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Using the magnetohydrodynamic equations with ion gyro-radius corrections, the gravity-driven 
instability of plasma is analyzed here for the mode which has non zero projection of the wave number 
along the unperturbed magnetic field. Employing the normal mode technique, the stability analysis had 
been carried out through the eigen value solution. The suppression of the buoyancy-driven instability in 
an exponentially stratified semi-infinite plasma layer by the finite Larmor radius effects is shown here. 
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INTRODUCTION 
 
The effect of finite Lamor radius (FLR) on the 
magnetohydrodynamic (MHD) instability which are 
interchange mode in mirror machine, heliotron 
stellarators and Rayleigh-Taylor (RT) instability in spread-
region of the ionosphere and astrophysical situations e.g. 
sunspots, solar corona and stellar atmosphere are well 
known in literature. The FLR effects exhibit themselves in 
the fluid equations in the form of a magnetic viscosity. 
Several researchers, namely, Roberts and Taylor (1962), 
Jukes (1964), Melchior and Popovich (1968) have 
examined the FLR effects on different problems of 
plasma instabilities. 

Davidson and Volk (1968) have considered the FLR 
effects on the growth of the firehose instability for the 
wave vector parallel to the study magnetic field. Several 
authors (Ariel and Bhatia, 1969, 1970; Srivastava, 1974; 
Ogbona and Bhatia, 1984; Chhonkar and Bhatia, 1985) 
have studied the influence of FLR effects on the RT 
instability of stratified plasma in a horizontal magnetic 
field in conjunction with other operative forces such as 
due   to   rotation,   Hall   currents,    compressibility    and 
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frictional effects with neutrals. All these studies have 
been carried out for the transverse mode of propagation. 
The RT instability in plasma had been examined from 
different points of view in the past. Among several 
authors, Hassam and Huba (1988) and Winske (1989) 
have done considerable theoretical and numerical work 
on the RT instability in a novel regime wherein the 
plasma is characterized by being in an intermediate stage 
of magnetization, the ion being unmagnetized while the 
electrons are strongly magnetized. Hassam and Huba 
(1990) have studied the nonlinear evolution of the 
unmagnetized ion RT instability. Hassam (1992) had also 
investigated the non linear stabilization of the RT 
instability of the magnetized plasma by external velocity 
shear as such a study is of relevance to tokomaks and to 
magnetized plasma confinement. The suppression of the 
RT instability by convection mass flow in plasma having 
smooth density gradient has been demonstrated by 
Budko and Liberman (1992). Book (1996) investigated 
the suppression of the RT instability through assertion. 
Huba (1996) discussed the finite Larmor radius MHD of 
the RT instability. Recently Prasad (1997) has examined 
the RT instability in dusty plasma. 

The polarization in the usual RT mode of instability has 
zero projection of the wave number on the unperturbed 
magnetic field. It  would  be  of  interest   to  examine  the 
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other alternate polarization, a mode which has non zero 
projection of the wave number along the unperturbed 
magnetic field. The FLR effects on the gravity-driven 
instability in a stratified semi-infinite plasma layer are 
investigated here. The mode of instability considered is 
not longitudinal since the longitudinal mode is a much 
weaker instability than the transverse mode because it 
requires a large amount of magnetic field line bending 
and thus it is of no practical interest generally speaking. 
The buoyancy-driven instability is analyzed here for 
incompressible inviscid ideally conducting plasma using 
the MHD equations with ion gyro-radius corrections due 
to Roberts and Taylor (1962). The FLR effects like 
viscosity, lead to a higher order differential equation and 
the stability analysis is carried out through the eigen-
value solution. 
 
 
PERTURBATION EQUATION 
 
Consider the motion of an incompressible ideally conducting 

inviscid plasma of varying density in a variable magnetic field 

r
H . 

Let δρ , ( )i jPδρ δ
r

, ( ), ,x y zh h h h=
r

 and ( ), ,v u v w=
r

 be 

the perturbations respectively in density ρ , stress tensor ijP , 

magnetic field 

r
H and velocity produced by a small disturbance in 

the plasma. The linearized perturbation equations are 

 

( ) ( )ρ δ δ ρ
∂

= − ∇ + + ∇ × × + ∇ × ×
∂

r
r rr rrv

p g h H H h
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(1) 

 

( )∂
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( ) ( ).δρ ρ
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. 0∇ =
r
v , . 0h∇ =

r
                                                        (3) 

 

We assume that the magnetic field 

r
H  is horizontal along x-axis 

and is stratified along the vertical that ( )( )0 ,0,0H H z=
r

. It is 

also assumed that the applied magnetic field is small so that the 
induced electrical field may be neglected. 

As we are interested in examining the mode of instability which 
has non-zero projection of the wave number along the unperturbed 
magnetic field, we assume that all the perturbed quantities depend 

on the space co-ordinates and time t  as  

 

( ) ( )exp +F z ikx nt                                                       (4) 

 

 where ( )F z  is some function of ,  z k  is the wave number along 

the direction of the unperturbed magnetic field that is, along x-axis, 

 
 
 
 
and n (where n  may be complex) is the rate at which the system 

departs away from equilibrium.  

The components of the stress tensor 
ij

P  with ion gyro-radius 

corrections have been given by Roberts and Taylor (1962). 
Substituting these components in Equation (1) and using the 
expression [Equation (5)] in Equation (1) to (4) we get, on writing  
 

≡
d

D
dz  
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(5) 
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0 0x
nh ikH u wDH= −                                          …(9) 

 

0y
nh ikH v=                                                                   …(10) 

 

0z
nh ikH w=                                                                      …(11) 

 

( ) 0δρ ρ+ =n w D                                                            …(12) 

 

0, 0
x z

iku Dw ikh Dh+ = + =                                     …(13)  

 

where

4
H

N T

w
ρν = , 

H
w  being the ion gyration frequency while 

N  and T  are respectively the number density and the 

temperature of the particles. 
 

By eliminating of 
y

h
 
from Equation (7) and (10) one gets v in 

terms of w , Dw  and 
2D w . Since Equation (8) contains a term 

in 
2D v , elimination of v  and other variables leads to a fourth 

order differential equation in w . Before obtaining this equation 

explicitly, we specify the variations of ( )ρ z  and ( )0H z . One 

can choose any functions of z for these variations but if one choose 

similar functions of z for these variations so that the ratio 

( )
( )

2

0

ρ

H z

z
 is constant throughout the medium, the governing 

differential equation with constant coefficients. We, therefore, 

assume that both ( )ρ z  and ( )0H z  are stratified exponentially 

along the vertical that is, 
  

0( ) exp( )z zρ ρ β=                                                 …(14) 



 

 

 
 
 
 

2 2

0 1
( ) exp( )H z H zβ=                                                      …(15) 

 

where β , the stratification parameter, is a constant and 

2
21

0

H
V

ρ
= is the square of the Alfvên velocity. The differential 

equation in w, on using the variation given by Equations (14) and 
(15) is therefore,  
 

( ) ( ) ( )

( ) ( )

2 2 2 4 3 2 2 2 2 3 2 2 2

2
2 2 2 2 2 2 2 2 2

2 4 4 3 4

0

n k Dw Dw k Dw k Dw k k w

n k V Dw Dw k w g k n k V w

ν β β β β β

β β
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      …(16) 

 
The FLR effects, like viscosity, lead to a differential equation of 
higher order, increasing the order by two. The considered plasma is 
assumed to be semi-infinite, infinitely extending along the horizontal 

directions and confined between two planes of depth d . The 

confining bounding planes may be rigid or free. Here we consider 

the case of two rigid boundaries at 0=z  and 1=z  (after non-

dimensionalizing the various quantities in terms of depth d  of the 

layer). At the rigid boundaries, the normal components of velocity 

w  must vanish and no slip condition must be satisfied so that we 

must have  
 

0   a n d  0   a t  0   a n d  1= = = =w D w z z                      …(17) 

 
Needless to say that one can solve for free boundaries also but in 

that case the second boundary condition would be 
2 0=D w  and 

the solution would eventually lead to a dispersion relation different 
from one for the rigid boundaries. One may, however, mention here 
that the change in the boundary conditions would not be expected 
to materially affect the nature of the influence of the FLR effects on 
the considered stability problem. 

 
 
THE EIGENVALUE SOLUTION 
 
We now obtain the eigenvalue solution of Equation (16) 
subject to the boundary condition [Equation (17)]. The 
solution is 
 

4

1=

=∑ im z

i

i

W C e                                                         …(18) 

 

where 
i

C (i=1 to 4) are the constants and 
i

m (i=1 to 4) 

are the roots of the auxiliary equation. On applying the 
four boundary conditions [Equation (17)] to the solution 
Equation (18) we get the dispersion relation as follows: 
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The roots 1m  to 4m  of the auxiliary equation are 

obtained by Brown’s method of solving a quartic 

equation. The values of 1m  to 4m  are given by 
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2
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4 2

2
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1
4 2

2
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  
m A A A S   …(21) 

 

where 1A  and 2A  are given by 
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and  1S is the largest root of the cubic equation.  

 
3 2

1 2 1 1 1 0
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The coefficients 
2 1
, b b and 

0
b in Equation (25) are 
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2 2 2 2 2
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The root 1S  of the cubic Equation (25) is given by 

 

( ) ( )
1 1

1 13 3
3 2 3 22 2
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1

3

   
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where P and Q are given by 
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Figure 1. The variation of growth rate n with the wave number k for FLR ν = 0.1, 0.2 and 0.3. 
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DISCUSSION 
 
The dispersion relation [Equation (19)] is quite complex 

as it involves terms of the form ( )1exp m etc. and the 

expressions for the roots 1m to 4m  [Equations (20) and 

(21)] involve n , k , ν  and 
2V . We have therefore 

solved Equation (19) numerically using MATHEMATICA 
6.0 to examine, qualitatively, the influence of FLR on the 
gravity-driven instability of plasma. The numerical 
calculations are presented in Figure 1, where we plot the 

growth rate n  against wave number k  for ν  = 0.1, 0.2 

and 0.3 when 
2 1V =  and 0.1β = . 

From Figure 1, we observe that the growth rate n  

decreases on increasing ν for a fixed value of the wave 

number k . The effect of the FLR is therefore stabilizing in 

the buoyancy-driven instability of plasma as in the case 
of Rayleigh-Taylor instability problem. The present study 
thus clearly demonstrates the suppression of the 
buoyancy-driven instability of semi-infinite plasma by 
finite Larmor radius effects. 
 
 

Nomenclature: g
r

 (0, 0, -g), Acceleration due to gravity, 

k
r

, wave number; p , fluid pressure; t , time; 

( ),v,v u w
r

, fluid velocity; ( )0 ( ),0,0H H z
r

, magnetic field; 

( ), ,x y zh h h h
r

, perturbation in magnetic field; i jP , stress 

tensor; n , growth rate (a complex number); N, number 

density; T , temperature of the particle; Hw , Ion 

gyration frequency; x, y, z, space co-ordinates. 
 
 
Greek letters: ν , kinematic viscosity; ρ , density; β , 

stratification constant; 
2V , square of the Alfven velocity. 

 
2010: MSC: 76E20, 76B70. 
 
 
REFERENCES 
 
Ariel PD, Bhatia PK (1969). Effect of Finite Larmor Radius on Rayleigh-

Taylor Instability of a Plasma.  Can. J. Phys., 47: 2435-2437. 
Ariel PD, Bhatia  PK  (1970).  Rayleigh-Taylor  Instability  of  a  Rotating 



 

 

 
 
 
 
Plasma, Nucl. Fusion, 10: 141.  
Book DL (1996). Suppression of the Rayleigh-Taylor instability through 

accretion. Phys. Plasmas, 3: 354  
Budko AB, Liberman MA (1992). Suppression of the Rayleigh-Taylor 

instability by convection in ablatively accelerated laser targets, Phys. 
Rev. Lett., 68(2): 178-181.  

Chhonkar RPS, Bhatia PK (1985). Rayleigh-Taylor Instability of Two 
Viscous Superposed Rotating and Conducting Fluids, Astrophys. 
Space Sci., 114: 271-276.  

Davidson RC, Volk HJ (1968). Macroscopic Quasi Linear Theory of the 
Garden-Hose Instability. Phys. Fluids, 11: 2259-2264. 

Hassam AB, Huba JD (1990). Non-linear evolution of the unmagnetized 

ion Rayleigh-Taylor instability. Phys. Fluids, B2: 2001-2006. 
Hassam AB (1992). Nonlinear stabilization of the Rayleigh-Taylor in-

stability by external velocity shear. Physics Fluids, 4: 485. 
Hassam AB, Huba JD (1988). Magnetohydrodynamic Equations for 

Systems with Large Larmor Radius. Phys. Fluids, 31: 318.  
Huba JD (1996). Finite Larmor radius magnetohydrodynamics of the 

Rayleigh-Taylor instability, Phys. Plasmas, 3: 2523  
Jukes JD (1964). Micro-instabilities in magnetically confined 

inhomogeneous plasma. Phys. Fluids, 7(9): 1468-1474. 
 
 
 
 
 

 
 

Khan et al.        591 
 
 
 
Melchior H, Popovich M (1968). Effect of the Finite Ion Larmor Radius 

on the Kelvin-Helmholtz Instability. Phys. Fluids, 11: 458.  
Ogbona N, Bhatia PK (1984). The Rayleigh-Taylor Instability of 

Superposed Partially Ionized Plasmas. Astrophys. Space Sci., 103: 
233-240. 

Prasad PVSR (1997). Resistive drift instability and Rayleigh-Taylor 
instability in a dusty plasma. Phys. Lett. A, 235(6): 610-616. 

Roberts KV, Taylor JB (1962). Magnetohydrodynamic Equations for 
Finite Larmor Radius. Phys. Rev. Lett., 8: 197.  

Roberts KV, Taylor JB (1962). Magnetohydrodynamic Equations for 
Finite Larmor Radius. Phys. Rev. Lett., 8: 197-198. 

Srivastava KM (1974). On the hydromagnetic Kelvin-Helmholtz 
instability between compressible fluids. Z. Naturforsch., A, 29a: 888-
892.  

Winske D (1989). Development of Flute Modes on Expanding Plasma 
Clouds, Phys. Fluids, B1: 1900. 

 
 
 
 
 
 
 
 
 
 
 

  
 
 


