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An attempt has been made to investigate the effects of heat sink and chemical reaction on a three 
dimensional Magneto hydrodynamics (MHD) convective flow with mass transfer of an incompressible 
viscous electrically conducting fluid past a porous vertical plate with transverse sinusoidal suction 
velocity. A magnetic field of uniform strength is assumed to be applied transversely to the direction of 
the main flow. The magnetic Reynolds number is considered to be small that induced magnetic field 
can be neglected. The governing equations are solved by regular perturbation technique. The 
expression for velocity field, temperature field, species concentration, current density, the skin friction, 
Nusselt number and Sherwood number at the plate are obtained in non dimensional forms. The effect of 
Hartman number, chemical reaction parameter, heat sink parameter on the   velocity field, zeroth order 
skin friction and the amplitude of the first order skin friction, first order Nusselt number and the first 
order Sherwood number at the plate are discussed graphically. It is seen that chemical reaction and 
heat sink have significant effects on the flow and on the heat and mass transfer characteristics. 
 
Key words: Three-dimensional convective flow, heat transfer, incompressible viscous fluid, wall shear stress, 
heat sink. 

 
 
INTRODUCTION 
 
The investigation of magneto hydrodynamics (MHD)  
convection with mass transfer problems in presence of 
transverse magnetic field have attracted the attention of a 
number of scholars because of its wide application in 
many branches of science and technology such as 
geophysics, astrophysics, plasma physics, missile 
technology, etc. Engineers employ MHD principles in the 
design of heat exchangers, pumps and flow meters, 
thermal protection, etc. From technological point of view, 
MHD convection flow problems are also very significant 
in the fields of stellar and planetary magnetospheres, 
aeronautics, chemical engineering and electronics. MHD 
is also stabilizing a flow against the transition from 
laminar  to  turbulent  flow  and  in  reduction  of  turbulent 

drag and suppression of flow separation. The application 
of MHD principles in medicine and biology are of 
paramount interest owing to their significance in 
biomedical engineering in general and in the treatment of 
various pathological states in particular. Applications in 
biomedical engineering include cardiac magnetic 
resonance imaging (MRI), electro cardio gram (ECG) etc. 
The principle of dynamo and motor is a classical example 
of MHD convection. 

The problems of above phenomena of MHD convection 
have been studied by many authors. Ferraro and 
Plumpton (1966), Cramer and Pai (1973) and Sanyal and 
Bhattacharya (1992) are some of them. The problem of 
the  convection  flows  arising  in  fluids   as   a   result   of 
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interaction of the force of gravity and density difference 
caused by simultaneous diffusion of thermal energy and 
chemical species have been investigated by Bejan and 
Khair (1985), Raptis and Kafousias (1982) and Ahmed et 
al. (2005). 

The effect of three dimensional flow caused by the 
periodic suction perpendicular to the main flow when the 
difference between the wall temperature and free steam 
temperature gives rise to buoyancy force in the direction 
of the free steam on heat transfer characteristic was 
investigated by Ahmed and Sarma (1997), Singh et al. 
(1998) and Choudhury and Chand (2002). Recently Jain 
and Gupta (2006) have investigated the effect of 
transverse sinusiodal injection velocity distribution on 
three dimensional free convective Couette flow of a 
various incompressible fluid in slip flow regime under the 
influence of heat sink. An analytical solution to the 
problem  of the three dimensional free convective flow of 
an incompressible viscous fluid past a porous vertical 
plate with transverse sinusoidal suction velocity taking 
into account the presence of species concentration was 
obtained by Ahmed et al. (2006). 

In many times it has been observed that foreign mass 
reacts with the fluid and in such a situation chemical 
reaction plays an important role in chemical industry. 
Theoretical descriptions of non-linear chemical dynamics 
have been presented by Epstein and Pojman (1998) and 
Gray and Scott (1990). The effects of chemical reaction 
and mass transfer on MHD flow past a semi-infinite plate 
was analysed by Devi and Kandasamy (2000). The 
effects of mass transfer, Soret effect and chemical 
reaction on an oscillatory MHD free convective flow 
through a porous medium have been investigated by 
Ahmed and Kalita (2010).  

In view of the importance of the combined effect of 
chemical reaction and heat absorption, it is proposed to 
study a problem of three dimensional MHD convective 
flows past a porous vertical infinite plate with chemical 
reaction and heat absorption. The infinite plate 
assumption is one such classical idealization of great 
practical importance. Although the flow over a flat plate is 
the simplest case of boundary layer development in 
external flow, yet its significance cannot be undervalued 
because of its relevance to numerous engineering 
applications. Several configurations such as flow over 
airfoils, turbine blades, ship hulls, etc. can initially be 
estimated as flow past flat plates (Scheme 1). The 
justification of considering the three dimensional flow is 
that most of the fluid flows that occur in nature are three 
dimensional. Of course we have chosen a simple model 
of a three dimensional flow caused by transverse 
sinusoidal suction velocity.  

The objective of the present work is to investigate the 
effect of chemical reaction as well as heat sink on a three 
dimensional convective flow past a porous plate. Our 
work is a generalization to the work done by Ahmed and 
Sarma (2010). 

 
 
 
 
BASIC EQUATIONS 
 

The equations governing the steady motion of an 
incompressible viscous electrically conducting fluid in 
presence of a magnetic field are: 
 

The equation of continuity:     div q  = 0                      (1) 

 

The Gauss’s law of magnetism:   div B  = 0                (2) 
 

The momentum equation:  
 

  21 J B
q. q p q g


     

 
                 (3) 

 

The energy equation: 
 

   
2

2

p 0

J
C q. T k T Q T T

       
  

       (4) 

 

The species continuity equation: 
 

   2 2

M Tq. C D C D T K C C
       
 

       (5) 

 

The Ohm’s law: J E q B                   (6) 

 

We now consider the steady convective flow of an 
incompressible viscous electrically conducting fluid in 
presence of heat sink taking into account the species 
concentration and chemical reaction past a vertical 
porous plate with transverse sinusoidal suction velocity 
as mentioned earlier by making the following 
assumptions: 
 

(i) All the fluid properties except the density in the 
buoyancy term are constant. 

(ii) A magnetic field of uniform strength 0B  is applied 

transversely to the direction of the main steam. 
(iii) The magnetic Reynolds number is so small that the 
induced magnetic field can be neglected. 
(iv) The viscous dissipation and magnetic dissipation 
energy are negligible. 
(v) 

w wT T and C C    . 

 

We introduce a co-ordinate system  x , y, z  with X-axis 

vertically upwards along the plate, Y-axis perpendicular 
to it and directed into the fluid region and Z-axis along the 

width of the plate. Let ˆ ˆ ˆq u i v j w k    be the fluid 

velocity at the point  x , y, z  and 
0
ˆB j  be the applied 

magnetic field, ˆ ˆ ˆi, j, k  being the unit vectors along +ve  X- 

axis, Y-axis and Z-axis respectively. The suction velocity 
is taken as follows: 
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Scheme 1. Flow configuration. 

 
 
 

 w 0

z
v z V 1 cos

L

 
   

 
                           (7) 

 

which consists of a basic steady distribution - 0V with a 

superimposed weak distribution
0

z
V cos

L

 
  

 

. Since 

the plate is infinite in length in X-direction, therefore all 
the quantities except possibly the pressure are assumed 

to be independent of x .  With the foregoing assumptions 
and under usual boundary layer and Boussinesq 
approximation, Equations 1, 3, 4 and 5 are reduced to 
Equation of continuity:  
 

v w
0

y z

 
 

 
                                                          (8)  

 

Momentum equations: 
 

     
22 2

0

2 2

Bu u u u
v w g T T g C C U u

y z y z
 

     
            

    

         (9) 

 

2 2

2 2

v v p u u1
v w

y z y y z

     
      

      

           (10) 

 
22 2

0

2 2

B ww w p w w1
v w

y z z y z

      
       

      

       (11) 

 

Energy equation: 
 

 2 2
0

2 2

p

Q T TT T T T
v w

y z Cy z

     
     

    

       (12)                                                                              

Species continuity equation: 
 

 
2 2 2 2

M T2 2 2 2

C C C C T T
v w D D K C C

y z y z y z


        
         

        

        (13) 

 

Equation 2 is satisfied by 
0
ˆB B j . The symbols are 

defined in the nomenclature. The relevant boundary 
conditions are: 
 

at 
w w wy 0: u 0 , v v , w 0 , T T , C C             (14) 

 

at
0y : u U , v V ,w 0 , T T , C C , p p           (15) 

 

We introduce the following non-dimensional quantities: 
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                             (16) 
The non-dimensional forms of Equations 8, 9, 10, 11, 12 
and 13 
 

v w
0

y z

 
 

 
                                                         (17) 

 

 
2 2

r m e2 2

e

u u 1 u w
v w G G M R U u

y z R y z

    
         

    

  (18) 

 
2 2

2 2 2

ee

v v p1 1 v v
v w

y z y RR y z

     
     

     
       (19) 
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2 2

e2 2 2

ee

w w p1 1 w w
v w M R w

y z z RR y z

     
      

     

    (20) 

  
2 2

2 2

r e

1
v w Q

y z P R y z

      
     

    
           (21) 

 
2 2 2 2

r

2 2 2 2

c e e

S1
v w K

y z S R Ry z y z

            
         

        

       (22) 

 
with relevant boundary conditions: 
 

 y 0 : u 0 , v 1 Cos z , w 0 , 1 , 1             (23) 

 

y : u U , v 1 , w 0 , 0 , 0 , p p            (24) 

 
 

METHOD OF SOLUTION 
 
We assume the solution of Equations 17 to 22 to be of the form: 
 

     2

0 1u u y u y, z 0                            (25) 

 

     2

0 1v v y v y, z 0                        (26) 

 

     2

0 1w w y w y, z 0                             (27) 

 

     2

0 1p p y p y, z 0                         (28) 

 

     2

0 1y y, z 0                          (29) 

 

     2

0 1y y, z 0                              (30) 

 

with 0 , 0p p w 0               (31) 

 
Substituting these in Equations 17 to 22 and equating the harmonic 

terms and neglecting 
2  we get the following set of the differential 

equations: 

 
 
Zeroth-order equations: 

 

0d v
0

d y
                        (32) 

 

 
2

0 0

0 r 0 m 0 e2

e

d u d u1
v G G M R U u

d y R d y
              (33) 

 
2

0 0

0 02

r e

d d1
v Q

d y P R d y

 
                     (34) 

 
 
 
 

2 2

0 0 0r

0 02 2

c e e

d d dS1
v K

d y S R Rd y d y

  
                  (35) 

 
 
First-order equations: 
 

1 1v w
0

y z

 
 

 
                                 (36) 

 
2 2

01 1 1

1 r 1 m 1 e 12 2

e

d uu u u1
v G G M R u

y d y R y z

   
         
   

         (37) 

 

2 2

1 1 1 1

2 2 2

ee

v p v v1 1

y y RR y z

    
     
    

              (38) 

 
2 2

1 1 1 1

e 12 2 2

ee

w p w w1 1
M R w

y y RR y z

    
      
    

         (39) 

 
2 2

01 1 1

1 12 2

r e

d 1
v Q

y d y P R y z

     
      
   

             (40) 

 
2 2 2 2

01 1 1 r 1 1

1 12 2 2 2

c e e

d S1
v K

y d y S R Ry z y z

           
          
       

(41) 

 

Subject to boundary conditions: 
 

0 0 0 0 1 1y 0 : u 0 , v 1 , 1 , 1 , u 0 , v Cos z             

1 1 1w 0 , 0 , 0                                              (42) 

 

0 0 0 0 1 1y : u U , v 1 , 0 , 0 , u 0 , v 0           

1 1 1 1, w 0 , p 0 , 0 , 0                              (43) 

 

The solution of Equations 32 to 35 under the boundary conditions 
42 and 43 are 
 

0v 1                                                                                      (44) 

 

a y

0 e                                                                                   (45) 

 

  b y a y

0 1 11 a e a e                                                     (46) 

 

 e eb y R ya y

0 1 2 1 2u U A e A e A A U e
              (47) 

 
where  

 
2 2 2

r e r e r e r c

1 2

c c e

P R P R 4P R Q 1 1 4Ma S S
a , a , ,

2 2a S R a KS R

   
   

 
 

2 2

c e c e c eS R S R 4KS R
b

2

 
 ,  

 m 1 em 1 e r e

1 22 2 2 2 2 2

e e e e e e

G 1 a RG a R G R
A , A

a R a M R a R a M R b R b M R

 
  

     
 

 



 
 
 
 
 
We shall first consider the Equations 36, 38 and 39 for 

   1 1v y , z , w y , z and  1p y , z which are independent 

of main flow component
1u , temperature field 

1 and concentration 

field
1 . The suction velocity  wv 1 Cos z     consists of 

a uniform distribution -1 with superimposed weak sinusoidal 

distribution Cos z  . Hence the velocity components v, w and p 

are also separated into mean and small sinusoidal components 

1 1v , w  and 1p . We assume 1 1v , w and 1p  to be of the 

following forms: 

 

 1 11v v y Cos z                                                          (48) 

 

 1 11w v y Sin z                                                                (49) 

 

 2

1 e 11p R p y Cos z                             (50) 

 
On substitution of Equations 48, 49 and 50, Equation 36 is satisfied 
and Equations 38 and 39 reduce to the following ordinary 
differential equations 

 

e 112

11 e 11 11

R p
v R v v


     


                                   (51) 

 

 2 2

11 e 11 11 e 11v R v MR v R p                       (52) 

 
with relevant boundary conditions 

 

11 11

1
y 0 : v , v 


= 0             (53) 

 

11 11 11y : v 0 , v 0 , p 0                             (54) 

 
The solutions of these equations are: 

 

 
y y

11

1
v e e      

    
                         (55) 

 

 
   2 2 2 y 2 2 2 y

11 e e e e2

e

1
p M R R e M R R e

R

                
    

   

 

     =

 
y y

1 12

e

1
e e

R

     
    

                    (56)   

 
Where 
 

2 2 2

e eR R 4

2

    
  , 

2 2 2

e eR R 4

2

    
  , 

1 1 4M

2

 
  ,  

Ahmed and Das          1911 
 
 
 

1 1 4M

2

 
   ,   2 2 2

1 e eMR R         , 

 2 2 2

1 e eMR R       

 

Hence the solutions for the velocity components 
1v , 

1w and 

pressure 
1p are as follows: 

 

y y

1

1
v e e Cos z       

   
                        (57) 

 

 
y y

1w e e Sin z  
   
    

                         (58) 

 

 
y ye

1 1 12

R
p e e Cos z 

      
   

                 (59) 

 
 
SOLUTION FOR FIRST ORDER FLOW, CONCENTRATION AND 
TEMPERATURE FIELD 
 
We now consider Equations 30, 33 and 34. The solutions for 

velocity component u, temperature field   and concentration field 

  are also separated into mean and sinusoidal components 

1 1u ,   and 1 . To reduce the partial differential Equations 30, 33, 

34 into ordinary differential equations, we consider the following 

forms for 1 1u ,   and 1  . 

 

 1 11u u y Cos z                             (60) 

 

 1 11 y Cos z                                       (61) 

 

 1 11 y Cos z                           (62) 

 

Using the expressions for 1 1 1 1v , u , ,   in Equations 37, 40 

and 41 we get the following differential equations: 
 

 2 2

11 e 11 e 11 e 11 0 e r 11 e m 11u R u MR u R v u R G R G                 (63) 

 

 2

11 r e 11 r e 11 r e 11 0P R P R Q P R v                       (64) 

 

   2 2

11 c e 11 11 c e 11 0 c r 11 11S R K S R v S S                       (65) 

 
with the boundary conditions 

 

11 11 11

11 11 11

y 0 : u 0 , 0 , 0

y : u 0 , 0 , 0

      


       

                     (66) 

 
The  solutions  of  Equations  64,  65  and  63  subject  to  boundary  
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conditions (66) are 

 

   a ya yh y

11 0 1 2G e G e G e
                    (67) 

 
       e

a y b yb ya ym y h y

11 0 1 2 3 4 5H e H e H e H e H e H e
                  (68) 

 

   a ya yn y h y m y

11 0 1 2 3 4u M e M e M e M e M e
            

       ee
b y R yR yb y

5 6 7 8M e M e M e M e
       

       (69)  

 
where  
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h
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m

2
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222 2 2 2
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1 c e c e 11 c e 1 c e
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1 2 22 2 2
c e c e

E B E
H , H

h S R h K a S R a K


 

           

, 

 

           
4 3 1
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5
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5 0 i2 2
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c e

B
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, 
 2 2 2

e e eR R 4 M R
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e 1 22 e 1 e

2 3 4
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2 e
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A b R
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6 e 1 2K R A A U     , 
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K
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8

0 i

i 1
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Skin friction at the plate 
 
The non-dimensional skin-friction at the plate in direction of the free 
steam is given by 
 

   
y 0

0 11 0 12

e0

u

y 1
u 0 u 0 Cos z Q Cos z

RV




 
 

              
  (70) 

 
where        

 

   
1 2

0 0 1 2

e e e

a A b A1
u 0 A A U

R R R
                     (71) 

 
and 
 

 1 11

e

1
Q u 0

R
   

     

     

0 1 2 3 4 5

e 6 e 7 e 8

nM h M mM a M a M b M1

R b M R M R M

           
 
           
 

 (72) 

 
 
The co-efficient of rate of heat transfer 
 
The heat flux from the plate to the in terms of Nusselt number Nu is 
given by 
 

 
0 2

r e0 p w y 0 y 0

Tk 1
Nu Nu Q Cos z

y P R yV C T T  

  
         

     

        (73) 

 
Where 



 
 
 
 

 0

0

r e r e

0 a
Nu

P R P R


  

                                                     (74) 

 
And 
 

 
   11

2 0 1 2

r e r e

0 1
Q h G a G a G

P R P R


         
 

            (75) 

 
 
The coefficient of mass transfer 
 
The mass flux at the wall y = 0 in terms of Sherwood number Sh is 
given by 
 

 
 

M

0 11

c e c e0 w y 0 y 0

D C 1 1
Sh 0 Cos z

y S R y S RV C C  

   
                  

        

0 3Sh Q Cos z                                                     (76) 

 
Where 
 

 0 1 1

c e

1
Sh b 1 a a a

S R
     

                                    (77) 

 
and 
 

 
   

   

0 1 2 3

3 11

c e c e 4 5

mH h H a H a H1 1
Q 0

S R S R b H b H

       
    
     
 

      (78) 

 
 
Current density 
 

The current density J  is given by  

 

 0
ˆ ˆJ q B B i w k u                                              (79) 

 
The magnitude of  J  is given  

 

by 2 2 2 2

0 0 0J B w u B V u w                (80)          

 
The current density (in magnitude ) in non dimensional form is given 
by: 

 
2

2 2

c

0 0

J w
J u w u 1 u

B V u

 
      
  

  

(since 
w

1
u
 )                                    (81) 

 
That is, the magnitude of the non dimensional current density is 
proportional to the boundary layer velocity. 

 
 
RESULTS AND DISCUSSION 
 

In order to study the effects of heat sink parameter (Q), 
Reynolds number (Re), and chemical reaction parameter 

(K), we have carried out the data  tabulations  for  u,   
0 ,  
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0 , 
1 2 3 0Q ,Q ,Q and   which are respectively the 

dimensional velocity, zeroth order temperature, zeroth 
order species concentration, amplitudes of the first order 
skin friction, Nusselt number and Sherwood number; the 
zeroth order skin friction at the plate y = 0 and their 
values are demonstrated in the graphs. Throughout our 
discussion Pr (Prandtl number) is considered to be equal 
to 71 which corresponds to air. Since the water vapor is 
used as a diffusing chemical species of common interest 

in air therefore the values of cS is taken to be 0.60 (water 

vapor). The values of the Grashof number rG for heat 

transfer has been chosen as 10 (externally cooled plate) 

whereas the values of Grashof number 
mG for mass 

transfer is considered to be 15, the free steam velocity is 
selected to be 1 and the small reference parameter  is 

chosen as 0.001 and the remaining parameters namely 
chemical reaction parameter (K), heat sink parameter 

(Q), Reynolds number ( eR ), Soret number rS are chosen 

arbitrarily. 
Figures 1, 2 and 3 exhibit the variation of velocity 

profile u against y for different values of chemical reaction 
parameter (K), heat sink parameter (Q) and Hartmann 
number (M). It is seen from these figures that the velocity 
quickly increases up to some thin layer of the liquid 
adjacent to the plate and after this, fluid velocity 
decreases asymptotically towards 1 as y ; that is, in 

the free steam. This shows that the buoyancy effects 
(due to concentration and temperature differences) are 
significant near the hot plate.  

It is observed from Figure 1 that the fluid motion is 
retarded (that is, the fluid velocity decreases) on account 
of chemical reaction. This shows that the consumption of 
chemical species leads to fall in the concentration field 
which in turn diminishes the buoyancy effects due to 
concentration gradients. Consequently, the flow field is 
decelerated. It is also inferred from Figures 2 and 3 that 
the heat sink parameter (Q) as well as Hartmann number 
(M) impedes the fluid motion. In other words, fluid motion 
is retarded due to application of transverse magnetic 
field. This phenomenon clearly agrees with the fact that 
Lorentz force that appears due to interaction of the 
magnetic field and fluid velocity resists the fluid motion. 
Figure 4 demonstrates the variation of zeroth order fluid 

temperature 0  against y under the effect of heat sink 

parameter (Q). It is clear from this figure that zeroth order 

fluid temperature 0 asymptotically falls from 1 to zero as 

y . The same figure further indicates that the heat 

sink parameter results in a steady decrease in the zeroth 
order fluid temperature. 

The variation of zeroth order species concentration 

0 versus y under the influences of heat sink parameter 

(Q) and chemical reaction parameter (K) have been 
presented in Figures 5 and  6.  These  figures  show  that  
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Figure 1. Velocity distribution versus y for K when Q =1, M 
= 1, Re = 0.5, Sr = 0.5.                       
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Figure 2. Velocity distribution versus y for Q when K =1, M 
= 1, Re = 0.5, Sr = 0.5. 

 
 
 

zeroth order concentration of the fluid fall under the effect 
of heat sink parameter (Q) and chemical reaction 
parameter (K). Moreover, it is noticed from these figure 
that 

0  asymptotically decreases from maximum value 

0
= 1 to its minimum value 

0 = 0 as one moves far 

away the plate (y ). 

Figures 7, 8 and 9 depict the variation of amplitude of 
the perturbed part of skin-friction 

1Q  versus Reynolds 

number 
eR . From these figures we observe that 

magnetic field effect as well as heat sink effect causes 

1Q to decrease whereas 
1Q increases for the increasing 

values  of  chemical  reaction   parameter.   There   is   an  
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Figure 3. Velocity distribution versus y for M when Q =1, K = 
1, Re =0 .5, Sr = 0.5.                   
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Figure 4. Zeroth order temperature distribution versus y for Q when 
Re = 0.5. 

 
 
 

indication from these figures that 
1Q falls as

eR increases.   

That is for low viscosity 1Q is not significantly affected by 

heat sink parameter (Q), chemical reaction parameter (K) 
or by Hartmann number (M). 

The influence of heat sink parameter (Q) on the 

amplitude of 2Q  of the perturbed part of the Nusselt 

number is displayed in Figure 10. It is noticed from the 
figure that an increase in the value  of  Reynolds  number 
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Figure 5. Zeroth order concentration profile versus y for Q when 
K = 1, Re = 0.5, Sr = 0.5.   
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Figure 6. Zeroth order concentration profile versus y for K when Q 
= 1, Re = 0.5, Sr = 0.5. 

 
 
 

( eR ) or heat sink parameter (Q) causes 
2Q to increase; 

that is, 2Q drops due to high viscosity or low strength of 

heat sink. 

Figures 11 and 12 exhibits the change in behaviour of 
amplitude, of perturbed part, and of the Sherwood 
number 

3Q  under the influence of the Reynolds number
eR , 

the chemical reaction parameter (K) and
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Figure 7. The amplitude 1Q of the first order skin friction 

versus
eR for K=1, M=1, Sr=0.5.            
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Figure 8. The amplitude 1Q of the first order skin friction versus 

eR for Q=1, M=1, Sr= 0.5. 

 
 
 

heat sink parameter (Q). These figures show that 3Q  is 

increased due to chemical reaction effect where as there 

is a steady decline in 3Q  when heat sink  parameter  (Q)  

is increased. 
The variation of the zeroth order skin friction 

0 at the 

plate y = 0 under the influence of chemical reaction 
parameter (K), heat  sink  parameter  (Q)  and  Hartmann 
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Figure 9. The amplitude 1Q of the first order skin friction versus 

eR for K = 1, Q = 1, Sr = 0.5. 
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Figure 10. The amplitude 2Q of the first order Nusselt number 

versus eR for K = 1, Sr = 0.5. 

 
 
 
number (M) are presented respectively in Figures 13, 14 
and 15. It is noticed from these figures that the magnitude 

of viscous drag at the plate decreases due to the 
chemical  reaction  parameter  (K),   heat   sink   (Q)   and  
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Figure 11. The amplitude 
3Q of the first order Sherwood number 

versus
eR for Q=1, Sr=0.5.    
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Figure 12. The amplitude 3Q of the first order Sherwood number 

versus eR for Q =1, Sr=0.5. 

 
 
 

magnetic field (M). 
 
 
Conclusion 
 
1. The chemical reaction, heat sink and magnetic field 

lead the fluid motion to retard. Thus the chemically 
reacting fluid motion may be controlled with the 
application of heat sink and magnetic field.  
2. The heat sink results in a steady decrease in the fluid 
temperature. Hence the fluid temperature may be 
controlled by using a suitable heat sink. 
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Figure 13. The zeroth order skin friction 0 at the plate versus eR for 

Q = 1, M=1, Sr=0.5.         
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Figure 14. The zeroth order skin friction 0 at the plate versus 

eR for Q = 1, M=1, Sr=0.5. 

 
 
 
3. The concentration of the fluid rises under the effect of 
heat sink whereas it falls due to the effect of chemical 
reaction. 
4. Magnitude of the first order skin friction increases due 
to chemical reaction  effect  and  it  decreases  under  the 

effects of absorption heat sink and the applied transverse 
magnetic field. 
5. The first order Nusselt number drops due to high 
viscosity or low strength heat sink. 
6. The heat absorbing sink leads the first order Sherwood 
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Figure 15. The zeroth order skin friction 0 at the plate versus 

eR for Q = 1, K=1, Sr=0.5. 

 
 
 
number to fall but it rises under the effect of chemical 
reaction parameter. 
7. Magnitude of the zeroth order skin friction diminishes 
due to chemical reaction effect, magnetic field as well as 
the heat sink. 
 
 

Nomenclature: B , magnetic induction vector; 0B , 

strength of applied magnetic field; C , species 

concentration in the free stream; wC , species 

concentration at the plate; pC , specific heat at constant 

pressure; MD , chemical molecular diffusivity; TD , 

chemical thermal diffusivity; E , electric field; g , 

gravitational acceleration; g, acceleration due to gravity; 

rG , Grashof number for heat transfer; mG , Grashof 

number for mass transfer; J , electric current density; k, 

thermal conductivity; K , first order chemical reaction; K, 
chemical reaction parameter; L, wave length of the 

periodic suction; M, Hartmann number; p  , pressure; 

p , pressure in the free steam; p, non dimensional 

pressure; p ,  non dimensional pressure in the free 

steam; q , velocity vector; Q , first order heat sink; Q, non 

dimensional first order heat sink; eR , Reynolds number; 

rS , Soret number; rP , Prandtl number; cS , Schmidt 

number; T , temperature in the boundary layer; wT , 

temperature at the plate; T
, fluid temperature at the free 

steam; U , free steam velocity; U , non dimensional free 

steam velocity;  u , v , w , components of the fluid 

velocity;  u , v, w , non dimensional components of the 

fluid velocity; 0V , mean suction velocity;  x , y, z , 

coordinate system; ˆ ˆ ˆi , j, k  , unit vectors in the increasing 

direction of x , y, z ; J B , Lorentz force per unit 

volume;  , thermal diffusivity;  , coefficient of volume 

expansion for heat transfer;  , coefficient of volume 

expansion for mass transfer;  , electrical conductivity; 

 , kinematic viscosity;  , density of the fluid;  , small 

reference parameter;  , non dimensional temperature; 

 , non dimensional concentration;  , viscous 

dissipation of energy per unit volume;  , coefficient of 

viscosity. 
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