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In this paper, the nonlinear model for the reaction-diffusion problem with variable thermal conductivity 
is investigated. It is assumed that the model source term is an arbitrary function of temperature. 
Classical symmetry is employed to analyze all forms of the source term for which the governing 
equation admits extra point symmetries. A number of symmetries are obtained and some reductions 
are performed. Using the fourth-order Runge-Kutta method with a shooting technique, numerical 
solution of a reduced boundary value problem is obtained. Pertinent results are displayed graphically 
and discussed quantitatively. 
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INTRODUCTION 
 
Reaction-diffusion equations model creates many 
problems in mathematical physics, astrophysics, 
engineering and science (Cebeci and Bradshaw, 1984). 
In applications to population biology, the reaction term 
models growth, and the diffusion term accounts for 
migration. They arise, quite naturally, in chemistry and 
chemical engineering especially in systems involving 
constituents locally transformed into each other by 
chemical reactions and transported in space by diffusion 
(Kamenetskii, 1969; Balakrishnan, 1996). 

The theory of reaction-diffusion equations has long 
been a fundamental topic in the field of combustion. For 
many problems of interest, it is characterized by a 
gradual increase in temperature due to external heating, 
followed by a rapid temperature increase over a very 
short time, often referred to as a thermal explosion, as 
exothermic reactions begin to occur (Barenblatt et al., 
1998; Boddington et al., 1977; Makinde, 2005). The 
concept lends credence to the logic that a conducting 
medium     with     temperature-sensitive     internal    heat 
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generation will burn under a specific circumstance, if it 
fails to transfer heat adequately to establish a steady-
state temperature distribution in the medium. This logic, 
though academic, is actually a useful link between a 
mathematical analysis and common sense, and may be 
the link between an academic exercise and the life span 
of industrial products, and even public safety (Moitsheki 
and Makinde, 2008). Moreover, constant thermo-physical 
properties and uniform heat transfer coefficient are often 
assumed in the determination of the temperature 
distribution in a reactive material (Makinde, 2007; 
Moitsheki and Makinde, 2010). The mathematical 
complexity of the reaction-diffusion equation is reduced 
by this assumption and therefore a well-established 
closed form analytical solution can be obtained for a 
number of cases. However, this assumption may lead to 
poor prediction of the thermal performance of the many 
reactive materials (Zaturska and Banks, 1985; Moitsheki 
and Makinde, 2007; Lacey and Wake, 1982, Liu, 1987). 

The objective of this study is therefore twofold: firstly, a 
Lie group symmetry reduction is performed on the non-
linear reaction-diffusion problem in order to obtain some 
close form solution for the reduced transient problem with 
respect   to  similarity  variable;  secondly,  the  governing 
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initial boundary value problem is solved numerically using 
the fourth-order Runge-Kutta method with a shooting 
technique. Pertinent results are presented graphically 
and discussed quantitatively. 
 
 
Mathematical formulation 
 
The mathematical formulation of the reaction-diffusion 
problem with variable thermal conductivity problem is 
based on the conservation of energy equation with 
arbitrary heat source term. We assume that the 
temperature dependent thermal conductivity follows a 
power law given by, 
 

m

w
0 TT

TT
k=k ��

�

�
��
�

�

−
−

0

0
,                                  (1) 

 
where m is the power law index, T0 is the initial 
temperature of the material, Tw is the material surface 
temperature, k0 is the thermal conductivity coefficient at 
material surface. The dimensionless reaction diffusion 
equation together with the corresponding boundary 
condition is given as  
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where λ is the internal heat generation parameter,  n 
represents the material geometry such that n = 0, 1, 2 
denotes rectangular, cylindrical and spherical geometries 
respectively. Dimensional quantities are denoted with a 
bar, and dimensionless quantities are defined as, 
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where T is the absolute temperature, T0 is the initial 
temperature of the material, t  is the time, Tw is the 
material surface temperature, k0 is the material thermal 
conductivity coefficient, ρ  is the density, a is the material 
half width, Q is the heat source parameter, cp is the 
specific heat at constant pressure, y  is the distance 
measured transverse direction and a is the material 
radius. 

 
 
 
 
Symmetry techniques for differential equations 
 
The theory and applications of continuous symmetry 
groups were founded by Lie in the 19th century (Lie, 
1881). Modern accounts of this theory may be found in 
seminal texts such as those of Bluman and Anco (2002), 
Bluman and Kumei (1989) and Olver (1986). We restrict 
our discussion to classical Lie point symmetries, since we 
will only use such symmetries. The reader is referred to 
Bluman and Anco (2002), Bluman and Kumei (1989) and 
Olver (1986) for more details on this theory. Given a 
continuous one parameter symmetry group, it is possible 
to reduce the number of independent variables by one. 
Lie's fundamental result is that the whole of one 
parameter group can be determined from the 
transformation laws up to the first degree of the 
parameter �, that is determination of symmetry groups 
involves transformations of the form 
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generated by the vector field 
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and leave the 2nd order governing partial differential 
equation (2) invariant. The infinitesimal criterion for 
invariance of a PDE such as Equation 2 is given by 
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where )(X 2  is the second extension or prolongation of 
the infinitesimal generator X. The invariance condition (7) 
results in an over-determined linear system of 
determining equations for the coefficients �, � and �. 
Manipulation of these determining equations to find their 
solutions is very long and tedious. We omit the 
calculation but list the results in “Lie point symmetry 
analysis of Equation 3”. It is possible to find all possible 
functions or cases for the source term G(�) such that 
extra symmetries are admitted by Equation 2. 
Determination of such cases and symmetries admitted is 
called group or symmetry classification. The problem of 
group classification was introduced by Lie (Lie, 1881) and 
recent accounts on this topic may be found for example 
in Bluman and Kumei (1989), Ivanova and Sophocleous 
(2006), Ovsiannikov (1959) and Vaneeva et al. (2007). 
We adopt methods in Bluman and Kumei (1989) (which 
exclude explicit equivalence transformation analysis) to 
perform group classification  of  Equation  2. In  this  work



Makinde and Moitsheki        1751 
 
 
 

Table 1. Extra symmetries admitted by Equation 2. 
 
Forms of G(�) Parameters Symmetries 

�
p, p, p � 0, 1 m and n arbitrary �

�

	


�

�

∂
∂−

∂
∂−−

∂
∂−

− t
)t(p+

y
)ym(p+

�)(p
=X 1212�

12
1

2  

   

p� , p 

m and n arbitrary 

��

	

�

�

∂
∂

∂
∂−

−

t
+
�

�p�
�mp
e

=X
�pt

2 , 

 

�
�

	


�

�

∂
∂

∂
∂

−
−

y
my+

�)m(n
n

=X 2�
13 . 

n =0, m arbitrary X 4=
�

� y  

   

p � 0 m,n arbitrary 
t

+
y

)y+(m+
�

=X
∂
∂

∂
∂

∂
∂

2t12�2 . 

   

 0 m,n arbitrary 

X2= − 1
2m [− 2� �

��
+my �

� y], 

 

t
+

y
y=X

∂
∂

∂
∂

2t3 . 

 
 
 

We perform symmetry classification of the source term. 
Note that we seek point symmetries that leave a single 
Equation 2 invariant rather than the entire BVP, and 
apply boundary conditions onto the obtained invariant 
solutions. It is a well known fact that the symmetry 
algebra may be reduced if invariance is sought for the 
entire BVP. 

If a differential equation is invariant under some point 
symmetry, one can often construct similarity solutions 
which are invariant under some subgroup of the full group 
admitted by the equation in question. These solutions 
result from solving a reduced equation in fewer variables. 
 
 
Lie point symmetry analysis of Equation 3 
 
In the initial Lie point symmetry analysis of Equation 2, 
where the source term G(�) together with the constants 
appearing in the Equation 2 are all arbitrary, the admitted 
principal Lie algebra is one-dimensional and spanned by 
a translation in time variable.  Note that we omit the case 
m = 0, n = 2 as this renders the governing equation 
linear. Also, the case G(�) = p� was dealt with in details 
in Moitsheki (2008), and here we list some of the results. 
Furthermore, we have successfully employed symmetry 
techniques and Adomain methods to determine  solutions 

for nonlinear diffusion with power law heat capacity and 
source term (Makinde and Moitsheki, 2010). The cases 
for which the principal Lie algebra extends are listed in 
Table 1. 
 
 
Symmetry reduction: Some illustrative examples 
 
Constant G(�) 
 
Given a non zero constant source term and using the 
symmetry generator X2 listed in Table 1 we obtain the 
functional form of the invariant solution for Equation 2 
 

)(γθ tF=   where  2/)1( +−= mytγ   and F satisfies the 
nonlinear ordinary differential equation 
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Linear G(�) 
 
Given G(�) = p �,  p � 0 and using the vector field X2  

listed in Table  1,  we  obtain  the  functional  form  of  the
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Figure 1. Temperature profiles with increasing thermal conductivity for b=1, λ=0.3, n=0. 

 
 
 

invariant solution for Equation 2 (Moitsheki, 2008); 
 

F(y)e=� �pt  with F satisfying the easily integrated 
equation 
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In terms of the original variables we obtain the general 
solution 
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Nonlinear G(�) 
 
Given G(�) = �p and using the symmetry generator X2 
listed in Table 1, we obtain the functional form of the 
invariant solution for Equation 2 
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Unfortunately the reduced ordinary  differential  equations 

are highly nonlinear and may only be solved numerical. 
 
 
Computational method 
 
In order to tackle the problem, we first transform Equation 
2 into a non-linear ordinary differential equation using the 

Boltzmann similarity variable ty=� / , and we obtain 
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where the arbitrary heat source function in Equation 2 is 
defined as G(θ)=H(θ)/t. The non-linear differential 
Equation 12 together with the boundary conditions in 
Equation 13 is solved numerically using the fourth-order 
Runge-Kutta method with a shooting technique and 
implemented in Maple (Heck, 2003). The step size 0.001 
is used to obtain the numerical solution with seven-
decimal place accuracy as the criterion of convergence. 
 
 
RESULTS AND DISCUSSION 
 
Figures 1 to 3 illustrate the effects of various thermo-
physical parameters on the material temperature profiles. 
Here, we have assumed an exponentially increasing 
temperature dependent heat source term given by H(θ) = 
ebθ, where b > 0 is the internal heat generation 
parameter. Generally, the material temperature is highest
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Figure 2. Temperature profiles for varying geometry b=1, λ=0.3, m=0.3. 

 
 
 

 
 
Figure 3. Temperature profiles increasing hest source parameter b=1, n=0.3, m=0.3. 

 
 
 
along the centerline and minimum at the surface. Figure 
1 shows that the temperature decreases with increasing 
thermal conductivity of the material. Moreover, it is 
interesting to note that for a given set of parameter 
values, highest temperature is observed for materials 
with rectangular geometry (n=0) and  lowest  temperature 

for materials with spherical geometry (n=2) as illustrated 
in Figure 2. In Figure 3, we observe that the material 
temperature increases with an increase in the values of 
heat source parameter. This clearly implies that an 
increase in the internal heat generation invariably leads 
to an elevation in the material temperature. 



1754          Int. J. Phys. Sci. 
 
 
 
Conclusion 
 
We have successfully applied the symmetry techniques 
to a model for reaction-diffusion with variable thermal 
conductivity. The group classification of Equation 2 is a 
significant improvement on the results obtained in 
Moitsheki (2008). The class of equations considered here 
is in fact a subclass of equations in Moitsheki and 
Makinde (2010). However, in this manuscript we have 
provided not only the symmetry analysis but also the 
numerical results. Pertinent results are presented 
graphically and discussed quantitatively. 
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