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This study is concerned with the peristaltic motion of a Maxwell fluid in an asymmetric compliant
channel. The channel asymmetry is created because of peristaltic wave trains of different amplitudes
and phases on the channel walls. Mathematical model of the governing problem is first presented and
then important phenomenon of "mean flow reversal” is examined. The variations of the interesting
parameters entering into the problem are discussed. It was found out that mean velocity in Maxwell

fluid is greater than the viscous fluid.
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INTRODUCTION

Peristaltic flows in industry and physiology have
generated a lot of interest of the investigators.
Specifically, such flows occur in transport of urine from
kidney to bladder, chyme movement in the
gastrointestinal tract, swallowing of food through the
oesophagus, eggs movement in the female fallopian
tubes, bile transport in the bile duct, cilia transport and
blood circulation in small blood vessels. Finger and roller
pumps are designed under the principle of peristaltic
transport. In industrial applications, peristaltic flows are
useful in sanitary fluid transport, blood pumps in heart
lung machine and transport of corrosive fluids. Since the
seminal and experimental work of Latham (1966),
extensive studies on peristaltic flows have been
conducted under different conditions. Majority of the
earlier theoretical and experimental studies regarding
peristalsis have been reviewed by Jaffrin and Shapiro
(1971). Srivastava and Srivastava (1984) reported a
summary of most of the theoretical and experimental
attempts in view of the geometry, fluid model, Reynolds
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number, wave number, amplitude ratio, wave shape, etc.
Although, relevant literatures on the topic is quite
extensive, but few recent investigations can be
mentioned by these references (Mekheimer and
Elmaboud, 2008a, b; Mekheimer, 2008; Haroun, 2007;
Hayat and Ali, 2006; Hayat and Ali, 2008; Hayat et al.,
2008a; Elshehawey et al.,, 2006; Kothandapani and
Srinivas, 2008a, b; Hayat and Ali, 2007). Haroun (2006)
studied the effect of wall compliance on peristaltic motion
of a viscous fluid in an asymmetric channel.

It is accepted now that majority of the biological and
industrial fluids are non-Newtonian. Unlike the Newtonian
fluids, the non-Newtonian fluids (Vieru et al., 2008a, b;
Fetecau and Fetecau, 2006; Tan and Masuoka, 2005a, b;
Hayat et al., 2008b, c, d, e, f, g; Wang et al., 2009;
Hakeem et al., 2006; Elshahed and Haroun, 2005;
Kothandapani and Srinivas, 2008c; Mekheimer et al.,
2010) cannot be described by a single constitutive
relationship between stress and strain rate. Such con-
stitutive equations give rise to complicated mathematical
problems and thus, mathematicians, modelers, physicists
and computer scientists encounter wide variety of
challenges in constructing analytical and numerical solut-
ions. Generally, the classification of non-Newtonian fluids
is based on three categories, namely, the differential
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type, the rate type and an integral type. Maxwell model is
the simplest subclass of rate type fluids. The objective of
the present work is to extend the flow analysis of Haroun
(2006) from viscous to Maxwell fluid. Series solutions
were obtained and discussed.

PROBLEM DEVELOPMENT

We consider an incompressible Maxwell fluid in an asymmetric
channel of width dl + d2 . The channel walls are taken flexible.

Furthermore, the sinusoidal travelling waves have been imposed on
the compliant walls of channel. Denoting X— and Y —
components of velocity by U and V, respectively, the continuity
and momentum equations are:
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where p is the density of fluid, P is the pressure, Vis the

velocity field and D/ Dtis the upper convective derivative. The

constitutive expression for extra stress tensor S in a Maxwell fluid
is:
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In Equation 3, 4 is the dynamic viscosity, d/dt is the material

is the relaxation time and A, is first Riviin-

T
Ericksen tensor defined as A, =grad V +(grad V) and
convective derivative of extra stress tensor is defined as:

derivative, A,
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where L=gradV and L' = (grad V)T.

For two dimensional flow, Equations 2 and 3 give:
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The compliant wall is constrained to move only in the vertical
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direction. If 77, and 177, are the vertical displacements of the

upper and lower walls, then the sinusoidal waves of different
amplitudes and phases are given by:
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inwhich 41 and a2 designate the waves amplitudes, ] is the
wavelength, C is the wave speed and & (0 <0< 72') is the
6=0
channel with waves out of phase and for 6 = 77, the waves are in
phase. a,b,d,d, and 6 obey
a’+a’+2aa,cos0<(d,+d,)>

equation is:
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phase difference. Note that corresponds to symmetric

Moreover,

The compliant wall

where M denotes the plate mass per unit area, d indicates the
wall damping coefficient, B is flexural rigidity of the plate, T isthe
longitudinal tension per unit width, K is the spring stiffness and

P, is the pressure on the outside surface of the wall. It is assumed

that P, =0 and the channel walls are inextensible, so the

horizontal displacement is assumed zero. Hence, the boundary
conditions are expressed by the following equations:
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By continuity of stresses and same flud P at Y = d1 +7, and
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equation:

—1, , Equation 4 helps in writing the following
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The velocity components in terms of stream function /' can be We define the non-dimensional parameters and variables as:
written as:
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where Re denotes the Reynolds number and ¢ the wave

number. After eliminating pressure, the resulting problem in terms
of stream function can be expressed as:
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SOLUTION OF PROBLEM

For series solution, it is reasonable to expand the flow quantities as:
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For steady parallel flow with constant pressure gradient in the X —

direction, the result of ¥/, is:
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For 81 and 82 coefficient, the equations are fourth order
ordinary differential equations with variable coefficients, All the
boundary conditions are not homogeneous. The problems are not
eigen values. Therefore, we restrict ourselves to the free-pumping
case which means that the fluid is stationary if there is no peristaltic

waves. In this case, we put (6p/8x)0 =0 ,thatis, K,=0.

Now, the first and second order systems were reduced in the
following forms:
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Following a similar procedure as in Equation 15, the differential
systemsin ¥/, and ¥/, are satisfied by:
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in which asterisk denotes the complex conjugate. Now, the second
and third sets of differential equations yield:
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Since our interest is to determine the mean flow rate, therefore, we
need ¢20(y). Hence,
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Figure 1. Effect of wave amplitude ratio @ on D1 versus wave
number & when m=001,B=20, T=10, K=10, d=05,
h=1, R=15, @=rx/3 and 2, =01
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Figure 2. Effect of relaxation parameter 21 on p1 versus wave

number & when m=001, B=10, T=10, K=2, h=l,
R=10, #=7/3, a=05and d =05 .
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RESULTS AND DISCUSSION

Here, we examine the variations of pertinent parameters
occurring in the solution of problem. Emphasis has been
given to the mean velocity at the boundaries of the
channel, the mean velocity distribution and reversal flow.
Figures 1 to 5 indicate the mean velocity at the upper wall

that is, D1. This axial velocity is related with the mean
velocity by u(l)=(52/2)¢’(1)=(82/2)D1. Figure 1
shows the effects of amplitude ratio a on the mean
velocity at the upper wall D1 with the wave number o
. As expected, D1 increases with an increase of a.
Figure 2 explains the role of relaxation parameter /11 on
D1 with the wave number « . It is observed that D1
is a decreasing function of A, . Figure 3 illustrates the
influence of D1 with the wall elastance K when phase
difference has different values. It is noted that D1
increases when 0<@<7/2 and decreases for
712 <6< 7. Figure 4 depicts that D1 increases with
an increase of wall elastance 1. However, D1
decreases with the increase of Reynolds number Re.
Figures 5 and 6 show the behavior of wall damping d
and the plate mass per unit area mon D1 with Reynolds
number Re. These two figures show that D1 is a

)
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Figure 3. Effect of phase difference @ on D1 versus wall

elastance k when m=001, B=10, T=10, d=0.2,
h=1, a=05, =02, R=10 and 4 =01
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Figure 4. Effect of wall tension T on D1 versus Reynolds

number Re when m-001, B=10, K=20, d=05, a=0.5
, a=04, h=1, §=x/6and 4 =1.

decreasing function of d and m.
Figures 7 to 13 were plotted to see the effect of wave

amplitude @, relaxation parameter A,, spring stiffness
K, wall elastance T , wall dampind d, plate mass per
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015}
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01¢

005}

10 20 30 40 50

Figure 5. Effect of wall damping d on D1 versus Reynolds
number Re when m=0.01,

B=10, K=20, T=10,
a=05, =04, h=1, =716, 2 =01.
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a
0.05
0
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Re

Figure 6. Effect of plate mass per unit area m on p1 versus
Reynolds number Re when T=10, B=10, K=20, d=05,
a=05, =04, h=1, f=x/6and 4, =1.

unit area M and phase difference. It is seen from Figure
7 that the reversal flow decreases when wave amplitude
increases. The behavior of relaxation parameter on the
mean velocity distribution and the reversal flow is
sketched as shown in Figure 8. It is noticed that the

reversal flow increases when 4, is increased. Figures 9
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Figure 7. Effect of wave amplitude ratio @ on the mean velocity
distribution and reversal flow when m=001, T=10, B=20,
Re=70, K=50, d=05, =05, =05, h=1,
0=n13, 2, =0.1.
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Figure 8. Effect of relaxation parameter ; on the mean velocity
distribution and reversal fowwhen m=0.01, T=10, B=20,
K=40, Re=50, d=05, ¢=05, a=05,
h=1, @=7n/3 and a=05.

and 10 elucidate the variation of spring stiffness K and
the wall elastance T . The reversal flow decreases when
K and T are increased. Figure 11 represents the
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Figure 9. Effect of spring stiffness K on the mean velocity
distribution and reversal flow when m=0.01, T=10, B=20

, Re=50, a=05, d=05, ¢=05, =05, h=1
,9=7Z/3 andﬂlzo.l.
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Figure 10. Effect of wall tension T on the mean velocity
distribution and reversal flow when m=0.01 , B=20 ,
Re=50, a=05, K=40, d=05, £=0.15,
a=05, h=1, §=x/3 and 4, =0.1.

behavior of wall damping d.  This figure depicts that
near the boundaries, the reversal flow increases by

increasing d while in the remaining wider part of the

channel, the flow decreases by increasing d . Figure 12
shows that the reversal flow increases with an increase of
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Figure 11. Effect of wall damping d
distribution and reversal flow when mM=0.01 ,
Re=70 , a=05, K=50, T=10,
a=05, h=1, d=7/3 and 4, =0.1.
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Figure 12. Effect of plate mass per unit area M on the mean

velocity distribution and reversal flowwhen d =0.5, B =20 ,
Re=50, a=05, K=20, T=10, ¢=05,
a=05, h=1, =n/3 and 4, =0.1.

plate mass per unit area M. Moreover, the reversal flow
decreases with an increase of phase difference when

0.008 ™

0.006

= 0.004

0.002

Figure 13. Effect of phase difference @ on the mean velocity
distribution and reversal flow when M=0.01 , d=0.5,
B=20, Re=50, a=05, K=20, T=10,
e=05, =05, h=1and 4, =0.1.

0<O0<x/2 and increases for x/2< 6 < (Figure

13).
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