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The general idea consists of using jointly the bond graph technique and the scattering formalism. For 
that, we propose to extract the scattering parameters of a microwave filter with localized or distributed 
elements from its causal bond graph model while starting with the determination of the integro-
differentials operators which is based, in their determination, on the causal ways and causal loops 
present in the associated bond graph model, and which gives rise to the wave matrix which gathers the 
incident and reflected waves propagation of the studied filter. The scattering parameters, founded from 
the wave matrix, were checked by comparison of the simulation results. Thereafter, we used a 
procedure to model these scattering parameters on a particular type of bond graph model often named 
Scattering Bond Graph Model. 
 
Key words: Waves propagation, bond graph modelling, high frequency domain, scattering parameters, integro-
differentials operators, microwave filter, modelling and simulation. 

 
 
INTRODUCTION 
 
The scattering or the wave-scattering formalism (Paynter 
and Busch-Vishniac, 1988) was used in vast physique 
fields such as the characterization of the electric circuits.  
   Several work, since the invention of the bond graph 
approach (Di Filippo et al., 2002), showed that the 
scattering formalism (Newton, 2002) constitutes an 
alternative approach for the physical systems modelling 
(Kamel and Dauphin-Tanguy, 1993). They pointed out, 
on one hand, some properties and in particular, the 
orthogonality of wave matrix (Magnusson et al., 2001) 
respectively the scattering matrix (Ferrero and Pirola, 
2006) which represent intrinsically the causal relations 
and includes explicitly the conservation laws (Pedersen, 
2003). They showed in addition that the scattering re-
presentation exists for systems having neither impedance 
nor admittance such as the junctions of Kirchhoff, the 
gyrateurs and the transformers (Patrick and Adrien, 
2008). 

In addition, the bond graph language (Di  Filippo  et  al.,  
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2002) is based on a graphic representation of the 
physical systems. These representations are based on 
the identification and the idealization of the intrinsic 
characteristics of the physical environments and on the 
structuring of a complex physical system in the networks 
form (Belevich, 1968). 

Moreover, in physics, the analogies theory allows bond 
graph technique (Di Filippo et al., 2002) to generalize the 
representation networks with all the traditional physics 
fields of the systems with localized and/or distributed 
parameters (Christopher et al., 1999). 

The purpose of this paper is to present and apply a 
new extraction method of the scattering parameters of 
any physical systems while basing on its causal and 
reduced bond graph model (Taghouti and Mami, 2009; 
Taghouti and Mami, 2010a, b, c). 

At first, and after having to present the method, 
wepropose to use the causal bond graph model of a high 
frequency low-pass filter (Trabelsi et al., 2003) to find, on 
one hand, the integro-differentials operators 
(Khachatryan and Khachatryan, 2008) which is based on 
the causal ways and loops present in the bond graph 
model and, on the other hand, to extract the  wave matrix
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Figure 1. Complex system representation with the wave scattering variables. 

 
 
 

(Magnusson et al., 2001) from these operators. 
      Then, we extract directly the scattering parameters 
(Newton, 2002) from the found wave matrix (Magnusson 
et al., 2001) and, with the aim to validate the found 
results; we make a comparison by the simulation of these 
scattering parameters with a simple program and the 
classic techniques of conception and simulation of the 
microwave circuits (Vendelin et al., 2005).  
     Finally, we propose to build a particular type of bond 
graph model often named “scattering bond graph model” 
(Kamel and Dauphin-Tanguy, 1996) which is able to 
highlight these transmission and reflection coefficients 
(Scattering parameters) (Duclos and Clement, 2003). 
 
 
EXTRACTION METHOD OF THE SCATTERING 
PARAMETERS 
 
The new extraction method of the scattering parameters 
(Newton, 2002) is an analytical method which makes it 
possible to establish, for a linear complex system, the 
scattering relations between a fixed entry and exit 
(Taghouti and Mami, 2010a). However, this method 
implies the succession of the following stages:  
 

• Decomposition of the system (causal bond graph 
model) in subsystems (causal bond graph sub-model) 
put in cascades which are characterized by their 
respective wave matrix (Magnusson et al., 2001). 

• Calculating the  total  wave  matrix  (Magnusson  et  al.,  
2001) of the whole system by carrying out the product 
of the elementary wave matrix. 

• Finally the application to this matrix of a linear 
transformation to extract the scattering parameters 
(Newton, 2002) characterizing the complex system. 

 
The step that we propose was thought in this objective 
and consists of establishing a systematic method which 
binds the bond graph technique (Di Filippo et al., 2002) to 
the wave-scattering formalism (Paynter and Busch-
Vishniac, 1988). This method is based on an algebra-

graphic procedure (Maher and Scavarda, 1991) which 
uses the causal ways notions and the Mason’s rule 
(Bolton, 1998) applied to a causal bond graph 
transformed and reduced (Taghouti and Mami, 2009; 
Taghouti and Mami, 2010b, c). 
 
 

Wave-scattering representation and decomposition 
of complex system 
 

Generally, we can represent any complex system 
functioning in low or high frequency by the following 
model of the Figure 1 where the process is represented 
by the quadripole Q with different wave scattering. 
  These three subsystems (source, process and load) are 
inter-connected and communicate between them by the 
means of a power transfer which is done in a continuous 
way from the source to the load as Figure 1 indicates it 
(Taghouti and Mami, 2010a). It is considered that the 
process, in its quadripole form, is in complex form and 
can be decomposed to subsystems which are connected 
by the intermediary of the wave-scattering variables 
(Paynter and Busch- Vishniac, 1988) as Figure 2 
indicates it.  

Let us consider the two processes A and B with share 
where the signal entering B is directed in the same 
direction as the outgoing signal of process A. In a similar 
way, the outgoing signal of B is in the same direction as 
the signal entering A as Figure 3 indicates it.  

If these two processes are coupled, the assumption of 
the power continuity (Paynter and Busch-Vishniac, 1988) 
will imply: 
 

A B
a b=                                                                       (1) 

A B
b a=                                                                       (2) 

 

The aA and aB quantities entering the A and B processes 
are called incident waves in the same way, the quantities 
bA and bB associated with the signals leaving the A and B 
processes   are   called   reflected   waves  (Duclos   and
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Figure 2. Wave scattering representation of the quadripole Q. 

 
 

 

 
 
Figure 3. Representation of the wave scattering variables. 

 
 
 

Clement, 2003). Classically, we express the power 
circulating in a bond connecting two systems in the shape 

of a product of the two variables effort (noted : ε) and flow 

(noted : ϕ) in reduced form (Maher and Scavarda, 1991). 
 

2

i i
i i

a b
P ,

2 2

   
= − = ε ϕ   
   

                                             (3)  

 
i i i i

i i

a b a b
,

2 2

  + +
= ε ϕ  

  
                                          (4) 

 
So we can introduce the following linear transformation: 
 

i i i

i i i

1 1 a a1
H

1 1 b b2

      ε
= =      

−ϕ       
                                 (5) 

 
The linear opposite transformation of the H 
transformation allows the passage of the intrinsic 

variables effort and flows (ε,ϕ) with the wave variables (ai, 
bi) as the following relation indicates it: 
 

i i i

i i i

1 1a 1
H

1 1b 2

       ε ε
= =      

− ϕ ϕ      
                                      (6) 

 
The processes A and B constitute two processes with 2- 

ports of entry and exit whose wave matrices are:  
 

A A A A

1 11 12 2

A A A A

1 12 22 2

b w w a

a w w b

     
=     

     
                                             (7) 

 
B B B B

1 11 12 2

B B B B

1 12 22 2

b w w a

a w w b

     
=     

     
                                         (8) 

 
The chain of n processes with 2-ports of entry and exit 
constitutes a process with 2-ports of entry and exit where 
the global wave matrix W is:  
  

N( A ) ( B ) ( N ) ( i )

i 1
W W * W * . . .. . . . . * W W

=
= = ∏               (9) 

 
So: 
 

1 1 1 1 2 2 2

1 12 22 2 1 2

b w w a a
[ W ]

a w w b b

       
= =       

       
                       (10) 

 
The scattering parameters are given by the following 
scattering matrix: 

 

1 1 1 1 2 1 2

2 21 22 2 2

b S S a a
[S]

b S S b a

       
= =       

       
                           (11) 



 
 
 
 
The relations between these matrixes are given by the 
following equations: 
 

1

1 1 2 1 2 2

1

1 2 2 1

1

2 1 1 2 1 1 2 2 2 1

1

2 2 1 1 2 1

w S * S

W S

W S S * S * S

W S * S

−

−

−

−

 = −


=


= −
 =

                                    (12) 

 
And: 
 

1

11 22 12

1

21 22

1

12 11 21 12 22

1

22 21 22

S W *W

S W

S W W *W *W

S W *W

−

−

−

−

 = −


=


= −
 =

                                            (13) 

 
Wave scattering parameters and causal bond graph 
model 
 
It is considered that the process, in its quadripole form 
and when inserted between two particular ports P1 and P2 
which represent respectively the entry (source) and the 
exit (load) of the complex system can be represented by 
the following bond graph model transformed and reduced  
such as: 
 

ε1 and ε2 are respectively the reduced variable (effort) at 
the entry and the exit of the system. 

ϕ1 and ϕ2 are respectively the reduced variable (flow) at 
the entry and the exit of the system. 
 
 

i

0

effert

R
ε =                                         (14) 

 

i 0flow * Rϕ =                                        (15) 

 
These are the reduced effort (e) and flow (f) with respect 
to R0 (scaling resistance). 

And to establish the entry-exit analytical relations, the 
bond graph model of the studied system must be 
transformed, reduced and especially be causal since 
these relations rest on the concepts of causal way and 
causal loops which can comprise the reduced bond graph 
model (Taghouti and Mami, 2010a, b, c).  

The causality assignment to the reduced bond graph 
model of Figure 4 enables us to notice that they are four 
different cases of causality assignment in input-output of 
the process (Maher and Scavarda, 1991). 

For each type of reduced and causal bond graph model 
given below, we will have one matrix which connects the 

reduced variables to the integral-differentials operators Hij. 
Figure 5  to  8.  From  each  matrix,  we  can  deduce  the  
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corresponding wave matrix by referring to the Equations 
5, 6 and 10. 

These wave matrices can give us the corresponding 
scattering parameters by referring to the Equation 13 and 
the following equations.  
 

1 1

1 1

1 1 a1

1 1 b2

    ε
=    

−ϕ     
                                (16) 

 

 
2 2

2 2

1 1 a1

1 1 b2

    ε
=    

−−ϕ     
                               (17) 

 
 
Case 1  

   

1 11 12 1

2 21 22 2

H H

H H

    ε ϕ
=        ϕ ε    

                                                (18) 

 

11 22 11 22

21 21

11 22 11 22

21 21

1 H H H 1 H H H

2H 2H
W

1 H H H 1 H H H

2H 2H

 − + − ∆ − − + − ∆
 
 =
 − − + − ∆ − + − ∆
 
  

(19) 

 

11 22 12 21
H H H H H∆ = + −                                                 (20) 

 
 
Case 2  
 

1 11 12 1

2 21 22 2

H H

H H

     ϕ ε
=          ε ϕ     

                                     (21)  

1 1 2 2 1 1 2 2

2 1 2 1

1 1 2 2 1 1 2 2

2 1 2 1

1 H H H 1 H H H

2 H 2 H
W

1 H H H 1 H H H

2 H 2 H

 − + − ∆ − − + ∆
 
 =
 − + + − ∆ + − − ∆
 
  

        (22) 

 
 

Case 3  
 

1 1 1 1 2 1

2 2 1 2 2 2

H H

H H

     ε ϕ
=          ε ϕ     

                    (23) 

1 1 2 2 1 1 2 2

2 1 2 1

1 1 2 2 1 1 2 2

2 1 2 1

1 H H H 1 H H H

2 H 2 H
W

1 H H H 1 H H H

2 H 2 H

 − + − + ∆ − + + − ∆
 
 =
 + + + ∆ + − − ∆
 
  

       (24) 

 
 

Case 4 
 

1 1 1 1 2 1

2 2 1 2 2 2

H H

H H

     ϕ ε
=          ϕ ε     

                                  (25)
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Figure 4. The reduced bond graph representation. 

 
 
 

 
 
Figure 5. Reduced bond graph model with flow- effort causality. 

  
 
 

 
 
Figure 6. Reduced bond graph model with effort-flow causality. 

 
 
 

 
 
Figure 7. Reduced bond graph model with flow-flow causality. 

 
 
 

 
 
Figure 8. Reduced bond graph model with effort-effort causality.   
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Figure 9. The low-pass filter with localized elements and its tow ends P1 and P2. 

 
 
 

11 22 11 22

21 21

11 22 11 22

21 21

1 H H H 1 H H H

2H 2H
W

1 H H H 1 H H H

2H 2H

 − + − + ∆ − − + ∆
 
 =
 − − − − ∆ + − − ∆
 
  

    (26) 

 

Now, if we like to find the scattering matrix we need to 
use the Equation 13. 

We note that Hij are the integral-differentials operators 
which are based, in their determination, on the causal 
ways and causal loops present in the associated bond 
graph model (Maher and Scavarda, 1991; Taghouti and 
Mami, 2010a). 
 

N k k
ij k 1

G
H

=

∆
=

∆
∑                                                (27) 

 
m

i i j i j k1 L L L L L L ... ( 1) ... ...∆ = − + − + + − +∑ ∑ ∑ ∑      (28) 

Where: 
 

∆ = the determinant of the causal bond graph. 
Pi = input port. 
Pj= output port. 
Hij= complete gain between Pj and Pi. 
N = total number of forward paths between Pi and Pj. 
Gk = gain of the k

th 
forward path between Pi and Pj. 

Li = loop gain of each causal algebraic loop in the bond 
graph model. 
LiLj = product of the loop gains of any two non-touching 
loops (no common causal bond). 
LiLjLk = product of the loop gains of any three pairwise 
nontouching loops. 
∆k = the cofactor value of ∆ for the k

th
 forward path, with 

the loops touching the k
th
 forward path removed; that is 

remove those parts of the causal bond graph which form 
the loop, while retaining the parts needed for the forward 
path. 

APPLICATION TO A LOW-PASS FILTER WITH 
LOCALIZED ELEMENTS 
 
In this paragraph, we will try to apply and check the 
procedure described previously to a low-pass filter with 
localized elements as Figure 9 indicates it (Taghouti and 
Mami, 2010b, c). 

This filter is a Chebyshev filter with order 4 and having 
the following characteristics: 
 

100 MHz of cut-off frequency (fc). 
Sensibility: k = 0.5. 
Attenuation: Amax = 0.1dB, Amin = 20dB.    
 
 

Extraction of the scattering parameters from the 
bond graph model 
 

The bond graph model of this studied filter is given by 
Figure 10. So that, to extract the scattering parameters 
from the bond graph model and by using the new 
extraction method which is described previously; we must 
transform the bond graph model into a causal bond graph 
model often named reduced bond graph model (Maher 
and Scavarda, 1991; Taghouti and Mami, 2009) only 
containing the reduced variables with respect to a scaling 
resistance R0 (internal source resistance) such as: 
 

ci 0 iR *Cτ =                                                        (29) 

 

i
Li

0

L

R
τ =                                                                     (30) 

 
zi: the reduced equivalent impedance of the i element put 
in series. 
yi: the reduced equivalent admittance of the i element put 
in parallel.  
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Figure 10. Causal bond graph representation of the filter with its ends Ports 1 and 2. 
 
 
 

 
 
Figure 11. The transformed and reduced causal bond graph model. 

 
 
 

So we have: 
 

1 L1z * P= τ                                                           (31) 

 

2 L2z * P= τ                                                         (32) 

 

1 c1y * P= τ                                                         (33) 

 

2 c2y * P= τ                                                         (34) 

 
p: Laplace operator.   
 
The bond graph model given above in Figure 11 can be 
broken up into two cells (sub-model) put in cascade form 
while respecting the assumption of the power continuity 
(Paynter and Busch-Vishniac, 1988; Taghouti and Mami, 
2010c) between all sub-models. 

Each cell is made up with an impedance z in parallel 
with an admittance y often noted [z---y], if the studied 

filter is with T form, or [y---z] if the studied filter is with Π 
form (type). So we have the first sub-model such as: 

This   model   is  in  conformity  with  case  1  described 



 
 
 
 
previously. So we have the integro-differentials operators 
by taking account to the previously equations. 
 

1

1 1

1
L

z y

−
=  : Loop gain of the algebraic loop. 

 

1 1

1
1

z y
∆ = +  : Determinant of the associated causal bond 

graph. 
 

1
11

1 1

12

1 1

21

1 1

1
22

1 1

1 1

z
H

z y 1

1
H

z y 1

1
H

z y 1

y
H

z y 1

1
H

z y 1


=

+

 =

+



=
+

 −
 =

+


−∆ =
 +

 : All the integro-differentials operators  

 

From these operators, we can deduce directly the wave 
matrix by taking into account the equations of case 1: 
 

(1) 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

z y z y 2 z y z y1
W

2 z y z y z y z y

 − − + − + +
=  

− − + + + 
 : Wave 

matrix of the first sub-model. 
 

And now we have the second sub-model (Figure 13). And 
in the same manner we can extract the second wave 
matrix such as: 
 

2

2 2

1
L

z y

−
=  : Loop gain of the algebraic loop. 

2 2

1
1

z y
∆ = +  : Determinant of the associated causal 

bond graph. 
 

2
11

2 2

12

2 2

21

2 2

2
22

2 2

2 2

z
H

z y 1

1
H

z y 1

1
H

z y 1

y
H

z y 1

1
H

z y 1


=

+

 =

+



=
+

 −
 =

+


−∆ =
 +

  : All the integro-differentials operators. 
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And the second wave matrix is: 
 

(2) 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

z y z y 2 z y z y1
W

2 z y z y z y z y

 − − + − + +
=  

− − + + + 
 

 
The total wave matrix is given by the product of the first 
and the second wave matrix such as: 
 

(T) (1) (2) 11 12

21 22

W W
W W * W

W W

 
= =  

 
                           (35) 

So the corresponding scattering matrix is given in 
Equation 36:  
 

1 1

(T) 22 12 11 21 12 22

1 1

22 21 22

W * W W W * W * W
S

W W * W

− −

− −

 −
=  

− 
            (36) 

 
From this matrix we can deduce these following 
scattering parameters: 

1 2 1 2 1 2 1 2 1 1 2 2 1 2 1 2
11

z z y y z y (y z ) z (y y 1) z (y y 1) y y
S

d(p)

+ − + − − + + − + +

                                                                               (37) 
 

12 21

2
S S

d(p)
= =                                                      (38) 

 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
22

z z y y z y (y z ) z (y y 1) z (y y 1) y y
S

d(p)

− + − + − − − + − + +
  (39) 

 

1 2 1 2 1 2 1 2 2 1 1 2 1 2 1 2d(p) zz yy zy (y z ) (y y )(z z ) (z z ) (y y ) 2= + + + + + + + + + +  (40) 

 
 
SIMULATION RESULTS AND CHECKING  
 
Thus, the validation is carried out by simulating the 
scattering parameters of equations 37, 38 and 39. 

A simple programming of the previously scattering 
parameters equations is given in Figures 14, 17, 15 and 
16 below which represent respectively the reflection and 
transmission coefficients of the studied filter (Taghouti 
and Mami, 2010c).  

We notice that the reflection coefficients S11 and S22 
are equal in module. This result is also checked by the 
figures as follows. 
 

1 1 2 2| S | | S |=                                                     (41) 

 
To validate and checked the found results, by simulation, 
it is enough to simulate the low-pass filter of the Figure 
18 to find the representative curves of the reflection and 
transmission coefficients respectively Sii and Sij by the
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Figure 12.  The first causal bond graph sub-model. 

 
 
 

 
 
Figure 13.  The second causal bond graph sub-model. 

P2 

P2 
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Figure 14. Reflection coefficient S11 seen at entry. 

 
 
 

 
 
Figure 15. Transmission coefficient S12 seen from exit to entry. 
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Figure 16.Transmission coefficient S21 seen from entry to exit. 

 
 
 

 
 
Figure 17. Reflection coefficient S22 seen at exit. 

 
 
 

ADS software (Advanced Design System) (Dirk   Jansen    
2005) often used in microwave and regarded as a 
traditional method in the line’s theory (Magnusson et al., 
2001). Figure 18 thus represents the system's model 
studied with adapted entry and exit and the numerical 

values of its elements necessary for simulation (Taghouti 
and Mami, 2010c). 

The simulation of the low-pass filter above gives the 
graphical representation of the reflection and trans-
mission coefficients Sii and Sij (i≠j and i, j=1...2) according 
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Figure 18. The low-pass filter under the HP-ADS software. 

 
 
 
to the frequency (Figure 19).  
 
 
MODELLING OF THE SCATTERING PARAMETERS 
WITH BOND GRAPH TECHNIQUE 
 
We noted that we will use the method which is developed 
by Pr. A. Kamel (Kamel and Dauphin-Tanguy, 1993; 
1996). 
 
 
Procedure used to model the scattering matrix by the 
bond graph technique 
 
The scattering matrix of our studied process is a 2-2 
matrix having a particular form, no matter the expressions 
complexity of the series impedance or parallel 
admittance. It is orthogonal since the process is 
considered without loss, and it admits the following 
general form. 

 
11 n 11 12 n 12

n 0 n 0

21 n 21 22 n 21

n 0 n 0

n n 1

n n 1

b p ... b b p ... b

b p ... b b p ... b
S

a p a p ... ao
−

−

 + + + +
 

+ + + + =
+ + +

                    (42) 

 
We note that: 

 
n n 1

n n 1 0
d(p) a p a p .... a−

−= + + +                                    (43) 

 
Indeed, if we consider the scattering matrix form found 
earlier for the process alone, we can say that it is not a 

true transfer matrix (Belevich, 1968). Moreover, it is not in 
the adequate form since its various Sii parameters and 
sometimes Sij have the numerator’s degree equal to that 
of denominator and that poses a major problem to 
determinate the scattering bond graph model of any 
physical system studied in a general way.  

The solution with this problem is to regard the 
scattering matrix of a process as a transfer matrix from 
an input-output point of view, connecting the incident and 
the reflected waves in a symbolic system form.   

We start by carrying out an Euclidean division of each 
term of the numerator matrix (scattering parameters) by 
the common denominator d(s) that leads to the new 
shape of the scattering matrix (Belevich, 1968) such as: 
 

S S' D= +                                                                    (44) 
 

S
’
: the new scattering matrix with degrees in the 

numerator at most one less than that of d(s).  
 
D: direct transmission matrix.  
 

1 3

4 2

d d
D

d d

 
=  
 

                                                     (45) 

 

Thereafter we seek for the new matrix <S
’
>

 
its 

development in continuous fraction in alpha-beta starting 
from the Routh method (Shamash, 1980) and build the 
corresponding bond graph model, since it is about a 
multivariable system (Molisch et al., 2002) while being 
based on the systematic procedure according to: 
 
• Calculate the  α-Routh  table  from  the  common
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Figure 19. Simulation results of the low-pass filter. 

 
 
 

denominator d(s) and the β-Routh table from the new 
numerator of the S

’
-matrix. 

 

• Construct the direct chain by using the adequate 

number of elements I-C (which αi coefficients are their 
modules) in integral causality, equal to the degree of 
d(s).  

• Duplicate this chain and construct the two entries of the 
quadruple. 

  

• Construct the tow outputs by using information bonds 
and a sufficient number of TF and GY elements whose 

modules are precisely the ij

n
β  coefficients. 

 

• Add the direct part (transmission matrix D) by using 
information bonds.  

 
To obtain the scattering bond graph model of the physical 
system, it is enough to add the reflection coefficient 

0
g

0

z 1

z 1

−
ρ =

+
 of the source and the reflection coefficient 

L
c

L

z 1

z 1

−
ρ =

+
 of the load to the scattering bond graph model 

of the process to the adequate sites. 

Scattering bond graph model of the low-pass filter 
 

To obtain the scattering bond graph model of the studied 
circuit, it is enough to add the reflexion coefficient 

0
g

0

z 1

z 1

−
ρ =

+
 of the source and the reflexion coefficient 

L
c

L

z 1

z 1

−
ρ =

+
 of the load to the scattering bond graph model 

of the process to the adequate sites (Figure 20). 
It is interesting to notice that the structure of the 

scattering bond graph of the process remains the same 
whatever the degree of the common denominator of 
scattering matrix. The only thing that changes is the 
corresponding number of I and C linked to the α-Routh 
expansion (Kamel and Dauphin-Tanguy, 1993; 1996; 
Taghouti and Mami, 2010c). 
 
 

Conclusion 
  
In this paper, we tried to present a method which appears 
new for the determination of the scattering parameters of 
any physical system functioning in high frequency. Then, 
we applied this technique to a  low-pass filter based on
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Figure 20. Scattering bond graph model of the low-pass filter connecting to its source and load. 

 
 
 
localized elements. 

Lastly, we validated the results found by a simple 
comparison between two methods of simulation: 
simulation by the traditional methods used in microwave 
under the ADS software and simulation by the our own 
method of the reduced bond graph which is based on the 
causal and simplified bond graph model of the studied 
system like on the minimum of the causal ways and loops 
present in this model often decomposed to sub-models 
as we showed previously.  

Generally, this new analysis method leads us to use 
this new method which combines at the same time the 
bond graph technical and the scattering formalism for 
modelling and simulation of the scattering matrices of any 
electrical circuits often functioning in high frequency and 
based on localized or distributed elements giving rise to 
the famous model often named: Scattering Bond Graph.    
This new type of modelling will enable us to capture the 

power transfers in a simple and direct manner at the 
same time and it proposes us a temporal approach of the 
phenomena usually modeled with the frequencies tools. 
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