000. Tables 4 and 5 
indicate the detection power of the 50th percentile of the 
distribution with shift σ xk  when data comes from 

Weibull distribution with the scale parameter 1α =  and 
the shape parameter 1 (1) 10γ = . The shift distance in 
the second column is Bothe’s adjustment as the same as 
Tables 2 and 3. We can find that the detection power is 
less than 0.5 when �γ ≤  in Table 4, and �γ ≥  in 
Table 5. This results show that the Bothe’s adjustments 
are inadequate when data comes from more skewed 
Weibull distribution, we have also the same results in the 
above section, that the detection power is poorer and  far 
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less than 0.5. 
 
 
Erto’s-Weibull control chart for Weibull processes 
 
Previously, we discussed that the Shewhart 	  control 
chart assumed that the data should come from normal 
distribution. If data comes from non-normal distribution, 
such as Gamma or Weibull distribution, we just only use 
simulation or approximate to get an inexact results. In 
order to get an exact result, using a Weibull control chart 
which Erto and Pallotta (2007) provided is a better choice. 
Erto and Pallotta (2007) provided a new Shewhart-type 
control chart of Weibull percentile. We used Practical 
Bayes Estimators (PBE) of the Bayes theorem to 
integrate both technological and statistical information of 
the chart analytically. The PBE were developed from 
engineers’ point of view.  

The Weibull survival function is: 
  

{ } γα γ α α γ	 
= − ≥ >
 �Sf ; , exp ( ) ; 0; , 0,x x x

                                               (13)            
 
where � 
α γ  are the scale and shape parameters of the 
Weibull distribution. We can be immediately 
re-parameterized in terms of the percentile ��  and 

shape parameter β , in which the Engineers’ knowledge 
can be more easily converted: 
 

{ } γγ γ	 
= − ≥ > =
 �Sf ; , exp ( ) ,  0, ,  0,  ln(1 ),R R Rx x K x x x x K R

                                               (14)         
 

where ��  and γ  both being unknown. ��  is 
equivalent to the � �−  percentile of the Weibull 
distribution, for example, if 0.90R =  and =�������  
h, then 90% of the items have lives greater than 1,000 h. 
The uniform prior probability density function in the 

interval ( � �� 
γ γ ) is assumed to fit the degree of belief in 

the shape parameter β  of the sampling distribution as: 
  

( )γ γ γ γ γ γ γ
γ

− ≥ ≥ > >�= �
�

2 1 2 1 2 11 ; 0;
pdf{ } ,

0; elsewhere
  

                                               (15) 
               
and it appears to be as non-restrictive as feasible. 

For the selected percentile ��  (corresponding to the 
fixed reliability level � ) the prior probability density 
function is assumed to be the Inverse Weibull as follows: 
  

− + −	 
= − ≥ >
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( 1)pdf{ } ( ) exp ( ) ; 0; , 0,b b

R R R Rx ab a x a x x a b

                                              (16)        

 
 
 
 
where �  and �  are the scale and shape parameters 
respectively. It is assumed � γ= . When the the value of 
γ  is larger, the peaked the Weibull probability density 

function is greater, and the uncertainty in ��  is smaller. 

In the meanwhile, �  must be greater so that � γ=  
would be the simplest choice. Thus, the probability 
density function of ��  is converted into the conditional 
prior as: 
  

{ } � �	�!# � 	 �$� � 	 % � ��� � �� � � � � � �γ γγ γ γ− + −	 
= − >
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From Equation (15), the mean value { }�� �  of the 

probability density function is 

{ } �� 	 �� � 	��� � � �= Γ −  From this function, 

assuming � γ= , we know that 
  

{ } � �

�� � 	
% � 	���

�

�

�
� �

γ γ γ γΓ −= = +         (18) 

 
Usually, a sample array �  of 
  experimental data is 
available. If the reliability of the items, measured in terms 
of lifetime, tensile strength, and breaking strength, etc., is 
characterized by the Equation (13), the likelihood of the 
sample is given by the following equation, 
  

�

��

&� � 	 �$� �
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γ γ
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      (19)           

 
And from the two priors Equations (14) and (16), the joint 
probability density function of ��  and γ  is obtained: 
  

� � �	

� ��!#' � ( � 	 � 	 �$� � 	 �� � �� � � � � �γ γγ γ γ γ− − + −	 
= − −
 �
(20)           

 
Combining Equations (18) and (19) by using the Bayes 
theorem which substantially says, 
 
)����
��*������
���+ +����,
!��*��, �-���
)����
�����
 ��.���-��!

�#
/�.����
� � �����* ���+ +����,
!��*��, #/������

� � � � � �∝ ×� � � � � �
� � � � � �

 
“Prior” and “posterior” respectively indicate the time 
before and after obtaining the experimental data. 
Therefore, in this way, the theorem fuses the 
technological prior knowledge, summarized into the joint 
prior, with all the information, including data and the 
shape of the reliability model, into likelihood. We can get 
the joint posterior probability density function of unknown 
parameters as follows, 
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Table 6. Detection power of the Erto’s-Weibull control chart for �� >  under various Weibull distributions. 
 

n Shift σ  
Weibull distribution(1, γ ) for right shift 

�=1 �=2 �=3 �=4 �=5 �=6 �=7 �=8 �=9 �=10 
2 2.12 0.276 0.649 0.823 0.861 0.906 0.937 0.949 0.955 0.964 0.974 
3 1.73 0.345 0.615 0.736 0.826 0.841 0.871 0.894 0.899 0.914 0.920 
4 1.5 0.454 0.598 0.715 0.778 0.838 0.844 0.861 0.873 0.883 0.890 
5 1.34 0.477 0.588 0.704 0.753 0.806 0.828 0.841 0.859 0.865 0.869 
6 1.22 0.539 0.579 0.686 0.735 0.770 0.803 0.818 0.834 0.840 0.858 
7 1.13 0.589 0.602 0.679 0.727 0.769 0.784 0.812 0.830 0.831 0.849 
8 1.06 0.603 0.607 0.680 0.728 0.763 0.790 0.812 0.827 0.835 0.844 
9 1.00 0.648 0.591 0.656 0.720 0.761 0.781 0.795 0.805 0.822 0.830 
10 0.95 0.656 0.580 0.667 0.715 0.750 0.779 0.796 0.805 0.827 0.830 
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From Equation (20), we can calculate the expectations of 

��  and γ  as: 
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with the following values of the parameters ��  and 1��  

 
γ≡ = = + ≡ = =1 3 2 1 2 3; 1; 0; 1 .m m n m n k k k  

 
We can use the Equation (21) to get the center line from 
all the available data, and use a transformation, as 
follows, 
  

�




� �

�

� � � � �γ γ γ− −

=

� �= +� �
� �

� ,               (23) 

                     
to transform the random variable ( � 
�� γ ) into a standard 
Gamma one. In this way, the Equation (20) of the 
probability density function can be transformed to 
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 (24) 

We can estimate the � ��  and ���  of ��  control 
chart by inverse the Equation (22) as follows: 
  

�
�

�
�

�

�



� �

�

� � � � �
γγ γγ

−
−

=

� �= +� �
� �

�    (25) 

  
The Weibull control chart is more precise than the 
percentile-Weibull control chart and Bootstrap-Weibull 
control chart in control Weibull process because Erto and 
Pallotta (2007) had provided the sampling distribution of 
the control chart and exhibit the � ��  and ���  of the 
control chart by using the sampling distribution.  
 
 
The detection power of Erto’s-Weibull control chart  
  
Here, we use the Erto’s-Weibull control chart to calculate 
the detection power under Bothe’s capability adjustments 

for Weibull process. Let � �� ������� 
	 	 	  be a 
sequence observation of independent and identically 
distributed in Weibull ( � 
α γ ). In order to compare with the 

detection power, we set the reliability level ���� =  be 

similar to the sampling distribution of � , 
�
 �!
 �
��	
��α γ= = , and we can compute the ��  

from Equation (13). The interval ( � �� 
γ γ ) of the Uniform 
prior probability density function is set very close to the 
γ , and the number of subgroup is 100000. Tables 6 and 
7 display the detection power of the Erto’s-Weibull control 
chart when data comes from Weibull processes with right 
shifts and left shifts. The magnitude of shifts in the second 
column on the left is Bothe’s capability adjustments are 
the same as in Tables 2 and 3. We can find that the 
detection power is almost more than 0.5, except �γ =  

and ������3
 = . For example, when data comes from
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Table 7. Detection power of the Erto’s-Weibull control chart for �� < under various Weibull distributions. 
 

n Shift σ  
Weibull distribution(1, γ ) for left shift 

�=1 �=2 �=3 �=4 �=5 �=6 �=7 �=8 �=9 �=10 
2 2.12 0.985 0.971 0.972 0.978 0.98�  0.984 0.987 0.989 0.990 0.991 
3 1.73 0.983 0.925 0.910 0.900 0.908 0.911 0.917 0.923 0.923 0.926 
4 1.5 0.980 0.889 0.846 0.828 0.819 0.824 0.840 0.841 0.838 0.834 
5 1.34 0.978 0.847 0.795 0.780 0.770 0.769 0.775 0.777 0.785 0.788 
6 1.22 0.977 0.832 0.762 0.743 0.736 0.737 0.734 0.743 0.746 0.747 
7 1.13 0.975 0.810 0.734 0.702 0.691 0.699 0.698 0.709 0.706 0.693 
8 1.06 0.972 0.800 0.719 0.694 0.697 0.690 0.698 0.688 0.688 0.697 
9 1.00 0.973 0.778 0.720 0.680 0.674 0.668 0.674 0.695 0.693 0.692 
10 0.95 0.972 0.785 0.688 0.693 0.680 0.668 0.678 0.689 0.681 0.672 

 
 
 
Weibull (1, 5) with right shift distance 1.5σ  and subgroup 
size 3
 = , the detection power of Erto’s-Weibull control 
chart is 0.838>0.5. This means that the Bothe’s 
adjustment is inadequate and will over-adjust the process 
capability. 
 
 
DETECTION POWER COMPARISONS 
 
Previously, we have introduced three control charts for 
Weibull processes, and we want to know which control 
chart is the most powerful in controling Weibull processes. 
Comparing the results in Tables 2 to 7, we find that, under 
the same mean shift adjustment, the detection power of 
the Erto’s-Weibull control chart is the most powerful 
control chart for Weibull distributions. For example, when 
data comes from Weibull ( �� 
 �α γ= = ), and the 

subgroup size = 3
 , the detection power of 
Erto’s-Weibull control chart is (0.818) which is better than 
the detection power of percentile-Weibull control chart 
(0.699) and the detection power of bootstrap-Weibull 
control chart(0.617). Figures 1 and 2 display the power 
curve of the percentile-Weibull control chart (short-dotted 
line), the bootstrap-Weibull control chart (long-dotted line) 
and the Erto’s-Weibull control chart (line) when data 
comes from Weibull ( �� 
 ���	��α γ= = ) with right and 

left shifts and subgroup size = �
 . In the meantime, we 
also find that the power curve of the Erto’s-Weibull control 
chart is almost on the left of the power curve of the other 
two control chart, except the shape parameter �γ >  
and the mean shifts are small. There are other power 
curves with subgroup sizes = 3
 �!
�
  in Appendix. 
 
 
CAPABILITY ADJUSTMENT  
 
The index pkC  has been viewed as a yield-based index 

since it provides bounds on the  process  yield  for  a 

normality distributed process with a fixed value of pkC . 

Given a fixed ���  value, the production yield and 
fraction of defectives can be calculated (Table 8). Here, 
we adjust the formula of  ���  index to accommodate 
those shifts which can not be detected for the Weibull 
processes. Consequently, our adjustments provide much 
more accurate capability calculation for Weibull 
processes. 
 
 
Estimator of pkC  in the non-normal case  

     
In the recent years, several approaches of PCIs 
calculations for the non-normal processes have been 
suggested (Pal, 2005; Ding, 2004; Pearn and Chen, 1997; 
Kotz and Lovelace, 1998; Somerville and Montgomery, 
1996; Kocherlakota and Kirmani, 1992; Clments, 1989; 
Shore, 1998). Chen and Pearn (1997) considered the 
generalizations of these basic capability indices to cover 
non-normal distribution. Since the median is usually the 
preferable central value for a skewed distribution, the 
index ���  for non-normal processes called � ���  were 

defined as follows 
 

������� ������� ������� �������

��� � �

� �

� ��

� �� � � ���
�


 
 
 


� �
� �− −� �= � �− −	 
 	 
� �
� � � �� �
 � 
 �� �

          (26)             

 
where �������
  is the 0.135th percentile, �������
  is the 

99.865th percentile, and �  is the median. 
 
 
Modifying the assessment of pkC   

 
Since  the  mean  shifts  ranging in size from 0 up  to 
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Figures 1(a)-1(j). Power curve for subgroup size 2 when �=1, �=1(1)10, 

 
 

Figures 1. Power curve for subgroup size 2 when �=1, �=1(1)10, �� > . 
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Figures 2(a)-2(j). Power curve for subgroup size 2 when �=1, �=1(1)10, 

 
 
Figures 2. Power curve for subgroup size 2 when �=1, �=1(1)10, �� < . 
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Table 8. Some ���  values versus the corresponding nonconformities. 

 

���  1 1.1 1.2 1.3 1.33 1.4 1.5 1.6 1.67 1.7 1.8 1.9 

PPM 2699.796 966.848 318.217 96.193 66.073 26.691 6.795 1.587 0.544 0.34 0.067 0.012 
 
 
 

σ50AS  are likely to main undetected, a conservative 
method is to assume that every missed shift it as large as 

50AS . We use � minus σ50AS  to evaluate how well 

the process output meets the ���  and �  plus 
σ50AS  for determining conformance to the � ��  when 

estimating the index pkC . Both of these adjustments are 

incorporated into the pkC  formula, which called the 

“dynamic” � ���  index now, by making the following 

modifications, 
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   (27) 

 
The ��� �  have different results when the process 
distributions have right shifts or left shifts, but we can not 
know what sides the processes shift to. Since ��� �  and 

� ���  have an inverse ratio without being overestimated 

the process capability, to choose a larger ��� �  is a 

better choice. Table 9 shows the larger ��� �  when data 
comes from the same parameters with the subgroup size 
up to 30.  
 
 
A procedure for calculating Weibull production yield 
with mean shift 
 
Step 1 
 
Give the sample size n , and parameters α  and γ  
estimated by the maximum likelihood estimate (MLE) 
technique, and then obtain the mean shift adjustment, 

50AS .  

Step 2 
 

Calculate the three quantiles 0.00135F , 0.5F  , and 0.99865F  

for σ =  2 1 2 1[ (1 2 ) (1 )]α β β− −Γ + − Γ + of the nX  ( nX =  
1

1
n
i in X=� ) distribution, where 1X , 2X ,….., nX  be 

sequence observations of independent and identically 
distributed in Weibull ( ,  )α γ . 
 
 
Step 3  
 
Calculate the estimated process capability ′
��� as 

follows { }σ σ− − − −′ =
− −

��� �� ��� ��

������� ��� ��� �������

��� � 





��

� �� 
 �� 
 �� ���
�


 
 
 

to 

assess the production yield and the practitioners can 
make reliable decisions to the process. 
 
 
APPLICATION 
 
Adjustable speed drives (ASDs) for medium and large 
size motors are increasingly being adopted for the 
automation, transportation, and control of industrial 
production. However, the usage of ASDs with ac induction 
motors has led to the premature failure of the winding 
insulation. The major reported failure occurs because of 
breakdown of the enameled wire insulation, and therefore, 
attraction of wire and motor manufacturers.  

It has been observed that the failure of the inter-turn 
insulation is more likely due to the individual or combined 
effect of partial discharge (PD), dielectric heating, and 
space charge formation. Therefore, to survive in the 
inverter-fed motor environment, the insulation of magnet 
wire must have high resistance to PD, voltage overshoots, 
and high frequency components that can be above the 
discharge inception voltage. 

Figure 3 shows the coating layers of magnet wire 
insulation and includes three layers (conductor, aromatic 
polyimide layer, PD resistant layer). Figure 4 is the pulse 
voltage test method for wire insulation. The voltage of the 
insulation aging test is from medium voltage (1.3 to 7.6 
kV) pulse width modulated drives. For the circuit to safely 
and reliably operate at higher voltages, it utilizes a chain 
of insulated gate bipolar transistor (IGBT) switches 
connected in series. If there is a higher pulse voltage on 
test object, the surface of the insulation starts eroding and 
partial discharge. However, if the pulse voltage  is  over 
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Table 9. 50AS  values for various subgroup sizes n and γ  values of Weibull distribution(1, γ ). 

 

γ  


  
1 2 3 4 5 6 7 8 9 10 

2 2.513 1.954 1.703 1.582 1.495 1.446 1.378 1.336 1.321 1.288 
3 1.867 1.615 1.440 1.330 1.278 1.226 1.190 1.180 1.159 1.150 
4 1.564 1.415 1.272 1.177 1.137 1.148 1.139 1.132 1.142 1.142 
5 1.353 1.255 1.140 1.103 1.129 1.145 1.135 1.124 1.135 1.123 
6 1.203 1.146 1.074 1.102 1.122 1.130 1.135 1.128 1.132 1.126 
7 1.110 1.065 1.014 1.065 1.063 1.093 1.098 1.082 1.084 1.079 
8 1.012 0.978 0.978 0.992 1.026 1.029 1.026 1.020 1.022 1.034 
9 0.925 0.934 0.922 0.968 0.971 0.978 0.967 0.967 0.967 0.964 
10 0.859 0.890 0.882 0.902 0.908 0.916 0.920 0.927 0.915 0.922 
11 0.810 0.832 0.789 0.795 0.799 0.788 0.798 0.802 0.775 0.814 
12 0.773 0.808 0.767 0.775 0.762 0.771 0.761 0.766 0.767 0.762 
13 0.740 0.789 0.739 0.740 0.743 0.740 0.745 0.748 0.737 0.727 
14 0.715 0.759 0.714 0.713 0.712 0.709 0.706 0.709 0.710 0.703 
15 0.667 0.723 0.694 0.683 0.688 0.684 0.692 0.683 0.683 0.682 
16 0.650 0.707 0.669 0.667 0.667 0.681 0.663 0.674 0.665 0.656 
17 0.630 0.672 0.644 0.650 0.656 0.637 0.650 0.647 0.646 0.656 
18 0.600 0.663 0.628 0.626 0.640 0.635 0.629 0.631 0.637 0.629 
19 0.580 0.645 0.606 0.626 0.614 0.621 0.611 0.609 0.611 0.612 
20 0.564 0.626 0.596 0.597 0.600 0.601 0.599 0.593 0.603 0.588 
21 0.549 0.604 0.583 0.587 0.582 0.591 0.582 0.580 0.586 0.586 
22 0.549 0.596 0.568 0.588 0.564 0.579 0.572 0.567 0.569 0.567 
23 0.532 0.574 0.558 0.559 0.572 0.564 0.557 0.557 0.552 0.552 
24 0.512 0.562 0.542 0.553 0.548 0.551 0.547 0.544 0.549 0.546 
25 0.500 0.554 0.536 0.548 0.540 0.534 0.546 0.529 0.532 0.534 
26 0.489 0.547 0.528 0.527 0.528 0.516 0.519 0.524 0.526 0.522 
27 0.473 0.532 0.512 0.514 0.520 0.511 0.518 0.509 0.517 0.509 
28 0.468 0.528 0.508 0.512 0.508 0.508 0.496 0.503 0.500 0.494 
29 0.457 0.524 0.505 0.493 0.492 0.492 0.492 0.495 0.493 0.492 
30 0.447 0.517 0.498 0.482 0.494 0.486 0.484 0.479 0.480 0.472 

 
 
 

 
 
Figure 3. Coating layers of magnet wire insulation. 
 
 
 
USL and the surface of the insulation starts eroding, the 
HV DC source would shutdown. The surface roughness 
as measured by a scanning electron microscope. 
Therefore, the USL and LSL for the voltage are 7.6 and 
1.3 kV, respectively. As shown in Table 10, a part of 
historical data is collected. From Figures 5 and 6, we can 

 
 
Figure 4. Pulse voltage test. 
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Table 10. The 100 observations are collected from the historical data. 
 

5.992 5.371 4.413 2.486 4.348 3.991 2.892 4.921 4.857 5.051 
4.508 4.695 5.368 4.897 4.245 5.273 5.137 4.746 3.124 1.783 
5.707 4.374 5.463 4.893 4.145 5.208 4.896 4.065 3.507 4.512 
5.933 5.514 5.456 3.107 4.099 5.156 2.830 2.288 4.488 4.501 
4.541 5.219 2.514 5.119 4.558 5.895 4.497 4.973 4.627 5.783 
4.537 2.876 4.141 3.628 4.201 4.390 5.208 5.050 3.765 4.686 
4.207 4.097 4.368 3.986 4.528 4.665 5.112 5.229 3.807 3.479 
4.062 3.525 3.872 4.223 4.170 4.964 3.728 5.360 4.184 4.368 
4.989 3.102 5.470 5.730 4.522 4.153 3.308 2.583 4.456 4.890 
5.269 4.507 2.978 3.503 4.935 3.896 3.394 4.900 4.103 2.379 
 
 
 
conclude that the data collected from the factory are not 
distributed in normal. The results of data analysis justify 
that the process is significantly away from the normal 
distribution. By the goodness-of-fit tests, the historical 
data indicates that the process pretty approximates to be 
distributed as Weibull distribution. The parameters � and 
� of this Weibull process could be estimated from the 
historical data, giving  α =� 3�4�4  and γ =� � . 
Accordingly, it is appropriate to use this approach and we 
can obtain more accurate measures of the three 
quantiles, �������
 , � , and �������
 . In the meanwhile, 
σ  can be calculated by Equation (8). Then, the dynamic 

� ���  index of this process can be calculated as follows, 
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with ��� � =1.145 for 
 =5 from Table 9. Comparing it to 
the value of the following conventional index: 
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calculated by a traditional capability study (the shift of 
process mean is not considered ), we can find that the 
value of the modified � ���  is much smaller than the 

conventional index. This result indicated that if the 
process mean shifts are not detected, then the unadjusted 

� ���  would overestimate the actual process yield which 

is not derisible. Our adjustment takes those shifts into 

account without being detected, so that the practitioner 
would be able to keep its quality promise for this process. 
As the adjusted process capability drops below the 
desired quality level, the practitioner should stop the 
process because the process does not meet his present 
capability requirement. As the subgroup size 
  
increases, the shift in process mean has a higher 
probability of detection. An example in Table 9, if 
 =10, 
the value of ��� �  would be 0.916 for Weibull (4.797, 6) 

and then the index of dynamic � ���  is as below, 
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The dynamic � ���  will increase from 0.66 to 0.74 by 

changing 
  from 5 to 10, and the total number of 
nonconforming parts would be reduced. 
 
 
Conclusion 
 
In this paper, we considered the problem of how to 
determine the adjustments for process capability with 
mean shift when data follows the Weibull distribution. We 
first showed the detection powers of the 
percentile-Weibull control chart, bootstrap-Weibull control 
chart, and the Erto’s-Weibull control chart under the 
Bothe’s adjustments. We realized that the Bothe’s 
adjustments are inadequate when data come from 
Weibull processes. After comparing the detection power, 
we found out that the Erto’s-Weibull control chart is the 
most powerful control chart among the others for Weibull 
processes. Then we  calculated  the  adjustments  for
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Figure 5. Histogram plot of the historical data. 

 
 
 

 
 
Figure 6. Normal probability plot of the historical data 

 
 
 
various sample sizes ( 
 ) and Weibull shape parameter 
( γ ) with detection power of the Erto’s-Weibull control 
chart fixed to 0.5. Using the adjusted process capability 
formula, the engineers could determine the actual process 
capability more accurately. The tables were also provided 
for engineers or practitioners to use for their in-plant 
applications. 
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