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A unified description of a series of  Phonon properties of potassium bromide by means of Van der 
Waals three-body force shell model [VTBFSM]. This model includes Van der Waals Interactions (VWI) 
and three-body interactions (TBI) in the framework of both ion polarizable rigid shell model (RSM). In 
fact the present model [VTBFSM] has revealed much better descriptions of IR/Raman spectra and 
anhormonic properties and other dynamical properties of KBr. Excellent agreement is found between 
calculated values and measured data for phonon dispersion curve. It is simple crystal but its various 
properties give better future prospective.  
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INTRODUCTION  
 
The shell model of ionic crystals proposed by Dick and 
Overhauser (1958) presents a simple description of the 
electronic polarization in these solids. The basic ideas of 
this model were developed by woods et al. (1960) into a 
theory of lattice dynamics which, with its various 
modifications so that it can be accepted as a convenient 
representation of a relatively exact theory of lattice 
dynamics. The shell model begins by assuming that 
every ion is divided into a rigid spherical shell of a portion 
of the nucleus and the rest of the electron cloud. The two 
are coupled together by an isotropic spring and have a 
common center in the equilibrium configuration. This 
departure from the rigid-ion-picture produces a different 
response to the long–wave optical (electromagnetic) 
waves, but does not make any impression on the long–
wave acoustical (mechanical) vibrations, with the result 
that while the model permits a better description of the 
dielectric polarization in ionic crystals, it does not go 
beyond the rigid-ion model with respect to the elastic 
behavior of these solids. In particulars, the shell models 
employing only central interactions lead to the Cauchy 
relation   C12  =  C44.   However,    the    low   temperature  
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measurements of elastic constants, now available for 
large number of solid, do not support this result. 
Phenomenological, the Cauchy discrepancy can be 
accounted for by including various kinds of non central 
interactions amongst the ion pairs in fact, some of the 
later modifications of the shell model include non central 
short–range interactions and give a better description of 
the vibrational properties of the solids under 
consideration. In general these modifications are not 
based on the existing knowledge about the nature of the 
interaction responsible for the Cauchy discrepancies in 
ionic solids. Thus these modified models effectively 
replace a part of the operative forces by others of an 
entirely different nature. This replacement of one force by 
another could modify the parameters of the rest of the 
interactions also, particularly when the model is 
constrained to give agreement with experiments. 

This has motivated us to frame a new model of lattice 
dynamics. This is known as Van der Waals Three-Body 
Force Shell Model [VTBFSM]. This model considers all 
possible interactions for explaining the harmonic as well 
as an-harmonic properties of potassium halides. During 
the recent past, a considerable interest has been shown 
by theoretical and experimental workers in the 
investigation of lattice dynamical behavior of potassium 
Bromide (KBr). This solid is an important member of 
potassium halides and forms a simple class of ionic solids. 



 
 
 
 
The knowledge of phonon dispersion curves (PDC), 
Debye temperature variation, two phonons IR/Raman 
spectra, third order elastic constants (TOEC), fourth order 
elastic constants (FOEC) and the pressure derivatives of 
second order elastic constants (SOEC) and Cauchy 
discrepancy (C12 - C44) have been of fundamental 
importance. Due to availability of experimental data on 
elastic (Lewis et al., 1967), dielectric (Kittel, 1966), 
vibrational (Buhrer, 1970; Raunio, 1969; Krishnan, 1969; 
Berg and Marrison, 1957; Potts and Walker, 1973) and 
optical properties (Roberts and Smith, 1970) of this solid, 
it is quite interesting and encouraging for theoretical 
workers to predict its lattice dynamical properties.  
 
 
THEORY 
 
The essential formalism of VTBFSM is the inclusion of VWI and TBI 
in the framework of RSM. The interactions system of present model 
thus consists of long-range screened Coulomb, VWI, three-body 
interactions and short-range overlap repulsion operative up to the 
second -neighbor’s ions in KBr. Looking into the adequacy of the 
interaction system, the present model may hopefully be regarded 
as a successful approach for the dynamical descriptions of 
potassium Bromide. The general form of VTBFSM can be derived 
from the crystal potential energy per unit cell, given by. 
 
 
Φ = ΦC+ΦR+ΦTBI+ΦVWI                                                                    (1) 
 
where, the first term Φc is Coulomb interaction potential and is long 
range in nature, second term ΦR is short overlap repulsion potential, 
third term ΦTBI is three-body interactions potential and last term 
ΦVWI is Van der Waals interaction potential and owes its origin to 
the correlations of the electron motions in different atoms.  
 
Using the potential energy expression (1) and introducing the effect 
of VWI and TBI, the secular determinant is given as.  
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Here D(q ) is the (6 x 6) dynamical matrix expressed as :     
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The numbers of adjustable parameters have been largely reduced 
by considering all the short-range interactions to act only through 
the shells. This assumptions leads to R = T = S C' is modified long-
range interaction matrix given by.  
 
Where R, T and S are short ranges forces appear in the form of 
matrices defined by Woods et al. (1963) 
 
C' = C + (Zm

-2 Z r0f0') V                                                        (4) 
 
Where f0’ is the first –order space derivative and Zm modified ionic 
polarizability 
 
If we consider only the second neighbour dipole-dipole van der 
Waals interaction energy, then it is expressed as: 
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Where, Sv is lattice sum and the constants C++ and C -- are the Van 
der Waals coefficients corresponding to the positive-positive and 
negative-negative ion pairs, respectively.  
 
By solving the secular equation (2) along (q o o) subjecting the 
short and long-range coupling coefficients to the long wavelength 
limit, the expressions derived for elastic constants (C11, C12, C44) are 
follows as: 
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In view of the equilibrium condition [(dΦ/dr)0=0] we obtain 
 
B11+B22+B12= -1.165 Zm

2                                                           (9) 
 
Where  
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fo is function dependent on overlap integrals of electron wave 
function. Similarly, expressions for two distinct optical vibration 
frequencies (ωL and ωT) are obtained as: 
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Where the abbreviations stand for   
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Where 21 ,αα electrical polarizabilites and Y1, Y2 are shell charge 
parameters of positive and negative ions. 
 

d1 =     = -      

 

- α1 Ro 
e2Υ1  

  
 

d 2 =               

 

- α2 Ro 
e2Υ2 

  
 
and  
 
V = 2ro

3  (Unit cell volume for NaCl lattice) 
 
by solving the dynamical matrix along [.5, .5, .5] directions at L-
Point modified expressions for 

)(),(),(),( LandLLL TALATOLO ωωωω  are as follows: 
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Where C and V are Coulomb and three bodies force matrices 
evaluated at L-Point and D is van der Waals contribution. We have 
used the further expressions for the TOEC, FOEC and pressure 
derivatives of SOEC and TOEC derived by Roberts et al. (1970). 
Debye’s model define the frequency distribution function which is 
given by 
 
ΘD=hνm/K                                                                                     (18)                                                                          
 
To determine the combined density of states for each polarization is 
given by  
 
D (ω) =dN/dω  = (VK2 /2π2). dK/dω                                               (19) 
 
Where N = (L/2π)3 (4πK3/3), K is wave vector  and L3=V.  
 
 
RESULTS  
 
The experimental values of input data and model 
parameters for KBr are listed in Table 1 given by many 
workers (Sharma, 1979; Garg et al., 1977; Kushwala and 
Kushwaha, 1980; Mohan and Sudha, 1993). We have 
computed phonon dispersion frequencies for the allowed 
48 non-equivalent wave vectors in the first  Brillouin  zone  

 
 
 
 
by using our model parameters (Srivastava, 2004). The 
calculated phonon dispersion curves of KBr are shown in 
Figure 1. The agreement between our computed phonon 
spectra and experimental data is excellent for KBr and 
well with the measured data reported by Buhrer (1970). 
In the present study the variation of Debye temperatures 
(ΘD) at different temperatures T have also been cal-
culated and curve has been plotted along with available 
experimental data (Berg and Marrison, 1957) in Figure 2. 
Though, the agreement is better with our model, still, 
there is slight discrepancy between theoretical and 
experimental results at higher temperatures. At high 
temperatures lattice instability develops in which above a 
certain critical temperature the vibrational and static 
pressures cannot balance each other at any volume. It is 
argued that this instability plays a role in causing solids to 
melt. Anharmonic corrections tend to rise at critical 
temperatures by about 20%. Debye’s theory agrees very 
well with experiment, especially at low temperatures, 
because at low temperature and at high temperature it is 
almost exact. Lattice imperfections are not an important 
factor for temperatures up to about 90% of the melting 
temperature.  

A brief inspection of Figure 3 shows that the peaks of 
the CDS curves compare favorably with the 
corresponding peaks observed in the two–phonon 
Raman and infrared spectra. Which shows that the 
agreement between experimental data (Raunio, 1969; 
Krishnan, 1969) and our theoretical peaks for KBr. The 
assignment made by the critical point analysis, the 
present study has been listed in Table 2. The 
interpretation of Raman / IR spectra achieved from both 
CDS approach and critical point analysis is quite 
satisfactory. 

It is interesting to note our results on TOEC, FOEC and 
the pressure derivatives of SOEC are generally better 
than those of others [9, 10] as evident from Table 3. 
However, our results are closer to their experimental 
values reported independently by Roberts (Roberts and 
Smith, 1970) Chang (Sharma, 1979). It can also see that 
Cauchy discrepancy is smaller for TOEC than for SOEC 
(Garg et al., 1977). The pressure derivatives of   effective SOEC 
given in Table 3 are found to be generally in good 
agreement with their observed data (Potts and Walker, 
1973; Roberts and Smith, 1970).  
 
 
DISCUSSION 
 
Addition of Cauchy discrepancy and shell model in 
contrast of this, our model VTSM is based on more 
realistic account of the long range interactions by 
including the contribution of the three-body forces, whose 
existence in ionic crystals is well founded. There is, 
however, an important difference between shell model 
and our model that in shell model the value of Z < 1 but in 
my model value of Z > 1. 

Our model successfully explained the phonon anomalies 
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Table 1. Input data and model parameters for KBr. 
 

Input data Model parameters 

Parameter Value Parameter Value 

C11 3.980 c f0 –0.0139 

C12 0.560 c r0 f0′ –0.0443 

C44 0.520 c Zm
2 0.8325 

νLO(Γ) 5.000 g A12 13.3905 

νTO(Γ) 3.600 g B12 –3.0275 

νLO(L) 4.330 g A11 –4.8688 

νTO(L) 2.960 g B11 –2.6324 

νLA(L) 2.670 g A22  

νTA(L) 2.220 g B22 1.3649 

ro 3.278 j d1 0.1346 

α1 1.030 m d2 0.2086 

α2 4.500 m Y1 –1.2215 

C++ 64.90 n Y2 –3.4430 

C-- 503 n Y -11.9229 
 

c - Mohan and Sudha (1993), g - Claytor and Marshall (1960), j - Cowley (1963), 
m - Kushwala and Kushwaha (1980), n - Potts and Walker (1973). 

 
 
 

 
 � Longitudinal (Experimental points) 
� Transverse (Experimental points)  
 ���� Present study 
 
Figure1. Phonon dispersion curves for KBr. 

 
 
 
even along (qoo) and (qqo) directions. The present model 
VTSM has also predicted zero splitting of optical 
branches at X-point. However our predictions using 
present model VTBFSM are better than those by using 
other models (Garg et al., 1977; Kushwala and 
Kushwaha, 1980). The assignment made by the critical 
point analysis, the present study has been listed in Table 
2. The interpretation of Raman / IR spectra achieved from 
both CDS approach and critical point analysis is quite 
satisfactory. 

 
 
Figure 2. Debye temperature variation of KBr. 

 
 

 
 
Figure 3. Combined density of states curve for KBr.
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Table 2. Assignments of two-phonon Raman and infra-red peaks for KBr. 
 

Raman active Infra-red active 

Present study Present study 
CDS peaks  

 (cm-1) Observed* Peaks (cm-1) 
Assignments Values  (cm-1) Assignments Values (cm-1) 

32   LA–TA(X) 31   

50 46a 50b TO–LA(∆) 51   

84 84a 86b TO–TA(X) 83   

110 105a 112b     

125 126a  LA+TA(∆) 123 LA+TA(∆) 123 

2LA(X) 146 146 

 

146a 

 

142b 

 2TA(L) 146 

 

 

 

 

170 170a  LO+TA(∆) 162 TO+TA(L) 172 

186 186a    TO+LA(L) 188 

216 216a 217b LO+LA(X) 207 LO+TA(L) 217 

230 230a      

2TO(Γ) 240 253 

 

242a 

 

 

 2TO(∆) 243 

LO(∆) 

 

250 

 
 

a – Buhrer (1970), b – Krishnan (1969). 
 
 
 
 

Table 3. TOEC and FOEC (1012 dyn/cm2), pressure derivatives of SOEC and TOEC (dimensionless) and 
Cauchy discrepancy (in 1012 dyn/cm2) for KBr. 
 

KBr KBr KBr 
Property 

Present 
Property 

Present Expt. 
Property 

Present 

C111 –6.180 dk1/dp 4.874 5.380a C112 – C166 0.05412 

C112 –0.135 ds1/dp 7.222 5.680 a C123 – C456 –0.03815 

C123 0.074 dc1
44/dp –0.519 -0.328 a C144 – C456 0.01272 

C144 0.131 dc1
111/dp –88.070  C123 – C144 –0.02544 

C166 –0.107 dc1
112/dp –1.164  C1112 – C1166 –0.33636 

C456 0.113 dc1
166/dp 0.984  C1122 – C1266 –0.01309 

C1111 1.929 dc1
123/dp 1.081  C1122 – C4444 0.05469 

C1112 0.495 dc1
144/dp 23.216  C1123 – C1144 0.08966 

C1166 0.629 dc1
456/dp 0.990  C1123 – C1456 0.07487 

C1122 0.961    C1123 – C1244 0.03064 

C1266 1.010    C1123 – C4466 0.02934 

C4444 0.942      

C1123 –0.213      

C1144 –0.303      

C1244 –0.244      

C1456 –0.288      

C4466 –0.243      
 

a - Berg (1957). 



 
 
 
 
CONCLUSION 
 
To sum up, we can say that the inclusion of VWI and TBI 
are essential for the description of lattice dynamics of 
potassium halides (Mohan and Sudha, 1993; Claytor and 
Marshall, 1960; Cowley et al., 1963; Woods et al., 1963; 
Lynch, 1967). We have also investigated the anhormonic 
properties of KBr by using VTSM. Some researchers 
successfully calculated theoretical values by using the 
model for other alkali halides (Upadhyaya et al., 2002; 
Pandey et al., 2006). 
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