Partial and total mass attenuation coefficients, effective atomic number and effective electron number of different Maraging steel compositions

A. M. Reda¹,²* and H. Halfa²,³

¹Department of Physics, Faculty of Science, Zagazig University, Zagazig, Egypt.
²Department of Physics, College of Science and Humanities, Shaqra University, Al-Dawadme, Saudi Arabia.
³Central Metallurgical R&D Institute (CMRDI), Steel Technology Department, Helwan, Egypt.

Received 25 September, 2016; Accepted 19 January, 2017

The total and partial mass attenuation coefficients for different Maraging steel compositions have been determined by using the WinXCom and MCNP5 programs. The effective atomic number, Z_{eff}, and effective electron number, N_{eff}, for the studied steels have been determined via the total mass attenuation coefficients μ/ρ, the total atomic and electronic cross sections (σ_a and σ_e) of the investigated steels. The shielding parameters μ/ρ, Z_{eff}, and N_{eff} have been calculated at the incident photon energy range of 1 keV–100 MeV. The calculated results of total and partial mass attenuation coefficients, the effective atomic number and the effective electron number by using MCNP5 program were found to be in good agreement with the theoretical results of the WinXCom program. The calculated data clarify that the different steel compositions under investigation have so far the same ability of gamma attenuation. Also, it was found that the total mass attenuation coefficients of the different investigated steels (cobalt free-Maraging steels) are comparable to the C250 standard steel (cobalt Maraging steel).

Key words: Gamma rays, shielding, mass attenuation coefficients, effective atomic number, effective electron number.

INTRODUCTION

Steels are used in the reactor core, fuel transport and storage, plant structures and a lot of other nuclear uses. The ultra-high strength of the most expensive Maraging steels is due to the precipitation of inter-metallic compounds (cobalt, nickel and molybdenum) during the aging process. Due to the sharp increase in the cobalt price, the development of a family of cobalt free Maraging steel is promoted. Titanium can be used as the primary strengthening element, replacing cobalt in steels (Vasudevan et al., 1990; Sha et al., 1993). On the other hand, chromium was added to increase the corrosion resistance of the proposed steels. The previous are the
causes of porn new Maraging steel with different mechanical and technological properties. As a result of use on a large scale in the nuclear field (nuclear power plants such as fusion reactor, accelerator driven systems or the fission generation reactors) Maraging steels should be investigated as a shielding material. In order to achieve this purpose the radiation absorption mechanism in materials should be known. This can be represented by some physical parameters such as mass attenuation coefficients \(\mu/\rho \), effective atomic number \(Z_{\text{eff}} \) and effective electron number \(N_{\text{eff}} \). Several investigators (Han and Demir, 2009a, 2009b; Baltas et al., 2007; Baltas and Cevik, 2008; Celik et al., 2008; Manjunathaguru and Umesh, 2007; Manohara et al., 2008a, 2008b, 2009a, 2009b, 2010; Manohara and Hanagodimath, 2007a, 2007b; Singh et al., 2008; Taylor et al., 2008; Gounhalli et al., 2012a; Sidhu et al., 2012; Gounhalli et al., 2012b; Kurudirek, 2014; Un and Sahin, 2011, 2012; Akkurt, 2009; Limkitjaroenporn et al., 2013; Medhat and Wang, 2015; Elmahroug et al., 2015; Un and Caner, 2014) have made extensive studies for these shielding parameters in a variety of composite materials such as biologically important materials, semiconductor, alloys, dosimetric compounds, glasses, drugs, and explosives. The mass attenuation coefficient \(\mu/\rho \) (cm\(^2\)/g) is a measure of the probability of interactions of photon with matter (Hubbell, 1982, 1999; Hubbell and Seltzer, 1995). This coefficient is not constant but depends on the energy of the incident photon, and the density and atomic number of elements. For compound and mixtures, it depends on the effective atomic number \(Z_{\text{eff}} \) and effective electron number \(N_{\text{eff}} \). However, as originally stated by Hine (Hine, 1952) the effective atomic number \(Z_{\text{eff}} \) of a multi-element material is not a constant, it varies with the energy of the incident photon.

The advent of powerful processors and computer architectures since the early 1990’s made possible the increasingly important utilization of Monte Carlo simulation programs to model complex systems, both from the point of view of the physics (type of particles and interactions, energy ranges, etc.) and from the point of view of a detailed geometrical description (Vaz, 2009). Wherefore, Monte Carlo simulations have rapidly increased in the scientific field, with applications such as radiation shielding optimization, component effects, support of scientific studies, and analysis of biological effects. The well-known WinXCom program is usually employed for calculating X-ray and gamma-ray attenuation coefficient and interaction cross sections of different materials (El-Khayatt et. al., 2014). The aim of this study is to provide available information concerning using this kind of steel as a gamma shielding in nuclear applications. So, WinXCom and MCNP5 programs were used to calculate the partial and total mass attenuation coefficients for different compositions of Maraging steels at photon energies (1 keV–100 MeV). The attenuation coefficient data were then used to obtain the effective atomic numbers \(Z_{\text{eff}} \) and the effective electron number \(N_{\text{eff}} \) of the investigated materials.

THEORETICAL FORMULATIONS

A parallel beam of monoenergetic gamma-ray photons is attenuated in the matter, according to the Lambert-Beer exponential equation

\[
I = I_0 e^{-\mu/\rho t}
\]

where \(I \) and \(I_0 \) are the transmitted and the incident beam intensity of photons, respectively, \(t \) and \(\rho \) are the material thickness and density, respectively, and \(\mu/\rho \) is the mass attenuation coefficient.

For compound or mixture, the mass attenuation coefficient can be obtained from the coefficients of the constituent elements which are assumed to be additive to the weighted average

\[
\mu/\rho = \sum w_i (\mu/\rho)_i
\]

where \(w_i \) and \((\mu/\rho)_i \) are the fractional weight and the mass attenuation coefficient of the \(i \)th constituent element, respectively. This mixture rule is valid with the assumption that the effects of molecular binding and the chemical and crystalline environment are negligible.

Using the total mass attenuation coefficients \(\mu/\rho \) of a material, the total atomic cross-section, \(\sigma_a \), can be evaluated by the following relation (Manohara et al., 2008a, 2008b; Akkurt, 2009; Elmahroug et al., 2015; Akkurt and El-Khayatt, 2013b; Gowda et al., 2004, 2005; Içelli et. al., 2011; Prasad et al., 1998)

\[
\sigma_a = \frac{(\mu/\rho)_{\text{material}}}{N_a Z_a^2}
\]

where \(N_a \) is the Avogadro’s number, \(A_i \) is the atomic weight of the \(i \)th constituent element of the material.

Also, the total electronic cross-section, \(\sigma_e \), can be obtained by the following formula (Manohara et al., 2008a, 2008b; Akkurt, 2009; Elmahroug et al., 2015; Akkurt and El-Khayatt, 2013b; Gowda et al., 2004, 2005; Içelli et al., 2011)

\[
\sigma_e = \frac{1}{N_a} \sum_{i} \frac{f_i}{z_i} (\mu/\rho)_i
\]

where \(f_i \) is the fractional abundance (the number of atoms of element \(i \) relative to the total number of atoms of all elements in the mixture), \(z \) is the atomic number of the \(i \)th element in a mixture.

The effective atomic number \(Z_{\text{eff}} \) can be obtained from the ratio between the total atomic effective cross-section and the total electronic effective cross-section as the following equation (Manohara et al., 2008a, 2008b; Akkurt, 2009; Elmahroug et al., 2015; Akkurt and El-Khayatt, 2013b; Gowda et al., 2004, 2005; Içelli et al., 2011; Kaur et al., 2000)

\[
Z_{\text{eff}} = \frac{\sigma_a}{\sigma_e}
\]

The effective electron number \((N_{\text{eff}}) \) (the electrons number per unit mass, electron/g) can be calculated from the following equation (Manohara et al., 2008a, 2008b; Akkurt, 2009; Elmahroug et al., 2015; Akkurt and El-Khayatt, 2013b; Gowda et al., 2004, 2005; Içelli et al., 2011)

\[
N_{\text{eff}} = \frac{(\mu/\rho)_{\text{material}}}{\sigma_e}
\]

The relation between \(N_{\text{eff}} \) and \(Z_{\text{eff}} \) can be deduced from replacing the value of \(\mu/\rho \) from Equation (3) in Equation (6) as the following
The microstructure of the investigated steels can be discussed from the micrograph photos shown in Figure 1. Based on Figure 1, the microstructure of the investigated steels in the optimum condition of heat treatment essentially consisted of packets of martensite, within prior-austenite grains. The austenite grains, which had transformed into packets of martensite, could still be recognized due to the preferentialetching along their boundaries and also due to the fact that the martensite packets within an austenite grain did not extend beyond the respective prior-austenite grain boundary. The martensite substructure could not be observed because of the narrowness of the martensite laths. The substructure of lath martensite consists predominantly of a high density of tangles dislocations within laths (Schmidt, 1988).

Mechanical properties

The tension ductility properties of testing steels were illustrated in Table 2. The tabulated data represent the effect of molybdenum (Mo), chromium (Cr) and titanium (Ti) on the mechanical properties of investigating steels. The contribution of different alloying elements in ultimate tensile strength indicates that the positive effect of Cr, Mo and Ti may be attributed to inter-metallic precipitation and solid solution strengthening mechanisms of each element as reported elsewhere (Halfa, 2007).

RESULTS AND DISCUSSION

Based on the chemical composition presented in Table 1, MCNP5 and WinXCom programs were used to calculate the total and partial mass attenuation coefficients μ/ρ for the Maraging steels, at the photon energy range of 1 keV–100 MeV. In this study, calculations of MCNP5 (MCNP5, 2003) were performed using the gamma source as a fixed point isotropic source with continuous nuclear cross-section data based on the ENDF/B-VI. The simulation runs with 4 x 10^7 particle histories, resulting in a total computational time of about 2.14 h. Tally type 4 was used in our calculations to estimate gamma registered in the detector per MeV. cm^2. s^-1. The statistical uncertainty of the calculated data did not exceed 10% in all energy bins. A schematic diagram of geometry simulated by MCNP5 is shown in Figure 2, with source and detector opening 0.5 cm in radius. Figure 3(a) to (e) shows the variation of total and partial mass attenuation coefficients with the incident photon energy of gamma rays for the steels under investigation. It can be seen from this figure that the total mass attenuation coefficients for the investigated steels decrease with the increase in the incident photon energy. We can notice from Figure 3 that the values of total and partial mass attenuation coefficients calculated by MCNP5 program for all steels under investigation are in good agreement with their theoretical values calculated using WinXCom program. This good agreement can be also seen from the variation of the total mass attenuation coefficient via the incident photon energy presented in Figure 4 for the sake of comparison. It is observed from Figure 4 that the values of μ/ρ decrease very rapidly with an increase in

Table 1. Chemical composition of the investigated steels, the density of steels (m3-m6) is approximately 7.86 g/cc while the density of steel C250 is 8.02 g/cc.

<table>
<thead>
<tr>
<th>Steel No.</th>
<th>C</th>
<th>Ni</th>
<th>Mo</th>
<th>Co</th>
<th>Cr</th>
<th>Ti</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3</td>
<td>0.017</td>
<td>11.7</td>
<td>0.01</td>
<td>-</td>
<td>0.05</td>
<td>0.61</td>
<td>Bal.</td>
</tr>
<tr>
<td>M4</td>
<td>0.066</td>
<td>11.6</td>
<td>4.8</td>
<td>-</td>
<td>0.26</td>
<td>0.59</td>
<td>Bal.</td>
</tr>
<tr>
<td>M5</td>
<td>0.049</td>
<td>12.5</td>
<td>4.5</td>
<td>-</td>
<td>5.4</td>
<td>0.63</td>
<td>Bal.</td>
</tr>
<tr>
<td>M6</td>
<td>0.031</td>
<td>13.5</td>
<td>4.2</td>
<td>-</td>
<td>11.5</td>
<td>0.63</td>
<td>Bal.</td>
</tr>
<tr>
<td>*C250</td>
<td>0.030</td>
<td>18</td>
<td>4.8</td>
<td>8</td>
<td>-</td>
<td>0.5</td>
<td>Bal.</td>
</tr>
</tbody>
</table>

\[
N_{eff} = Z_{eff} \left(\sum_i \frac{\mu_i}{\rho_i} \right)
\]

PROCEDURE OF THE INVESTIGATED STEEL

Production

Five kilograms of each of tested Maraging alloys were melted from pure elements in vacuum arc melting furnace with non-consumable tungsten electrode and water cooled copper crucibles. Before melting, to minimize interstitial gases including oxygen and nitrogen from the furnace atmosphere, titanium getters were melted, and high purity argon was used as an inert gas. On the other hand, in this approach used materials were heated to 600°C to ensure water and crystalline water removing. New and developed this approach used materials were heated to 600°C to ensure water removing. New and developed batch of Maraging was loaded into the vacuum arc melting furnace with non-consumable tungsten electrode crucible under vacuum with pressure 1 × 10^-3 mbar. The furnace was energized noting the power (based on voltage, current, and time in each setting) required for melting. To ensure homogeneity of the produced steel ingots, the produced steel ingots were melted twice, inverting the ingot after each melting. The chemical composition of produced steels was determined using spectrographic (SPGA). Metal forming and heat treatment of tested steels were reported elsewhere (Hossam et al., 2010; Halfa and Reda, 2015). Well prepared and polished steel ingots were optically examined using Axiovert 40 MAT, Carl Zeiss, Switzerland microscopy after chemical etching in the solution of 1 g CuCl2/30 ml HCl/50 ml HNO3/100 ml H2O (Hossam et al., 2010; Halfa and Reda, 2015). Non-destructive test shows that produced steel rod after metal forming and full heat treatment were free from porosity, holes, pipes and other surface defects. Table 1 shows the designed chemical composition of testing steel.
Figure 1. Microstructure of the investigated steels.

Table 2. Mechanical properties of the investigated steels.

<table>
<thead>
<tr>
<th>Steel No.</th>
<th>Heat treatment condition</th>
<th>Mechanical properties measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperature (°C)</td>
<td>Time (h)</td>
</tr>
<tr>
<td>m3</td>
<td>450</td>
<td>3</td>
</tr>
<tr>
<td>m4</td>
<td>475</td>
<td>2</td>
</tr>
<tr>
<td>m5</td>
<td>425</td>
<td>3</td>
</tr>
<tr>
<td>m6</td>
<td>425</td>
<td>3</td>
</tr>
<tr>
<td>*C250</td>
<td>480</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 2. MCNP5 vertical cutoff view (YZ Cross-Section) for gamma attenuation experiment setup (dimensions are not to scale).
Total and partial attenuation coefficients (cm2/g)

Energy (MeV)

WinXCom
The variation of total and partial mass attenuation coefficients of the investigated steels (calculated by using the MCNP5 and WinXCom programs) versus incident photon energy (a) steel m3, (b) steel m4, (c) steel m5, (d) steel m6 and (e) steel C250.

Figure 4. The variation of total mass attenuation coefficients of the investigated steels versus incident photon energy.

the incident photon energy up to 6 keV for all investigated steels. With the further increase in the incident photon energy up to 8 keV, the values of mean linear attenuation coefficient are almost the same for all investigated steels. Beyond 8
keV, the μ/ρ values start decrease very rapidly up to 9 MeV. Beyond 9 MeV, the values of μ/ρ start increase slowly as the incident photon energy approaches 100 MeV. The dependence of μ/ρ on incident photon energy can be explained by the dominance of partial processes of interaction of photons with materials (coherent scattering, incoherent scattering, photoelectric absorption and pair production). In the low energy region, as shown in Figure 3, the rapid decrease in the μ/ρ values may be due to the photoelectric absorption, which is the dominant process in the low energy region, where the cross section is inversely proportional to the incident photon energy as E^{-3} and it is also proportional to the atomic number as Z^4.

The decrease in the μ/ρ values in the intermediate energy region (the incident photon energy beyond 8 keV up to 9 MeV) can be explained due to the Compton scattering process (incoherent), whose cross section is inversely proportional to the incident photon energy as E^{-3} and depends linearly on the atomic number Z. The values of μ/ρ increase slowly beyond 9 MeV due to the pair production process, whose cross section varies approximately as the square of the atomic number Z and is proportional to the incident photon energy as $\log E$. The values of total mass attenuation coefficients μ/ρ have no obvious difference among all the investigated steels which can be attribute to the Z numbers of the major components in the steel alloys, they are all close to each other (Ni:28, Co:27, Cr:24, Fe:26, Ti:22). The exception is Mo:42, but it only makes up to 4% of the steel. On the other hand, the values of μ/ρ were calculated by using MCNP and WinXCom based on the mixture role which makes the effects of molecular binding and the chemical and crystalline environment are negligible (Söğüt et al., 2001, 2002;). It is worth mentioning that the behaviors of μ/ρ for our investigated steels with the incident photon energy are to some extent comparable with that of shielding materials introduced by (Medhat and Wang, 2015). Also, the values of μ/ρ for the steel under investigation in the present work can be compared with the values measured experimentally, calculated theoretically and simulated for some kinds of alloys (Akkurt, 2009; El-kameesy et al., 2011; Singh et al., 2015).

The effective atomic number Z_{eff} values were determined for the steels under investigation by using the MCNP5 and WinXCom values of μ/ρ. The variation of Z_{eff} values versus the incident photon energy was shown graphically in Figure 5, for MCNP5 and WinXCom programs. It is seen from Figure 5 that Z_{eff} values for the investigated steels vary in the low incident photon energy due to the dominance of the photoelectric absorption process in this energy region. It is also seen from Figure 5 that the Z_{eff} values approximately constant in the intermediate and high energy regions. It should be noted that the values of Z_{eff} for MCNP5 and WinXCom have no difference, and only the values for the steel under investigation can be compared with the values measured experimentally, calculated theoretically and simulated for some kinds of alloys (Akkurt, 2009; El-kameesy et al., 2011; Singh et al., 2015).

Figure 5. Variation of the effective atomic number versus incident photon energy for the investigated steels.
that in the low energy region, there is a discrepancy in Z_{eff} values of MCNP5 program. This discrepancy may be due to the sensitivity of MCNP5 experiment setup for low incident photon energy and its value does not exceed 16%. The variation of the effective electron number N_{eff} values against the incident photon energy for steels under study is shown graphically in Figure 6. It is clearly shown by Figure 6 that the energy dependence of N_{eff} is similar to the effective atomic number Z_{eff}, because of the linear relation between them as given by Equation 7.

Conclusions

In the present study the partial and total mass attenuation coefficients, effective atomic number and effective electron number have been calculated for different Maraging steel compositions by using the two programs (MCNP5 and WinXCom) over a wide range of incident photon energies from 1 keV to 100 MeV. It was found that the results of μ/ρ, Z_{eff} and N_{eff} are dependent on the incident photon energy, affected by the different photon interaction processes (coherent scattering, incoherent scattering, photoelectric absorption and pair production). The calculated results of μ/ρ, Z_{eff} and N_{eff} by using MCNP5 program were comparable with the theoretical results of WinXCom program. The results also show that there is no difference between the different compositions of the investigated steels as gamma attenuator. The present study also showed that the values of shielding parameters μ/ρ, Z_{eff} and N_{eff} of cobalt free steels (m3-m6) are in agreement with the values of shielding parameters as the standard steel C250. The presented data in this work nominate the investigated steels to be used in nuclear fields as a gamma ray shielding materials especially when moderate to high strength steel was needed.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors would like to express their thanks and gratitude to Prof. Dr. Mamdouh Mahmoud Eissa, and to Prof. Hoda Salama El-Faramawy, for their supervision and continuous guidance through all steps of production with studying of mechanical and microstructure properties of the investigated steels. The second author gratefully acknowledges the pleasant atmosphere and support from all of research members of the metal Division, Steel Technology Department of Central Metallurgical R&D Institute (CMRDI), Helwan, Egypt.
REFERENCES

