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In this paper, we propose a parametric solution to the partial eigenvalue assignment problem by state 
feedback control for non-symmetric quadratic pencil in multi-input case using orthogonality relations 
between eigenvectors. Our solution can be implemented with only a partial knowledge of the spectrum 
and the corresponding eigenvectors of non-symmetric quadratic pencil. We show that the number of 
eigenvalues and eigenvectors that need to remain unchanged will not be affected by feedback matrices. 
A numerical example is given to illustrate the proposed method. 
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INTRODUCTION 

The matrix second-order model of the free motion of a 
vibrating system is a system of differential equations of 
the form: 

0Kvv
dt

d
)GD(v

dt

d
M

2

2


      (1)

where 
1nR)t(v  GDM ,,

and K  are respectively
mass, damping, gyroscopic and stiffness matrices (Datta 
et al., 2000; Datta and Sarkissian, 1999). The system 
represented by Equation 1 is called damped gyroscopic 

system. The gyroscopic matrix G  is always skew-

symmetric
 TGG 

; the mass matrix M  can be
assumed to be symmetric and positive definite 

( 0 TMM ). In special cases where D  and K  are
also symmetric, then the system of Equation 1 is called 
symmetric definite system. If the gyroscopic force is not 
present, then the system is called non-gyroscopic (Datta 
and Sarkissian, 1999). 

The system of Equation 1 leads, with the separation of 

variables 
txetv )(
, x  a constant vector to the

problem of finding the eigenvalues and eigenvectors of 
the non-symmetric quadratic pencil: 

  KGDMP   2)(       (2)

The scalar i is called an eigenvalue, and the 

corresponding vector 
0ix

is called an eigenvector if 
they satisfy: 

0)( ii xP 
 n2,...,3,2,1i 

For notational convenience, we write ,GDC   
throughout the rest of the paper. 

The system modeled by Equation 1 can be controlled 

with the application of a forcing function  ,tBu  in which
case Equation 1 is replaced by: 

 tBuKvv
dt

d
Cv

dt

d
M 

2

2

      (3) 

The system of Equation 3 is called the time-invariant 
second-order control system in multi-input case that 
arises naturally in a wide variety of applications (Nichols 

and Kautsky, 2001), where a matrix 
mnRB   is multi-

input matrix (if m=1 single input) and 
)(tu

 is a time 

dependent 1m  vector that needs to be applied to



 
 
 
 

Equation 3. Let )(tu be chosen as: 

 

  vFv
dt

d
Ftu TT

21 
,                             (4) 

                       
mnRFF 21, are constants that lead to the closed-loop 

system: 

 

    0212

2

 vBFKv
dt

d
BFCv

dt

d
M TT

,    (5) 
          
The closed-loop matrix quadratic pencil corresponding to 
equation 5 is: 

  

   TT

c BFKBFCMP 21

2)(  
    (6) 

Given m  complex numbers 
 m ,,, 21 

 closed 

under complex conjugation, nm   and the matrix 

mnRB    were required to find 
mn

21 RF,F 
 such that 

the closed loop pencil of Equation 6 has spectrum: 

 

 nmm 2121 ,,,,,,    .                           (7) 
                      
This is the partial eigenvalue assignment problem in 

which we use the matrices 
mnRFF 21,   to replace the 

eigenvalues 
 m ,,, 21 

 of the open loop pencil: 

 

  ,2 KCMP  
 

 

by 
 m ,,, 21 

, while leaving the other eigenvalues 
unchanged.  
Recently, Datta et al. (2000) and Datta and Sarkissian 
(1999) introduced the parametric solution to the partial 
eigenvalue assignment problem for symmetric quadratic 
pencil in multi-input case. Datta (1999) and Datta et al. 
(1997) introduced an explicit solution to the partial 
eigenvalue assignment problem for symmetric quadratic 
pencil in single input case. This solution can be 
implemented with only a partial knowledge of the 
spectrum and the corresponding eigenvectors of the 

damped non-gyroscopic
KDMP   2)(

, where  

 TTT KK,0G,DD,0MM 
. Ramadan 

and El-Sayed (2010a, b) introduced an explicit solution to 
the partial eigenvalue assignment problem for non 
symmetric quadratic pencil in single input case.  

In this paper, we introduce the parametric solution to 
the partial eigenvalue assignment problem for damped  
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case, such that C  and K  are non-symmetric matrices  
gyroscopic second-order control system in multi-input 

and 0MM T  . This solution can be implemented 
with only a partial knowledge of the spectrum and the 

corresponding eigenvectors of 
KCMP   2)(

. 
It is well known (Datta et al., 1997; Laub and Arnold, 
1984) that the system of equation 3 is completely 

controllable if and only if rank
  ,nB,KCM2  

 
for every eigenvalue   of the pencil (Equation 2). 
Complete controllability is necessary and sufficient for the 

existence of 1F
 and 2F

, such that the closed-loop pencil 
has a spectrum that can be assigned arbitrarily. However, 
if the system is only partially controllable, that is, if 

rank
  ,nB,KCM2  

 
only for m  of the 

eigenvalues 
,.,,2,1, nmmjj  
 of the 

pencil, then only those eigenvalues can be arbitrarily 

assigned by an appropriate choice of 1F
 and 2F

.  
 
 
ORTHOGONALITY RELATIONS BETWEEN THE 
EIGENVECTORS OF QUADRATIC PENCIL 
 
Here, we introduce three orthogonality relations 
(Sarkissian, 2001; Ramadan and El-Sayed, 2010a, b) 
between the eigenvectors of non-symmetric definite 
quadratic pencil. One of these results plays a key role in 
our later developments (Datta et al., 1997; Datta and 
Sarkissian, 2001) as well as the well known results on the 
orthogonality relations between eigenvectors of 
symmetric definite quadratic pencil (Datta et al., 1997; 
Datta and Sarkissian, 2001) that follows as special cases. 
 
 
Definition 1 

A scalar C  such that 
   0det P

 is called an 
eigenvalue of the quadratic pencil 

KCMP   2)( . The set of eigenvalues is 

called the spectrum of 
 P

 
(Sarkissian, 2001). 

 
 
Definition 2 
 

The non-zero matrices x  and 
y

 are, respectively, called 
the right and left eigenvectors, corresponding to the 

eigenvalue   of the quadratic pencil 

KCMP   2)(
 (Sarkissian, 2001) if 

 

  02  xKCM 
                                             (8) 
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and 
 

  02  KCMyH 
                (9)                               

where 
Hy

 is the conjugate transpose of the vector 
y

. 
 
 
Theorem 1: Orthogonality of the eigenvectors of non-
symmetrical quadratic pencil 
 

Let n221 ,,,  
 be the eigenvalues of the nn  

quadratic pencil 
KCMP   2)(

 and let X  and 

Y  be, respectively the right and left eigenvector matrices. 

Assume that 
     nmm 211 ,,,,  

, partition 

 21, XXX 
 and 

 21,YYY 
, where 

 mxxX ,,11 
; 

 nm xxX 212 ,,
, 

 myyY ,,11 
 and 

 nm yyY 212 ,,
(Sarkissian, 

2001). Then, 
  

0212211  KXYMXY HH

                              (10) 
 
and 
 

021221211  CXYMXYMXY HHH

       (11)                  
 

where  
 21, diag

 with 
 mdiag  ,,11 

 

and 
 nmdiag 212 ,,  

.  
 
 
PARTIAL EIGENVALUE ASSIGNMENT PROBLEM 
 

Suppose 
nnRK,C  are non-symmetric matrices and 

0MM T   is non-singular matrix. Let the non-
symmetric quadratic pencil 

    02  iiiii xKCMxP 
   

ni 2,,2,1 
, be 

written in the matrix form as follows: 
   

02  KXCXMX                 (12) 
 

where 
  nn

n CxxxX 2

221 ,,,  
 , 

  nn

n Cdiag 22

221 ,,,   
 and i  are distinct. 

Let us partition the nn 2  right eigenvector matrix X ,  

the nn2  left eigenvector matrix 
HY  and nn 22   

 

 
 
 
 

eigenvalues matrix   as follows: 
 

 21 XXX 
,  
















H

H

H

Y

Y
Y

2

1

,  
 21, diag

 
 

where
 mxxX ,,11 

, 
 nm xxX 212 ,,

, 

 myyY ,,11 
 and 

 nm yyY 212 ,,
 with 

 mdiag  ,,11 
 and 

 nmdiag 212 ,,  
. 

 
 
Theorem 2 
 

If 
      nmm 211 ,,,,  

 and the feedback 

matrices 1F
 and 2F

 is defined by, 
 

.,12111

mmHTHT CKYFMYF  
    (13)                  

 

Then, for any choice of 


, the last mn 2  eigenvalues 

nmm 221 ,,,    of the closed loop pencil  
 

     TT

c BFKBFCMP 21

2  
, are same as  

those of the open loop pencil 
  KCMP   2

. 
 
 
Proof 
 

Let 
 ,X

 be the eigenvector-eigenvalue matrix pair of 
the open loop pencil,  
 

  KCMP   2

.                                           (14)                                                          
 
Then, 
 

02  KXCXMX .                                        (15) 
                                                      

Let X and Y  be, respectively the right and the left 
eigenvector matrices of the open loop pencil. Our goal is 
to prove that: 
  

    022221

2

22  XBFKXBFCMX TT

    (16).                          
 

By substituting 
MYF HT

111  
 and 

KYF HT

12 
 in 

the left hand side of Equation 16, then we obtain: 
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     212211222

2

2222221

2

22 KXYMXYBKXCXMXXBFKXBFCMX HHTT  
 

 

Since, 
0222

2

22  KXCXMX
 

and 

 0212211  KXYMXY HH

 from the Theorem 1, 
thus, 

    022221

2

22  XBFKXBFCMX TT

. The 
theorem is proved. 

 
 

Choosing 


 

 
In order to use Theorem 2 to solve the partial eigenvalue 

assignment problem, we need to choose 


 which will 

move 
 m ,,, 21 

of the open loop pencil 

  KCMP   2

 to 
 m ,,, 21 

 in the closed 

loop pencil 
     TT

c BFKBFCMP 21

2  
, if 

that is possible. If there is such 


,  then there exist an 

eigenvector matrix 
mnCZ  ;  

 

 mzzzZ ,, 21
,      

.,,2,1,0 mjz j 
 

 

Matrix 
 mdiagD  ,,, 21 

 such that: 

 

    021

2  ZBFKZDBFCMZD TT

               (17) 

 

Substituting 
MYF HT

111  
and 

KYF HT

12 
 in 

equation 17, we have: 

 

 KZYMZDYBKZCZDMZD HH

111

2  
  

 BWBKZCZDMZD H2

                       (18) 

 

where 
 KZYMZDYW HHH

111 
 and 

HHW 
  

 is a matrix mm  that will depend on the scaling 

chosen for the eigenvectors in Z . To obtain Z , we 

choose the matrix   as 
 m ,,, 21 

.  Then 
Equation 18 becomes: 
 

 m21

2 ,,,BKZCZDMZD  
. 

We can solve for each of the eigenvectors jz
using these 

equations: 
 

  12 ,  n

jjjjj CBzKCM 
  

(19) 

mj ,,2,1 
         

 

We choose arbitrary vectors  m21 ,,,  
 in such 

a way that kj  
 implies kj  

 for m,...2,1k 
. 

So, we obtain the eigenvectors of 
 m1 z,,zZ 

, and 

hence we compute the matrix W  from 

 KZYMZDYW HHH

111 
 if W  is ill-conditioned, 

then we select different vectors m21 ,,,  
. We 

solve the mm  square linear system,  
 

 Hm

HW  ,,, 21 
                                 (20) 

                     

for 
H

, and hence determine the matrices 1F
 and 2F

. 
We summarize the solution in the following algorithm. 
 
 
Algorithm 1 
 
This is an algorithm for the multi-input partial eigenvalue 
assignment algorithm for non-symmetric quadratic pencil. 
 
Inputs: 
 

1) The nn  real non-symmetric constant matrices 

C and K , 0MM T  ,  

2) The mn  control (input) matrix
mnRB  , and 

3) 
 mdiagD  ,,, 21 

 is closed under complex 
conjugation. 
 
Outputs: 
 

The feedback matrices 1F
 and 2F

 such that the 
spectrum of non-symmetric quadratic pencil 

     TT

c BFKBFCMP 21

2  
, are  

 

 nmm 211 ,,;,,    , where nm 21 ,,,    

are   the   last   mn 2    eigenvalues   of   matrix   pencil 
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  KCMP   2

. 

 
Assumptions: 

 

Let M  be non-singular matrix and the numbers 

mm  ,,  and ,, 11 
 are all distinct and closed 

under complex conjugation, where n221 ,,,  
 are 

the eigenvalues of matrix pencil
  KCMP   2

. 

 

Step1: Obtain the first m  eigenvalues m ,,, 21 
 of 

matrix pencil 
  KCMP   2

 that need to be 
reassigned and the corresponding left 

eigenvectors myyy ,,, 21 
. 

Step 2: Choose arbitrary vectors  m21 ,,,  
 in 

such a way that kj  
 implies kj  

 for 

m,...2,1k   and solve for m1 z,,z 
.  

 

  jjj

2

j BzKCM  
            

mj ,,2,1 
 

 

Step 3: Form 
 KZYMZDYW HHH

111 

 
if W  is ill-

conditioned, then return to Step 2 and select different 

vectors m21 ,,,  
. 

Step 4: Form 
 m ,,, 21 

 and solve for  


 
when 

HHW 
 

 
Step 5: Form  

 

.,12111

mmHTHT CKYFMYF  
 

 
 
NUMERICAL EXAMPLE 

 

We choose randomly generated matrices 
KCM ,,

 (size 
4) as follows: 
 





















0.40570.79190185.00.4860

0.17630.61540.45650.6068

0.73820.44470.76210.2311

0.92180.82140.89130.9501

M

,   

 
 
 
 





















0.42890.37956721.00.4186

0.70950.68130.20260.4660

0.50280.01960.52520.9318

0.83180.83810.84620.4451

C ,  





















0.74680.60380.00990.8936

0.01530.19870.81320.4103

1988.00.20280.35290.9169

0.27220.13890.05790.9355

K

 
 

and a random matrix  B as: 

 





















0.69790.1509

0.54170.3028

0.6822 0.1934

0.18970.3046

B

. 

 

The quadratic pencil 
  KCMP   2

 has 
eigenvalues as shown in Table 1. 

Now, we assign the last 2m  eigenvalues 76 ,
 to the 

conjugate pair 
i 12,1 . Using Algorithm 1 gives: 

 











0.8287i- 0.9172 2.9940i - 3.3472- 

0.8287i + 0.9172  2.9940i + 3.3472-


 
 

The random choices  of 1  and 2
 
produces matrix W  

with condition number 1.8894 in step 17 

From which we compute the feedback matrices 1F
 and 

2F
, in view of equation 15. 

 





















0.3190-3.1225

0.3297-2.2208

0.18836.4495-

0.26530.0578-

1F

  and  





















1.3347-3.4306-

0.5216-2.1387-

2.20482.8545

0.5501-2.7900-

2F
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Table 1. Eigenvalues of pencil 
  KCMP   2

.  
 

Eigenvalues of pencil:    KCMP   2

 

 0.1191 

 0.4284 

 -0.5245 

 -0.5302 - 0.7218i 

 -0.5302 + 0.7218i 

 0.6117 - 1.4439i 

 0.6117 + 1.4439i 

 2.5321 
 
 
 

Table 2. Eigenvalues of quadratic open pencil 
  KCMP   2

 and quadratic closed pencil 

   TT

c BFKBFCMP 21

2)(  
.  

 

Eigenvalues of   KCMP   2

 Eigenvalues of 
   TT

c BFKBFCMP 21

2)(  
 

0.1191 0.1191 

0.4284 0.4284 

-0.5245 -0.5245 

-0.5302 - 0.7218i -0.5302 - 0.7218i 

-0.5302 + 0.7218i -0.5302 + 0.7218i 

0.6117 - 1.4439i -1.0000 + 1.0000i 

0.6117 + 1.4439i -1.0000 - 1.0000i 

2.5321 2.5321 
 
 
 

The eigenvalues of quadratic open pencil 

  KCMP   2

 and quadratic closed pencil 

   TT

c BFKBFCMP 21

2)(  
 are as shown 

in Table 2. 
 
 

Conclusion 
 

In this paper, we derived the parametric solution to the 
partial eigenvalue problem by using one of the 
orthogonality relations between eigenvectors for non-

symmetric quadratic pencil 
  KCMP   2

. We 
need only a partial knowledge of the spectrum (and the 
associated left eigenvectors) for non-symmetric quadratic 

pencil 
  KCMP   2

. These eigenvalues and 
eigenvectors required to be reassigned. 
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