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The combined effects of Newtonian heating and magnetohydrodynamics (MHD) in a flow of a Jeffery 
fluid are analyzed in stagnation point flow over a radially stretching surface. The governing equations 
are modeled by invoking boundary layer analysis. The computed solution by a homotopy approach is 
valid in the spatial domain.  Graphical results for the velocity and temperature fields are displayed and 
discussed. The local Nusselt number for various values of embedding parameters is shown. It is noted 
that the magnetic field retards the flow, whereas Newtonian heating acts as a boosting agent in order to 
increase the temperature of the fluid. 
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INTRODUCTION 
 
The flows of non-Newtonian fluids are significant in many 
industrial and engineering applications. Certain paints, 
salt solutions, molten polymers, ketchup, custard, 
toothpaste, starch suspensions, paints, blood at low 
shear rate and shampoo are few examples of the non-
Newtonian fluids. Such fluids in view of diverse charac-
teristics cannot be examined by using single constitutive 
relationship. These fluids have been classified into three 
types, namely, differential, rate and integral. A vast 
amount of literature is available on the flows of non-
Newtonian fluids. However, the rate type fluids amongst 
these are not given proper attention. Recently, various 
researchers studied the flows of rate type fluids under 
different flow aspects including suction/ injection at the 
boundaries, magnetohydrodynamics (MHD), heat and 
mass transport process, thermal-diffusion and diffusion-
thermo effects, thermal radiations, etc (Fetecau et al., 
2010a, b; Wang and Tan, 2011; Hayat and Awais, 2011; 
Hayat et al., 2010a).  

Fluid motion in the region of  a  stagnation  point  exists  
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on all moving solid bodies. The role of stagnation point is 
important, because the separation streamlines passing 
through them describe different flow regions. Thus, 
problems studying the stagnation point flow over a 
stretching surface are a classic problem in fluid 
mechanics. Initially, Hiemenz (1911) presented the 
steady flow in the neighborhood of a stagnation point. 
Later, the seminal work of Hiemenz was extended by 
various researchers. For instance, Attia (2007) presented 
the axisymmetric stagnation point flow towards a 
stretching surface in the presence of a uniform magnetic 
field with heat generation. Unsteady stagnation point flow 
over a plate moving along the direction of flow 
impingement has been studied by Zhong and Fang 
(2011). Hayat et al. (2011a) investigated the effects of 
mass transfer on the stagnation point flow of an upper-
convected Maxwell (UCM) fluid. Effects of suction/ 
blowing on steady boundary layer stagnation point flow 
and heat transfer towards a shrinking sheet with thermal 
radiation has been investigated by Bhattacharyya and 
Layek (2011). Bachok et al. (2011) analyzed the flow in 
the region of stagnation point towards a stretching sheet 
with homogeneous-heterogeneous reactions effects.  
Rosali  et  al.  (2011)  studied  stagnation  point  flow  and  



 
 
 
 
heat transfer over a stretching/shrinking sheet in a porous 
medium. The boundary layer of an unsteady incom-
pressible stagnation-point flow with mass transfer has 
been analyzed by Fang et al. (2011). Recently, 
stagnation point flow of a Burgers' fluid over a stretching 
surface was examined by Hayat et al. (2011b). 

It is known that heat transfer is concerned with the 
exchange of thermal energy from one physical system to 
another. Merkin (1994) pointed out four common heating 
processes specifying the wall-to-ambient temperature 
distributions. These are (1) constant or prescribed wall 
temperature (CWT), (2) constant or prescribed surface 
heat flux (CHF), (3) conjugate conditions, where heat is 
supplied through a bounding surface of finite thickness 
and finite heat capacity, and (4) Newtonian heating (NH), 
where the heat transfer rate from the bounding surface 
with a finite heat capacity is proportional to the local 
surface temperature, and which is usually termed 
conjugate convective flow. Generally, the boundary 
conditions 1 and 2 were used in modeling the convection 
boundary layer flow problems. However, recently, 
Newtonian heating conditions 4 have been used by 
researchers in view of their practical applications in 
several engineering devices, for instance in a heat 
exchanger where the conduction in a solid tube wall is 
greatly influenced by the convection in the fluid flowing 
over it. Further, for conjugate heat transfer around fins 
where the conduction within the fin and the convection in 
the fluid surrounding it must be simultaneously analyzed 
in order to obtain vital design information and also in 
convection flows set up when the bounding surfaces 
absorb heat by solar radiation. Free convection flow 
above a nearly horizontal surface in a porous medium 
subject to Newtonian heating has been studied by Lesnic 
et al. (2004). Unsteady free convection flow past an 
impulsively started vertical surface in the presence of 
Newtonian heating was addressed by Chaudhary and 
Jain (2006). Forced convection boundary layer flow at a 
forward stagnation point with Newtonian heating was 
studied by Salleh et al. (2009). Recently, Niu et al. (2010) 
analyzed the stability of thermal convection of an 
Oldroyd-B fluid in a porous medium with Newtonian 
heating. 

In this paper, a new dimension is added by including 
Newtonian heating effects over radially stretching 
surface. To the best of our knowledge, no such attempt 
has been presented. A Jeffery fluid model (Kothandapani 
and Srinivas, 2008; Hayat et al., 2011c) has been 
selected here, because it has a different rheology than a 
viscous fluid. The homotopy analysis method (HAM) 
(Liao, 2004; Rashidi et al., 2009, Hayat et al., 2010b, 
Hayat et al., 2011d) is used for the solutions 
development. It is due to the reason that the HAM does 
not depends upon any small/large physical parameters in 
the problem. It is usually noted that perturbation 
approximations are valid only for nonlinear problems with 
weak nonlinearity, but when  nonlinearity  is  strong,  then  
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perturbation approximations of the nonlinear problems 
often break down. In such cases, HAM provides a simple 
way to ensure the convergence of the series solution so 
that one can obtain accurate enough approximations 
even in the nonlinear problems. Further, it provides great 
freedom for selecting auxiliary linear operator, so that one 
can efficiently finds the approximate solution of a 
nonlinear problem which is correct up to 6 or 7 decimal 
places. Various graphical and numerical results are 
presented to analyze the flow analysis. Finally, various 
outcomes are presented to summarize the flow analysis. 
 
 
MATHEMATICAL ANALYSIS 
 
Two dimensional stagnation point flow of Jeffery fluid over a radially 
stretching surface is considered. The surface coincides with the 

plane 0z , whereas the fluid occupies the region .0z  A 

uniform magnetic field of strength 0B  is applied along the 

y axis. The velocity distribution (Attia, 2007) in the flow close to 

the stagnation point is given by ,)( arrU e   azzWe 2)(   

and the velocity of the stretching sheet is crrU w )( , where a  

and c  are the positive constants and r is the radial direction Figure 

1.  
The constitutive relationships in a Jeffery fluid (Kothandapani and 

Srinivas, 2008; Hayat et al., 2011c) are: 
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where p  denotes the pressure, I  the identity tensor,   the 

dynamic viscosity, 1  the ratio of relaxation and retardation times 

and 2  is the retardation time. The quantities r  and r  are 

defined by 
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Using the equation of continuity and motion, the resulting boundary 
layer equations are 
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Figure 1. Physical model. 
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with the conditions 
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where u  and w  are the velocity components along the radial  r  

and axial  z  directions, respectively, T  is the temperature of the 

fluid, pc  is the specific heat, k  is the thermal conductivity,   is 

the density,   is the kinematic viscosity, sh  is the heat transfer 

parameter and T  is the ambient temperature. The following 

transformations, 
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satisfy the continuity equation identically and Equations  6 to 8  are 
reduced as follows: 
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where   denotes the Deborah number, M  the Hartman number, 

A  the ratio of free stream velocity to the stretching velocity, Pr  
the Prandtl number and   the conjugate parameter for Newtonian 

heating. These are defined as: 
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The local Nusselt number  rNu   is defined as: 
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where the heat flux is: 
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k the thermal conductivity. In dimensionless form we get: 
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where  )/( 2 arRer    denotes the local Reynolds number. 

 
 
RESULTS AND DISCUSSION 
 
Equations 10 and 11 were solved in combination with the 
boundary conditions of Equation 12 by employing the 
HAM (Liao, 2004; Rashidi et al., 2009; Hayat et al., 

2010b, 2011d). Here f  and   are selected as 

auxiliary parameters for the functions f  and  , 

respectively in order to adjust and control the 
convergence of the obtained solutions. We have plotted 

the  -curves in Figures 2 and 3 to determine the 
permissible values of involved auxiliary parameters. The 

ranges for admissible values of f  and   are 

3.09.0  f  and 2.00.1   , respectively. The 

series solutions converge in the whole region of   

)0(   for .5.0  f
 

Table 1 shows that the convergent solution is obtained 
at the 15th order of approximation. The behaviors of 
various parameters on the velocity and temperature 
profiles are addressed as shown in Figures 4 to 9.  Figure 

4 delineates that an increase in A  yields an increase in 

velocity and the boundary layer thickness  10  A . It 

is also noted that the boundary layer thickness vanishes 

when   .0.1A    Furthermore,   when   the   free  stream  

 



 
 
 
 

 
 

Figure  2.   -curve for ).(f  

 
 

 
 

Figure 3.   -curve for ).(  

 
 
 

Table 1. Convergence of the homotopy solutions for 

different orders of approximation when ,1.0 A  

,0.1M  12.0    and .0.1Pr   

 

Order of  

approximation 
- )0(f    

1135734.04759635.135

1135734.04759635.125

1135742.04759632.115

1135826.04759301.110

1134814.04727158.15

1120370.03230000.11

)0()0(ionapproximat ofOrder   f
 

1 1.3230000 0.1120370 

5 1.4727158 0.1134814 

10 1.4759301 0.1135826 

15 1.4759632 1.1135742 

25 1.4759635 0.1135734 

35 1.4759635 0.1135734 
 
 
 

velocity is greater than the velocity of the stretching 

sheet, that is, 1A , the velocity increases and the 

boundary  layer   thickness  decreases  by  increasing A . 
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Figure 4. Influence of A  on .f   

 
 
 

 
 

Figure 5. Influence of M  on .f   

 
 

 

Physically, the larger values of A  accompany with the 
higher free stream velocity results into an increase in the 

fluid motion. The effects of M  on f   are plotted as 

shown in Figure 5. It has been noticed that the magnetic 
field retards the flow. Physically, when magnetic field is 
applied to any fluid, then the apparent viscosity of the 
fluid increases to the point of becoming a viscoelastic 
solid. It is of great interest that the yield stress of the fluid 
can be controlled very accurately through variation of the 
magnetic field intensity. The result is that the ability of the 
fluid to transmit force can be controlled with the help of 
an electromagnet, which gives rise to many possible 
control-based applications, including MHD power 
generation, electromagnetic casting of metals, MHD ion 

propulsion, etc. The influence of the Deborah number   

on f   is as shown in  Figure  6.  It  is  observed  that  the  
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Figure 6. Influence of   on .f   

 
 
 

 
 

Figure 7. Influence of 1  on .f   

 
 
 

 
 

Figure 8. Influence of   on .  

 
 
 
 

 
 

Figure 9. Influence of Pr  on .  

 
 
 
velocity of the fluid and the associated boundary layer 

thickness increase with an increase in .  Since the 

Deborah number   is dependent upon 2  (retardation 

time), physically larger retardation time of any material 
makes it less viscous resulting in an increase in its 

motion. Figures 7 portrays the effects of 1  on f  . It is 

seen that an increase in 1  being a viscoelastic 

parameter retards the flow. Figures 8 and 9 show the 

effects of   and Pr  on the dimensionless temperature 

  . The influence of   on the temperature is observed 

as shown in Figures 8. A significant deviation in the 
temperature profiles are observed for large values of  . 

Further, the temperature and the thermal boundary layer 
thickness are increasing functions of  . An increase in 

  results in an increase in the heat transfer rate from the 

surface which raises the temperature. An increase in Pr  
on the temperature is as shown in Figure 9. The definition 

of Pr    /  indicates that a large Prandtl number 

has relatively lower thermal conductivity. Therefore, a 
reduction in the thermal boundary layer thickness is 

noticed for large values of Pr . Interestingly, variations in 
the temperature profiles are more prominent for the 

smaller values of Pr  when compared with larger values. 
Table 2 depicts a comparison of the present results 

with the already published work in the limiting sense 
(Attia, 2007). It is noted that the present results are in a 
good agreement with the published results (Attia, 2007). 
Numerical values of the local Nusselt number for various 
values of embedding parameters are displayed in Table 
3. It is noticed that the local Nusselt number is a 

decreasing function of 1  and M . However, an increase 

in ,A    and Pr  causes an increase in the magnitude of 

the local Nusselt number.
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Table 2. Comparison of the values of  )0(f    in the limiting case when  .0.0 1    

 

A 
Attia  (2007)  Present results 

M=0.0 M=1.0  M=0.0 M=1.0 

0.1 -1.1246 -1.4334  -1.124601 -1.433473 

0.5 -0.7534 -0.9002  -0.753297 -0.899974 

1.0 0.0 0.0  0.0 0.0 

1.1 0.1821 0.2070  0.181935 0.206817 

1.5 1.0009 1.1157  0.993184 1.094581 
 
 
 

Table 3. Local Nusselt number for various values of embedding parameters. 
 

A      M  Pr  re NuR
r

2/1)( 
 

0.0 0.2 0.2 1.0 1.0 0.78756 

0.1 - - - - 0.83673 

0.2 - - - - 0.87829 

0.3 - - - - 0.91558 

0.1 0.0 - - - 0.80931 

- 0.2 - - - 0.83673 

- 0.4 - - - 0.85830 

- 0.2 0.0 - - 0.85818 

- - 0.2 - - 0.83673 

- - 0.4 - - 0.81797 

- - 0.2 0.5 - 0.85865 

- - - 1.0 - 0.83673 

- - - 1.5 - 0.81762 

- - - 1.0 0.5 0.54296 

- - - - 1.0 0.83675 

- - - - 1.5 1.08175 
 
 
 

Conclusions 
 

Axisymmetric stagnation point flow of a Jeffery fluid is 
considered. The flow is induced by a radially stretching 
surface. The concept of Newtonian heating is analyzed. 
The solutions of highly nonlinear differential equations 
are computed by using an efficient analytic approach, 
namely, HAM. The final outcomes are as follow: 
1. Magnetic field retards the flow. 
2. Newtonian heating acts as a boosting agent in order to 
enhance the temperature of the fluid. 
3. Velocity of the fluid can be boosted by increasing its 
retarding time. 
4. Prandtl number should be increased in order to control 
the thermal boundary layer. 
5. Constructed tables show that the solution is 
convergent and already published results can be 
obtained in the limiting sense. 
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