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This study is concerned with the peristaltic motion of a Maxwell fluid in an asymmetric compliant 
channel. The channel asymmetry is created because of peristaltic wave trains of different amplitudes 
and phases on the channel walls. Mathematical model of the governing problem is first presented and 
then important phenomenon of "mean flow reversal" is examined. The variations of the interesting 
parameters entering into the problem are discussed. It was found out that mean velocity in Maxwell 
fluid is greater than the viscous fluid. 
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INTRODUCTION 
 
Peristaltic flows in industry and physiology have 
generated a lot of interest of the investigators. 
Specifically, such flows occur in transport of urine from 
kidney to bladder, chyme movement in the 
gastrointestinal tract, swallowing of food through the 
oesophagus, eggs movement in the female fallopian 
tubes, bile transport in the bile duct, cilia transport and 
blood circulation in small blood vessels. Finger and roller 
pumps are designed under the principle of peristaltic 
transport. In industrial applications, peristaltic flows are 
useful in sanitary fluid transport, blood pumps in heart 
lung machine and transport of corrosive fluids. Since the 
seminal and experimental work of Latham (1966), 
extensive studies on peristaltic flows have been 
conducted under different conditions. Majority of the 
earlier theoretical and experimental studies regarding 
peristalsis have been reviewed by Jaffrin and Shapiro 
(1971). Srivastava and Srivastava (1984) reported a 
summary of most of the theoretical and experimental 
attempts in view of  the geometry, fluid  model, Reynolds  
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number, wave number, amplitude ratio, wave shape, etc. 
Although, relevant literatures on the topic is quite 
extensive, but few recent investigations can be 
mentioned by these references (Mekheimer and 
Elmaboud, 2008a, b; Mekheimer, 2008; Haroun, 2007; 
Hayat and Ali, 2006; Hayat and Ali, 2008; Hayat et al., 
2008a; Elshehawey et al., 2006; Kothandapani and 
Srinivas, 2008a, b; Hayat and Ali, 2007). Haroun (2006) 
studied the effect of wall compliance on peristaltic motion 
of a viscous fluid in an asymmetric channel. 

It is accepted now that majority of the biological and 
industrial fluids are non-Newtonian. Unlike the Newtonian 
fluids, the non-Newtonian fluids (Vieru et al., 2008a, b; 
Fetecau and Fetecau, 2006; Tan and Masuoka, 2005a, b; 
Hayat et al., 2008b, c, d, e, f, g; Wang et al., 2009; 
Hakeem et al., 2006; Elshahed and Haroun, 2005; 
Kothandapani and Srinivas, 2008c; Mekheimer et al., 
2010) cannot be described by a single constitutive 
relationship between stress and strain rate. Such con-
stitutive equations give rise to complicated mathematical 
problems and thus, mathematicians, modelers, physicists 
and computer scientists encounter wide variety of 
challenges in constructing analytical and numerical solut-
ions. Generally, the classification of non-Newtonian fluids 
is   based  on  three  categories, namely,  the   differential 
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type, the rate type and an integral type. Maxwell model is 
the simplest subclass of rate type fluids. The objective of 
the present work is to extend the flow analysis of Haroun 
(2006) from viscous to Maxwell fluid. Series solutions 
were obtained and discussed. 
 
 
PROBLEM DEVELOPMENT 
 
We consider an incompressible Maxwell fluid in an asymmetric 

channel of width  21 dd  . The channel walls are taken flexible. 

Furthermore, the sinusoidal travelling waves have been imposed on 
the compliant walls of channel. Denoting  x   and  y  

components of velocity by u  and v , respectively, the continuity 

and momentum equations are: 
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where   is the density of fluid,  p  is the pressure, V is the 

velocity field and DtD / is the upper convective derivative. The 

constitutive expression for extra stress tensor S  in a Maxwell fluid 

is: 
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In Equation 3,     is the dynamic viscosity,  dtd /   is the material 

derivative,  1   is the relaxation time and 1A  is first Rivlin-

Ericksen tensor defined as  TVVA gradgrad1   and 

convective derivative of extra stress tensor is defined as: 
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For two dimensional flow, Equations 2 and 3 give: 
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The compliant wall is constrained to move only in the vertical 

direction. If 1   and  2   are the vertical displacements of the 

upper and lower walls, then the sinusoidal waves of different 
amplitudes and phases are given by: 
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in which  a1  and  a2   designate the waves amplitudes,    is the 

wavelength,  c   is the wave speed and    0   is the 

phase difference. Note that  0   corresponds to symmetric 

channel with waves out of phase and for   , the waves are in 

phase. Moreover,  2111 ,,, ddba  and   obey  
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where m  denotes the plate mass per unit area, d  indicates the 

wall damping coefficient, B  is flexural rigidity of the plate, T  is the 

longitudinal tension per unit width,  K   is the spring stiffness and 

0p  is the pressure on the outside surface of the wall. It is assumed 

that 00 p  and the channel walls are inextensible, so the 

horizontal displacement is assumed zero. Hence, the boundary 
conditions are expressed by the following equations: 
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By continuity of stresses and same fluid p  at 11  dy   and  

22  dy  , Equation 4 helps in writing the following 

equation: 
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The velocity components in terms of stream function     can be 

written as: 
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We define the non-dimensional parameters and variables as: 
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where  Re  denotes the Reynolds number and     the wave 

number. After eliminating pressure, the resulting problem in terms 
of stream function can be expressed as: 
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SOLUTION OF PROBLEM 
 
For series solution, it is reasonable to expand the flow quantities as: 
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Substituting the aforementioned equations into Equations 14 to 20 
and then comparing terms of like powers of    , we obtain: 
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For steady parallel flow with constant pressure gradient in the  x  

direction, the result of  0   is: 
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For 
1  and  

2   coefficient, the equations are fourth order 

ordinary differential equations with variable coefficients, All the 
boundary conditions are not homogeneous. The problems are not 
eigen values. Therefore, we restrict ourselves to the free-pumping 
case which means that the fluid is stationary if there is no peristaltic 

waves. In this case, we put   0/ 0  xp  , that is,  .00 K   

Now, the first and second order systems were reduced in the 
following forms: 
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Following a similar procedure as in Equation 15, the differential 

systems in  1   and  2   are satisfied by: 
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in which asterisk denotes the complex conjugate. Now, the second 
and third sets of differential equations yield: 
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Since our interest is to determine the mean flow rate, therefore, we 

need   .20 y   Hence, 
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The solution of both systems gives: 
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Figure 1. Effect of wave amplitude ratio  a   on  1D   versus wave 

number     when  01.0m  , 20B  ,  10T  ,  10K  ,  5.0d  ,  

1h  ,  15R  ,  3/   and 1.01  . 
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Figure 2. Effect of relaxation parameter  
1   on  1D   versus wave 

number     when  01.0m  ,  10B  ,  10T  ,  2K  ,  1h  ,  

10R  ,  3/   ,  5.0a  and 5.0d  . 
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RESULTS AND DISCUSSION 
 
Here, we examine the variations of pertinent parameters 
occurring in the solution of problem. Emphasis has been 
given to the mean velocity at the boundaries of the 
channel, the mean velocity distribution and reversal flow. 
Figures 1 to 5 indicate the mean velocity at the upper wall 

that is, 1D . This axial velocity is related with the mean 

velocity by        12/12/)1( 22 Du   . Figure 1 

shows the effects of amplitude ratio  a   on the mean 

velocity at the upper wall  1D   with the wave number    

. As expected,  1D   increases with an increase of  a . 

Figure 2 explains the role of relaxation parameter 1  on 

1D   with the wave number    . It is observed that  1D   

is a decreasing function of  1  . Figure 3 illustrates the 

influence of  1D   with the wall elastance K  when phase 

difference has different values. It is noted that 1D  

increases when 2/0    and decreases for 

 2/ . Figure 4 depicts that 1D   increases with 

an increase of wall elastance T.  However, 1D   

decreases with the increase of Reynolds number Re. 

Figures 5 and 6 show the behavior of wall damping  d   

and the plate mass per unit area m on 1D  with Reynolds 

number   Re.   These   two   figures  show  that  1D   is  a   
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(1c)

 
 

Figure 3. Effect of phase difference     on  1D  versus wall 

elastance  K   when  01.0m  ,  10B  ,  10T  ,  2.0d  ,  

1h  ,  5.0a  ,  2.0  ,  10R   and  1.01   . 
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Figure 4. Effect of wall tension  T   on  1D   versus Reynolds 

number  Re   when  01.0m  ,  10B  ,  20K  ,  5.0d  ,  5.0a  

,  4.0  ,  1h  ,  6/   and  11   . 

 
 
 

decreasing function of  d   and  .m   

Figures 7 to 13 were plotted to see the effect of wave 

amplitude a , relaxation parameter 1 , spring stiffness 

K , wall elastance  T , wall dampind  d ,  plate  mass per  
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Figure 5. Effect of wall damping  d   on  1D   versus Reynolds 

number  Re   when  01.0m  ,  10B  ,  20K  ,  10T  ,  

5.0a  ,  4.0  ,  1h  ,  6/   ,  1.01   . 
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Figure 6. Effect of plate mass per unit area  m   on  1D   versus 

Reynolds number Re when  10T  ,  10B  ,  20K  ,  5.0d  ,  

5.0a ,  4.0  ,  1h  ,  6/   and 11   . 

 
 
 
unit area  m  and phase difference. It is seen from Figure 

7 that the reversal flow decreases when wave amplitude 
increases. The behavior of relaxation parameter on the 
mean velocity distribution and the reversal flow is 
sketched as shown in Figure 8. It is noticed that the 

reversal flow increases when  1   is increased. Figures 9  
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Figure 7. Effect of wave amplitude ratio  a   on the mean velocity 

distribution and reversal flow when  01.0m  ,  10T  ,  20B  ,  

70Re   ,  50K  ,  5.0d  ,  5.0  ,  5.0  ,  1h  ,  

3/   ,  1.01   . 

 
 
  

(2b)

 
 

Figure 8. Effect of relaxation parameter  
1   on the mean velocity 

distribution and reversal flow when  01.0m  ,  10T  ,  20B  ,  

40K  ,  50Re   ,  5.0d  ,  5.0  ,  5.0  ,  

1h  ,  3/   and  5.0a  . 

 
 
 

and 10 elucidate the variation of spring stiffness  K   and 

the wall elastance T . The reversal flow decreases when 

K   and   T   are  increased.  Figure   11   represents the 
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Figure 9. Effect of spring stiffness  K   on the mean velocity 

distribution and reversal flow when  01.0m  ,  10T  ,  20B  

,  50Re   ,  5.0a  ,  5.0d  ,  5.0  ,  5.0  ,  1h  

,  3/    and 1.01   . 
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Figure 10. Effect of wall tension T  on the mean velocity 

distribution and reversal flow when  01.0m  ,  20B  ,  

50Re   ,  5.0a  ,  40K  ,  5.0d  ,  15.0  ,  

5.0  ,  1h  ,  3/   and 1.01   . 

 
 
 

behavior of wall damping  d.   This figure depicts that 

near the boundaries, the reversal flow increases by 

increasing  d   while in the remaining wider part of the 

channel, the flow decreases by increasing  d  . Figure 12 

shows that the reversal flow increases with an increase of  
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(2e)

 
 

Figure 11. Effect of wall damping  d   on the mean velocity 

distribution and reversal flow when  01.0m  ,  20B  ,  

70Re   ,  5.0a  ,  50K  ,  10T  ,  5.0  ,  

5.0  ,  1h  ,  3/   and 1.01   . 
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Figure 12. Effect of plate mass per unit area  m   on the mean 

velocity distribution and reversal flow when  5.0d  ,  20B  ,  

50Re   ,  5.0a  ,  20K  ,  10T  ,  5.0  ,  

5.0  ,  1h  ,  3/   and 1.01  . 

 
 
 
plate mass per unit area  .m   Moreover, the reversal flow 

decreases  with  an  increase  of  phase  difference  when   
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Figure 13. Effect of phase difference     on the mean velocity 

distribution and reversal flow when  01.0m  ,  5.0d  ,  

20B  ,  50Re   ,  5.0a  ,  20K  ,  10T  ,  

5.0  ,  5.0  ,  1h and  1.01   . 

 
 
 

2/0     and increases for   2/ (Figure 

13). 
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